Жизненный цикл звезды - описание, схема и интересные факты.

> Жизненный цикл звезды

Описание жизни и смерти звезд : этапы развития с фото, молекулярные облака, протозвезда, T Тельца, главная последовательность, красный гигант, белый карлик.

Все в этом мире развивается. Любой цикл начинается с рождения, роста и завершается смертью. Конечно, у звезд эти циклы проходят по-особенному. Вспомним хотя бы, что временные рамки у них более масштабные и измеряются миллионами и миллиардами лет. Кроме того, их смерть несет определенные последствия. Как же выглядит жизненный цикл звезд ?

Первый жизненный цикл звезды: Молекулярные облака

Начнем с рождения звезды. Представьте себе огромное облако холодного молекулярного газа, которое может спокойно существовать во Вселенной без всяких изменений. Но вдруг недалеко от него взрывается сверхновая или же оно наталкивается на другое облако. Из-за такого толчка активируется процесс разрушения. Оно делится на небольшие части, каждая их которых втягивается в себя. Как вы уже поняли, все эти кучки готовятся стать звездами. Гравитация накаляет температуру, а сохраненный импульс поддерживает процесс вращения. Нижняя схема наглядно демонстрирует цикл звезд (жизнь, этапы развития, варианты трансформации и смерть небесного тела с фото).

Второй жизненный цикл звезды: Протозвезда

Материал сгущается плотнее, нагревается и отталкивается от гравитационного коллапса. Такой объект называют протозвездой, вокруг которого формируется диск материала. Часть притягивается к объекту, увеличивая его массу. Остальные же обломки сгруппируются и создадут планетарную систему. Дальше развитие звезды все зависит от массы.

Третий жизненный цикл звезды: Т Тельца

При попадании материала на звезду, высвобождается огромное количество энергии. Новый звездный этап назвали в честь прототипа – Т Тельца. Это переменная звезда, расположенная в 600 световых годах (недалеко от ).

Она может достигать большой яркости, потому что материал разрушается и освобождает энергию. Но в центральной части не хватает температуры, чтобы поддерживать ядерный синтез. Эта фаза длится 100 миллионов лет.

Четвертый жизненный цикл звезды: Главная последовательность

В определенный момент температура небесного тела поднимается к необходимой отметке, активируя ядерный синтез. Через это проходят все звезды. Водород трансформируется в гелий, выделяя огромный тепловой запас и энергию.

Энергия высвобождается как гамма-лучи, но из-за медленного движение звезды она падает с длиной волны. Свет выталкивается наружу и вступает в конфронтацию с гравитацией. Можно считать, что здесь создается идеальное равновесие.

Сколько она пробудет в главной последовательности? Нужно исходить из массы звезды. Красные карлики (половина солнечной массы) способны тратить топливный запас сотни миллиардов (триллионы) лет. Средние звезды (как ) живут 10-15 миллиардов. А вот наиболее крупные – миллиарды или миллионы лет. Посмотрите, как выглядит эволюция и смерть звезд различных классов на схеме.

Пятый жизненный цикл звезды: Красный гигант

В процессе плавления водород заканчивается, а гелий накапливается. Когда водорода совсем не остается, все ядреные реакции замирают, и звезда начинает сжиматься из-за силы тяжести. Водородная оболочка вокруг ядра нагревается и зажигается, заставляя объект вырастать в 1000-10000 раз. В определенный момент и наше Солнце повторит эту судьбу, увеличившись до земной орбиты.

Температура и давление достигают максимума, и гелий сплавляется в углерод. В этой точке звезда сжимается и перестает быть красным гигантом. При большей массивности объект будет сжигать другие тяжелые элементы.

Шестой жизненный цикл звезды: Белый карлик

Звезда с солнечной массой не располагает достаточным гравитационным давлением, чтобы сплавить углерод. Поэтому смерть наступает с окончанием гелия. Происходит выброс внешних слоев и появляется белый карлик. Сначала он горячий, но через сотни миллиардов лет остынет.

Жизненный цикл звезд

Обычная звезда выделяет энергию за счет превращения водорода в гелий в ядерной печи, находящейся в ее сердцевине. После того как звезда израсходует водород в центре, он начинает перегорать в оболочке звезды, которая увеличивается в размере, разбухает. Размер звезды возрастает, температура ее падает. Этот процесс порождает красных гигантов и сверхгигантов. Продолжительность жизни каждой звезды определяется ее массой. Массивные звезды заканчивают свой жизненный цикл взрывом. Звезды, подобные Солнцу, сжимаются, превращаясь в плотные белые карлики. В процессе превращения из красного гиганта в белого карлика звезда может сбросить свои наружные слои, как легкую газовую оболочку, обнажив ядро.

Из книги ЧЕЛОВЕК И ЕГО ДУША. Жизнь в физическом теле и астральном мире автора Иванов Ю М

Из книги Большая Советская Энциклопедия (ЖИ) автора БСЭ

Из книги Путешественники автора Дорожкин Николай

Из книги Экономика недвижимости автора Бурханова Наталья

Сложный жизненный маршрут Отношение наших отечественных учёных к Свену Гедину претерпевало значительные изменения. Причины кроются как в характере самого Гедина, так и в политических ситуациях его времени. С юности зная русский язык и испытывая симпатии к России и её

Из книги Финансы: Шпаргалка автора Автор неизвестен

4. Жизненный цикл объектов недвижимого имущества Так как объекты недвижимого имущества в течение времени своего существования подвергаются экономическим, физическим, правовым изменения, то любая недвижимая вещь (за исключением земли) проходит следующие стадии

Из книги Все обо всем. Том 5 автора Ликум Аркадий

47. ВОЗДЕЙСТВИЕ ФИНАНСОВ НА ЖИЗНЕННЫЙ УРОВЕНЬ НАСЕЛЕНИЯ Социально-экономическая сущность финансовых отношений состоит в исследовании вопроса, за счет кого государство получает финансовые ресурсы и в чьих интересах используются эти средства.Значительная часть

Из книги Организационное поведение: Шпаргалка автора Автор неизвестен

Далеко ли до звезд? Во Вселенной есть звезды, которые находятся так далеко от нас, что у нас даже нет возможности узнать расстояние до них или установить их количество. Но как далека от Земли ближайшая звезда? Расстояние от Земли до Солнца 150 000 000 километров. Так как свет

Из книги Маркетинг: Шпаргалка автора Автор неизвестен

50. ЖИЗНЕННЫЙ ЦИКЛ ОРГАНИЗАЦИИ Широко распространено понятие жизненного цикла организации – ее изменения с определенной последовательностью состояний при взаимодействии с окружающей средой. Существуют определенные этапы, через которые проходят организации, и

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

45. ЖИЗНЕННЫЙ ЦИКЛ ТОВАРА Жизненный цикл товара – это изменение объема продаж и прибылей на протяжении времени его жизни. Товар имеет стадию зарождения, роста, зрелости и конец – «смерть», уход.1. Стадия «разработка и вывод на рынок». Это период инвестиций в маркетинговые

Из книги 200 знаменитых отравлений автора Анцышкин Игорь

2.7. Клетка – генетическая единица живого. Хромосомы, их строение (форма и размеры) и функции. Число хромосом и их видовое постоянство. Особенности соматических и половых клеток. Жизненный цикл клетки: интерфаза и митоз. Митоз – деление соматических клеток. Мейоз. Фазы

Из книги Краткий справочник необходимых знаний автора Чернявский Андрей Владимирович

4.5.1. Жизненный цикл водорослей Отдел Зеленые водоросли включает в себя одноклеточные колониальные и многоклеточные растения. Всего около 13 тыс. видов. К одноклеточным относятся хламидомонада, хлорелла. Колонии образованы клетками вольвокса и пандорины. К многоклеточным

Из книги Популярный звездочет автора Шалашников Игорь

ЖЕРТВЫ ЗВЕЗД Итальянский математик Кардано был и философом, и медиком, и астрологом. Сперва он занимался исключительно медициной, но с 1534 года состоял профессором математики в Милане и Болонье; однако для увеличения своих скромных доходов профессор не оставлял

Из книги Новейший философский словарь автора Грицанов Александр Алексеевич

25 ближайших звезд mV - визуальная звездная величина; r - расстояние до звезды, пк; L - светимость (мощность излучения) звезды, выражена в единицах светимости Солнца (3,86–1026

Из книги Я познаю мир. Вирусы и болезни автора Чирков С. Н.

Виды звезд В сравнении с другими звездами во Вселенной Солнце является звездой-карликом и относится к категории нормальных звезд, в недрах которых происходит превращение водорода в гелий. Так или иначе, но виды звезд примерно описывают жизненный цикл одной отдельно

Из книги автора

"ЖИЗНЕННЫЙ МИР" (Lebenswelt) - одно из центральных понятий поздней феноменологии Гуссерля, сформулированное им в результате преодоления узкого горизонта строго феноменологического метода за счет обращения к проблемам мировых связей сознания. Такое включение "мировой"

Из книги автора

Жизненный цикл вируса Каждый вирус проникает в клетку своим, только ему свойственным путем. Проникнув, он должен прежде всего снять верхнюю одежду, чтобы обнажить, хотя бы частично, свою нуклеиновую кислоту и начать ее копирование.Работа вируса хорошо организована.

Образуются путём конденсации межзвёздной среды. Путём наблюдений удалось определить что звёзды возникали в разное время и возникают по сей день.

Главной проблемой в эволюции звёзд является вопрос о возникновении их энергии, благодаря которой они светятся и излучают огромное количество энергии. Ранее выдвигалось много теорий, которые были призваны выявить источники энергии звёзд. Считали, что непрерывным источником звёздной энергии является непрерывное сжатие. Этот источник конечно хорош, но не может поддерживать соответствующее излучение в течении долгого времени. В середине XX века был найден ответ на этот вопрос. Источником излучения является термоядерные реакции синтеза. В результате этих реакций водород превращается в гелий, а освобождающаяся энергия проходит сквозь недра звезды, трансформируется и излучается в мировое пространство (стоит отметить, что чем больше температура, тем быстрее идут эти реакции; именно поэтому горячие массивные звёзды быстрее сходят с главной последовательности).

Теперь представим возникновение звезды…

Начало конденсироваться облако межзвёздной газопылевой среды. Из этого облака образуется довольно плотный газовый шар. Давление внутри шара пока не в силах уравновесить силы притяжения, поэтому он будет сжиматься (возможно в это время вокруг звезды образуются сгустки с меньшей массой, которые в итоге превращаются в планеты). При сжатии температура повышается. Таким образом, звёзда постепенно садится на главную последовательность. Затем давление газа внутри звезды уравновешивает притяжение и протозвёзда превращается в звезду.

Ранняя стадия эволюции звёзды очень не велика и звезда в это время погружена в туманность, поэтому протозвезду очень тяжело обнаружить.

Превращение водорода в гелий происходит только в центральных областях звезды. В наружных слоях содержание водорода остаётся практически неизменным. Так как количество водорода ограничено, рано или поздно он выгорает. Выделение энергии в центре звезды прекращается и ядро звёзды начинает сжиматься, а оболочка разбухать. Далее если звезда меньше 1,2 массы солнца, она сбрасывает наружный слой (образование планетарной туманности).

После того, как от звёзды отделяется оболочка, открываются её внутренние очень горячие слои, а оболочка тем временем отходит всё дальше. Через несколько десятков тысяч лет оболочка распадётся и останется только очень горячая и плотная звезда, постепенно остывая она превратится в белый карлик . Постепенно остывая они превращаются в невидимые чёрные карлики . Чёрные карлики – это очень плотные и холодные звёзды, размером чуть больше Земли, но имеющие массу сравнимую с массой солнца. Процесс остывания белых карликов длится несколько сотен миллионов лет.

Если масса звезды от 1,2 до 2,5 солнечной, то такая звёзда взорвётся. Этот взрыв называется вспышкой сверхновой . Вспыхнувшая звезда за несколько секунд увеличивает свою светимость в сотни миллионов раз. Такие вспышки происходят крайне редко. В нашей Галактике взрыв сверхновой происходит, примерно, раз в сто лет. После подобной вспышки остаётся туманность, которая имеет большое радиоизлучение, а также очень быстро разлетается, и так называемая нейтронная звезда (об этом чуть позже). Помимо огромного радиоизлучения такая туманность будет ещё источником рентгеновского излучения, но это излучение поглощается атмосферой земли, поэтому может наблюдаться лишь из космоса.

Существует несколько гипотез о причине взрывов звёзд (сверхновых), однако общепризнанной теории пока нет. Есть предположение, что это происходит из-за слишком быстрого спада внутренних слоёв звезды к центру. Звезда быстро сжимается до катастрофически маленького размера порядка 10км, а плотность её в таком состоянии составляет 10 17 кг/м 3 , что близко к плотности атомного ядра. Эта звезда состоит из нейтронов (при этом электроны, как бы вдавливаются в протоны), именно поэтому она называется «НЕЙТРОННОЙ» . Её начальная температура около миллиарда кельвинов, но в дальнейшем она будет быстро остывать.

Эта звезда из-за её маленького размера и быстрого остывания долгое время считалась невозможной для наблюдения. Но через некоторое время были обнаружены пульсары . Эти пульсары и оказались нейтронными звёздами. Названы они так из-за кратковременного излучения радиоимпульсов. Т.е. звезда как бы «мигает». Это открытие было сделано совершенно случайно и не так давно, а именно в 1967 году. Эти периодичные импульсы обусловлены тем, что при очень быстром вращении мимо нашего взгляда постоянно мелькает конус магнитной оси, которая образует угол с осью вращения.

Пульсар может быть обнаружен только для нас условиях ориентирования магнитной оси, а это примерно 5% из их общего количества. Часть пульсаров не находится в радио туманностях, так как туманности сравнительно быстро рассеиваются. Через сотню тысяч лет эти туманности перестают быть видимыми, а возраст пульсаров исчисляется десятками миллионов лет.

Если масса звезды превышает 2,5 солнечные, то в конце своего существования она как бы обрушится в себя и будет раздавлена собственным весом. В считанные секунды она превратится в точку. Это явление получило название «гравитационный коллапс», а также этот объект стали называть «чёрной дырой» .

Из всего выше сказанного видно, что финальная стадия эволюции звезды зависит от её массы, но при этом необходимо ещё учитывать неизбежную ею потерю этой самой массы и вращение.

Как и любые тела в природе, звезды тоже не могут оставаться неизменными. Они рождаются, развиваются и, наконец, «умирают». Эволюция звезд занимает миллиарды лет, а вот по поводу времени их образования ведутся споры. Раньше астрономы считали, что процесс их «рождения» из звездной пыли требует миллионы лет, но не так давно были получены фотографии области неба из состава Большой Туманности Ориона. За несколько лет там возникло небольшое

На снимках 1947 года в этом месте была зафиксирована небольшая группа звездоподобных объектов. К 1954 году некоторые из них уже стали продолговатыми, а еще через пять лет эти объекты распались на отдельные. Так впервые процесс рождения звезд проходил буквально на глазах у астрономов.

Давайте подробно разберем, как проходит строение и эволюция звезд, с чего начинается и чем заканчивается их бесконечная, по людским меркам, жизнь.

Традиционно ученые предполагают, что звезды образуются в результате конденсации облаков газо-пылевой среды. Под действием гравитационных сил из образовавшихся облаков формируется непрозрачный газовый шар, плотный по своей структуре. Его внутреннее давление не может уравновесить сжимающие его гравитационные силы. Постепенно шар сжимается настолько, что температура звездных недр повышается, и давление горячего газа внутри шара уравновешивает внешние силы. После этого сжатие прекращается. Длительность этого процесса зависит от массы звезды и обычно составляет от двух до нескольких сотен миллионов лет.

Строение звезд предполагает очень высокую температуру в их недрах, что способствует беспрерывным термоядерным процессам (водород, который их образует, превращается в гелий). Именно эти процессы являются причиной интенсивного излучения звезд. Время, за которое они расходуют имеющийся запас водорода, определяется их массой. От этого же зависит и длительность излучения.

Когда запасы водорода истощаются, эволюция звезд подходит к этапу образования Это происходит следующим образом. После прекращения выделения энергии гравитационные силы начинают сжимать ядро. При этом звезда значительно увеличивается в размерах. Светимость также возрастает, поскольку процесс продолжается, но только в тонком слое на границе ядра.

Этот процесс сопровождается повышением температуры сжимающегося гелиевого ядра и превращением ядер гелия в ядра углерода.

По прогнозам, наше Солнце может превратиться в красного гиганта через восемь миллиардов лет. Радиус его при этом увеличится в несколько десятков раз, а светимость вырастет в сотни раз по сравнению с нынешними показателями.

Продолжительность жизни звезды, как уже отмечалось, зависит от ее массы. Объекты с массой, которая меньше солнечной, очень экономно «расходуют» запасы своего поэтому могут светить десятки миллиардов лет.

Эволюция звезд заканчивается образованием Это происходит с теми из них, чья масса близка к массе Солнца, т.е. не превышает 1,2 от нее.

Гигантские звезды, как правило, быстро истощают свой запас ядерного горючего. Это сопровождается значительной потерей массы, в частности, за счет сброса внешних оболочек. В результате остается только постепенно остывающая центральная часть, в которой ядерные реакции полностью прекратились. Со временем такие звезды прекращают свое излучение и становятся невидимыми.

Но иногда нормальная эволюция и строение звезд нарушается. Чаще всего это касается массивных объектов, исчерпавших все виды термоядерного горючего. Тогда они могут преобразовываться в нейтронные, или И чем больше ученые узнают об этих объектах, тем больше возникает новых вопросов.

Рассмотрим кратко основные этапы эволюции звезд.

Изменение физических характеристик, внутреннего строения и химического состава звезды со временем.

Фрагментация вещества. .

Предполагается, что звезды образуются при гравитационном сжатии фрагментов газопылевого облака. Так, местами звездообразования могут являться так называемые глобулы.

Глобула - плотное непрозрачное молекулярно-пылевое (газопылевое) межзвездное облако, которое наблюдается на фоне светящихся облаков газа и пыли в виде темного круглого образования. Состоит преимущественно из молекулярного водорода (H 2) и гелия (He ) с примесью молекул других газов и твердых межзвездных пылинок. Температура газа в глобуле (в основном, температура молекулярного водорода) T ≈ 10 ÷ 50К, средняя плотность n ~ 10 5 частиц/см 3 , что на несколько порядков больше, нежели в самых плотных обычных газопылевых облаках, диаметр D ~ 0,1 ÷ 1 . Масса глобул М ≤ 10 2 × M ⊙ . В некоторых глобулах наблюдаются молодые типа T Тельца.

Облако сжимается под действием собственной гравитации из-за гравитационной неустойчивости, которая может возникнуть либо самопроизвольно, либо как результат взаимодействия облака с ударной волной от сверхзвукового потока звездного ветра от находящегося неподалеку другого источника звездообразования. Возможны и другие причины возникновения гравитационной неустойчивости.

Теоретические исследования показывают, что в условиях, которые существуют в обычных молекулярных облаках (T ≈ 10 ÷ 30К и n ~ 10 2 частиц/см 3), первоначальное может происходить в объемах облака с массой М ≥ 10 3 × M ⊙ . В таком сжимающемся облаке возможен дальнейший распад на менее массивные фрагменты, каждый из которых будет также сжиматься под действием собственной гравитации. Наблюдения показывают, что в Галактике в процессе звездообразования рождается не одна , а группа звезд с разными массами, например, рассеянное звездное скопление.

При сжатии в центральных районах облака плотность возрастает, в результате чего наступает момент, когда вещество этой части облака становится непрозрачным к собственному излучению. В недрах облака возникает устойчивое плотное сгущение, которое астрономы называют ой.

Фрагментация вещества – распад молекулярно-пылевого облака на более ме ие части, дальнейшее которых приводит к появлению .

– астрономический объект, находящийся в стадии , из которого спустя некоторое время (для солнечной массы это время T ~ 10 8 лет) образуется нормальная .

При дальнейшем падении вещества из газовой оболочки на ядро (аккреция) масса последнего, а следовательно, температура и увеличиваются настолько, что газовое и лучистое давление сравниваются с силами . Сжатие ядра останавливается. Формирующаяся окружена непрозрачной для оптического излучения газопылевой оболочкой, пропускающей наружу лишь инфракрасное и более длинноволновое излучение. Такой объект ( -кокон) наблюдается как мощный источник радио и инфракрасного излучений.

При дальнейшем росте массы и температуры ядра световое давление останавливает аккрецию, а остатки оболочки рассеиваются в космическом пространстве. Появляется молодая , физические характеристики которой зависят от ее массы и начального химического состава.

Основным источником энергии рождающейся звезды является, по-видимому, энергия, высвобождающаяся при гравитационном сжатии. Это предположение следует из теоремы вириала: в стационарной системе сумма потенциальной энергии E п всех членов системы и удвоенной кинетической энергии 2 E к этих членов равна нулю:

E п + 2 E к = 0. (39)

Теорема справедлива для систем частиц, движущихся в ограниченной области пространства под действием сил, величина которых обратно пропорциональна квадрату расстояния между частицами. Отсюда следует, что тепловая (кинетическая) энергия равна половине гравитационной (потенциальной) энергии. При сжатии звезды полная энергия звезды уменьшается, при этом уменьшается гравитационная энергия: половина изменения гравитационной энергии уходит от звезды через излучение, за счет второй половины увеличивается тепловая энергия звезды.

Молодые звёзды малой массы (до трёх масс Солнца), находящиеся на подходе к главной последовательности, полностью конвективны; процесс конвекции охватывает все области светила. Это ещё по сути протозвёзды, в центре которых только-только начинаются ядерные реакции, и всё излучение происходит, в основном, из-за . Пока ещё не установлено, звезды убывает при неизменной эффективной температуре. На диаграмме Герцшпрунга-Рассела такие звёзды формируют почти вертикальный трек, называемый треком Хаяши. По мере замедления сжатия молодая приближается к главной последовательности.

По мере сжатия звезды начинает увеличиваться давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста центральной температуры, вызываемого сжатием, а затем и к её понижению. Для звёзд меньше 0,0767 масс Солнца этого не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы уравновесить внутреннее давление и . Такие «недозвёзды» излучают энергии больше, чем образуется в ходе ядерных реакций, и относятся к так называемым ; их судьба - это постоянное сжатие, пока давление вырожденного газа не остановит его, и, затем, постепенное остывание с прекращением всех начавшихся ядерных реакций .

Молодые звёзды промежуточной массы (от 2 до 8 массы Солнца) качественно эволюционируют точно так же, как и их меньшие сестры, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Звезды с массой больше 8 солнечных масс уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, чтобы они компенсировали потери энергии на излучение, пока накапливалась масса ядра. У этих звёзд истечение массы и настолько велики, что не просто останавливают коллапсирование ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, отта ивает их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака.

Главная последовательность

Температура звезды растет, пока в центральных областях не достигнет значений, достаточных для включения термоядерных реакций, которые затем становятся главным источником энергии звезды. Для массивных звезд (M > 1 ÷ 2 × M ⊙ ) – это «сгорание» водорода в углеродном цикле; для звезд с массой, равной или меньшей массы Солнца, энергия выделяется в протон-протонной реакции. переходит в стадию равновесия и занимает свое место на главной последовательности диаграммы Герцшпрунга-Рессела: у звезды большой массы температура в ядре очень высокая (T ≥ 3 × 10 7 K ), выработка энергии весьма интенсивна, – на главной последовательности занимает место выше Солнца в области ранних (O … A , (F )); у звезды небольшой массы температура в ядре сравнительно невысока (T ≤ 1,5 × 10 7 K ), выработка энергии не столь интенсивна, – на главной последовательности занимает место рядом или ниже Солнца в области поздних ((F ), G , K , M ).

На главной последовательности проводит до 90% времени, отпущенного природой на ее существование. Время нахождения звезды на стадии главной последовательности также зависит от массы. Так, с массой M ≈ 10 ÷ 20 × M ⊙ O или B находится в стадии главной последовательности около 10 7 лет, в то время как красный карлик K 5 с массой M ≈ 0,5 × M ⊙ находится в стадии главной последовательности около 10 11 лет, то есть время, сравнимое с возрастом Галактики. Массивные горячие звезды быстро переходят в следующие этапы эволюции, холодные карлики находятся в стадии главной последовательности все время существования Галактики. Можно предположить, что красные карлики являются основным типом населения Галактики.

Красный гигант (сверхгигант).

Быстрое выгорание водорода в центральных районах массивных звезд приводит к появлению у них гелиевого ядра. При доле массы водорода в несколько процентов в ядре практически полностью прекращается углеродная реакция превращения водорода в гелий. Ядро сжимается, что приводит к увеличению его температуры. В результате разогрева, вызванного гравитационным сжатием гелиевого ядра, «загорается» водород и начинается энерговыделение в тонком слое, расположенном между ядром и протяженной оболочкой звезды. Оболочка расширяется, радиус звезды увеличивается, эффективная температура уменьшается, растет. «уходит» с главной последовательности и переходит в следующую стадию эволюции – в стадию красного гиганта или, если масса звезды M > 10 × M ⊙ , в стадию красного сверхгиганта.

С ростом температуры и плотности в ядре начинает «гореть» гелий. При T ~ 2 × 10 8 K и r ~ 10 3 ¸ 10 4 г/см 3 начинается термоядерная реакция, которая называется тройным a -процессом: из трех a -частиц (ядер гелия 4 He ) образуется одно устойчивое ядро углерода 12 C . При массе ядра звезды M < 1,4 × M ⊙ тройной a -процесс приводит к взрывному характеру энерговыделения - гелиевой вспышке, которая для конкретной звезды может повторяться неоднократно.

В центральных областях массивных звезд, находящихся в стадии гиганта или сверхгиганта, увеличение температуры приводит к последовательному образованию углеродного, углеродно-кислородного и кислородного ядер. После выгорания углерода наступают реакции, в результате которых образуются более тяжелые химические элементы, возможно и ядра железа. Дальнейшая эволюция массивной звезды может привести к сбросу оболочки, вспышке звезды как Новой или , с последующим образованием объектов, которые являются заключительной стадией эволюции звезд: белого карлика, нейтронной звезды или черной дыры.

Завершающая стадия эволюции – стадия эволюции всех нормальных звезд после исчерпания этими ми термоядерного горючего; прекращение термоядерных реакций как источника энергии звезды; переход звезды в зависимости от ее массы в стадию белого карлика, или черной дыры.

Белые карлики - последняя стадия эволюции всех нормальных звезд с массой M < 3 ÷ 5 × M ⊙ после исчерпания этими ми термоядерного горючего. Пройдя стадию красного гиганта (или субгиганта), такая сбрасывает оболочку и оголяет ядро, которое, остывая, и становится белым карликом. Небольшой радиус (R б.к ~ 10 -2 × R ⊙ ) и белый или бело-голубой цвет (T б.к ~ 10 4 К) определили название этого класса астрономических объектов. Масса белого карлика всегда меньше 1,4 × M ⊙ - доказано, что белые карлики с большими массами существовать не могут. При массе, сравнимой с массой Солнца, и размерах, сравнимых с размерами больших планет Солнечной системы, белые карлики обладают огромной средней плотностью: ρ б.к ~ 10 6 г/см 3 , то есть гирька объемом 1 см 3 вещества белого карлика весит тонну! Ускорение свободного падения на поверхности g б.к ~ 10 8 см/с 2 (сравни с ускорением на поверхности Земли - g з ≈ 980 см/с 2). При такой гравитационной нагрузке на внутренние области звезды равновесное состояние белого карлика поддерживается давлением вырожденного газа (в основном, вырожденного электронного газа, так как вклад ионной компоненты мал). Напомним, что вырожденным называется газ, в котором отсутствует максвелловское распределение частиц по скоростям. В таком газе при определенных значениях температуры и плотности число частиц (электронов), имеющих любую скорость в пределах от v = 0 до v = v max , будет одинаковым. v max определяется плотностью и температурой газа. При массе белого карлика M б.к > 1,4 × M ⊙ максимальная скорость электронов в газе сравнима со скоростью света, вырожденный газ становится релятивистским и его давление уже неспособно противостоять гравитационному сжатию. Радиус карлика стремится к нулю - “схлопывается” в точку.

Тонкие горячие атмосферы белых карликов состоят либо из водорода, при этом других элементов в атмосфере практически не обнаруживается; либо из гелия, при этом водорода в атмосфере в сотни тысяч раз меньше, нежели в атмосферах нормальных звезд. По виду спектра белые карлики относятся к спектральным классам O, B, A, F. Чтобы “отличить” белые карлики от нормальных звезд, перед обозначением ставится буква D (DOVII, DBVII и т.д. D - первая буква в английском слове Degenerate - вырожденный). Источником излучения белого карлика является запас тепловой энергии, который белый карлик получил, будучи ядром звезды-родительницы. Многие белые карлики получили в наследство от родительницы и сильное магнитное поле, напряженность которого H ~ 10 8 Э. Полагают, что число белых карликов составляет около 10% от общего числа звезд Галактики.

На рис. 15 приведена фотография Сириуса - ярчайшей звезды неба (α Большого Пса; m v = -1 m ,46; класс A1V). Видимый на снимке диск является следствием фотографической иррадиации и дифракции света на объективе телескопа, то есть диск самой звезды на фотографии не разрешается. Лучи, идущие от фотографического диска Сириуса, - следы искажения волнового фронта светового потока на элементах оптики телескопа. Сириус находится на расстоянии 2,64 от Солнца, свет от Сириуса идет до Земли 8,6 лет - таким образом, это одна из самых близких к Солнцу звезд. Сириус в 2,2 раза массивнее Солнца; его M v = +1 m ,43, то есть наш сосед излучает энергии в 23 раза больше, нежели Солнце.

Рисунок 15.

Уникальность фотографии заключается в том, что вместе с изображением Сириуса удалось получить изображение его спутника – спутник яркой точкой “светится” слева от Сириуса. Сириус – телескопически : сам Сириус обозначается буквой А, а его спутник буквой В. Видимая звездная величина Сириуса В m v = +8 m ,43, то есть он почти в 10 000 раз слабее Сириуса А. Масса Сириуса В почти точно равна массе Солнца, радиус около 0,01 радиуса Солнца, температура поверхности около 12000К, однако излучает Сириус В в 400 раз меньше Солнца. Сириус В - типичный белый карлик. Более того, это первый белый карлик, обнаруженный, кстати, Альвеном Кларком в 1862 г при визуальном наблюдении в телескоп.

Сириус А и Сириус В обращаются вокруг общего с периодом 50 лет; расстояние между компонентами А и В всего 20 а.е.

По меткому замечанию В.М.Липунова, ““вызревают” внутри массивных звезд (с массой более 10 × M ⊙ )”. Ядра звезд, эволюционирующих в нейтронную звезду, имеют 1,4 × M ⊙ ≤ M ≤ 3 × M ⊙ ; после того, как иссякнут источники термоядерных реакций и -родительница вспышкой сбросит значительную часть вещества, эти ядра станут самостоятельными объектами звездного мира, обладающими весьма специфическими характеристиками. Сжатие ядра звезды-родительницы останавливается при плотности, сравнимой с ядерной (ρ н . з ~ 10 14 ÷ 10 15 г/см 3). При таких массе и плотности радиус родившейся всего 10 состоит из трех слоев. Наружный слой (или внешняя кора) образован кристаллической решеткой из атомных ядер железа (Fe ) с возможной небольшой примесью атомных ядер других металлов; толщина внешней коры всего около 600 м при радиусе 10 км. Под внешней корой находится еще одна внутренняя твердая кора, состоящая из атомов железа (Fe ), но эти атомы переобогащены нейтронами. Толщина этой коры 2 км. Внутренняя кора граничит с жидким нейтронным ядром, физические процессы в котором определяются замечательными свойствами нейтронной жидкости - сверхтекучестью и, при наличии в ней свободных электронов и протонов, сверхпроводимостью. Возможно, что в самом центре вещество может содержать мезоны и гипероны.

Быстро вращаются вокруг оси - от одного до сотен оборотов в секунду. Такое вращение при наличии магнитного поля (H ~ 10 13 ÷ 10 15 Э) часто приводит к наблюдаемому эффекту пульсации излучения звезды в разных диапазонах электромагнитных волн. Один из таких пульсаров мы видели внутри Крабовидной туманности.

Общее число скорость вращения уже недостаточна для эжекции частиц, поэтому такая не может быть радиопульсаром. Однако она всё ещё велика, и захваченная магнитным полем окружающая нейтронную звезду не может упасть, то есть аккреция вещества не происходи.

Аккретор (рентгеновский пульсар). Скорость вращения снижается до такой степени, что веществу теперь ничего не мешает падать на такую нейтронную звезду. Плазма, падая, движется по линиям магнитного поля и ударяется о твёрдую поверхность в районе полюсов , разогреваясь до десятков миллионов градусов. Вещество, нагретое до столь высоких температур, светится в рентгеновском диапазоне. Область, в которой происходит сто новение падающего вещества с поверхностью звезды, очень мала - всего около 100 метров. Это горячее пятно из-за вращения звезды периодически пропадает из вида, что наблюдатель воспринимает как пульсации. Такие объекты называются рентгеновскими пульсарами.

Георотатор. Скорость вращения таких нейтронных звёзд мала и не препятствует аккреции. Но размеры магнитосферы таковы, что плазма останавливается магнитным полем раньше, чем она будет захвачена гравитацией.

Если является компонентой тесной двойной системы, то происходит “перекачка” вещества от нормальной звезды (второй компоненты) на нейтронную. Масса может превысить критическую (M > 3 × M ⊙ ), тогда нарушается гравитационная устойчивость звезды, уже ничто не может противостоять гравитационному сжатию, и “уходит” под свой гравитационный радиус

r g = 2 × G × M/c 2 , (40)

превращаясь в “черную дыру“. В приведенной формуле для r g: M - масса звезды, c - скорость света, G - гравитационная постоянная.

Черная дыра - объект, поле тяготения которого настолько велико, что ни частица, ни фотон, ни любое материальное тело не могут достигнуть второй космической скорости и вырваться во внешнее пространство.

Черная дыра является сингулярным объектом в том смысле, что характер протекания физических процессов внутри ее пока недоступен теоретическому описанию. Существование черных дыр следует из теоретических соображений, реально они могут находиться в центральных районах шаровых скоплений, квазаров, гигантских галактик, в том числе, и в центре Нашей галактики.