Днк состав строение свойства. Строение молекулы днк

DNA Logic - это технология ДНК-вычислений, которая сегодня находится в зачаточном состоянии, однако в будущем на нее возлагаются большие надежды. Биологические нанокомпьютеры, вживляемые в живые организмы, пока видятся нам как нечто фантастическое, нереальное. Но то, что нереально сегодня, уже завтра может оказаться чем-то обыденным и настолько естественным, что трудно будет представить, как без этого можно было обходиться в прошлом.

Итак, ДНК-вычисления - это раздел области молекулярных вычислений на границе молекулярной биологии и компьютерных наук. Основная идея ДНК-вычислений - построение новой парадигмы, создание новых алгоритмов вычислений на основе знаний о строении и функциях молекулы ДНК и операций, которые выполняются в живых клетках над молекулами ДНК при помощи различных ферментов. К перспективам ДНК-вычислений относится создание биологического нанокомпьютера, который будет способен хранить терабайты информации при объеме в несколько микрометров. Такой компьютер можно будет вживлять в клетку живого организма, а его производительность будет исчисляться миллиардами операций в секунду при энергопотреблении не более одной миллиардной доли ватта.

Преимущества ДНК в компьютерных технологиях

Для современных процессоров и микросхем в качестве строительного материала используется кремний. Но возможности кремния не беспредельны, и в конечном счете мы подойдем к той черте, когда дальнейший рост вычислительной мощности процессоров окажется исчерпан. А потому перед человечеством уже сейчас остро стоит проблема поиска новых технологий и материалов, которые смогли бы в будущем заменить кремний.

Молекулы ДНК могут оказаться тем самым материалом, который впоследствии заменит кремниевые транзисторы с их бинарной логикой. Достаточно сказать, что всего один фунт (453 г) ДНК-молекул обладает емкостью для хранения данных, которая превосходит суммарную емкость всех современных электронных систем хранения данных, а вычислительная мощность ДНК-процессора размером с каплю будет выше самого мощного современного суперкомпьютера.

Более 10 триллионов ДНК-молекул занимают объем всего в 1 см3. Однако такого количества молекул достаточно для хранения объема информации в 10 Тбайт, при этом они могут производить 10 трлн операций в секунду.

Еще одно преимущество ДНК-процессоров в сравнении с обычными кремниевыми процессорами заключается в том, что они могут производить все вычисления не последовательно, а параллельно, что обеспечивает выполнение сложнейших математических расчетов буквально за считаные минуты. Традиционным компьютерам для выполнения таких расчетов потребовались бы месяцы и годы.

Строение молекул ДНК

Как известно, современные компьютеры работают с бинарной логикой, подразумевающей наличие всего двух состояний: логического нуля и единицы. Используя двоичный код, то есть последовательность нулей и единиц, можно закодировать любую информацию. В молекулах ДНК имеется четыре базовых основания: аденин (A), гуанин (G), цитозин (C) и тимин (T), связанных друг с другом в цепочку. То есть молекула ДНК (одинарная цепочка) может иметь, например, такой вид: ATTTACGGCC - здесь используется не двоичная, а четверичная логика. И подобно тому, как в двоичной логике любую информацию можно закодировать в виде последовательности нулей и единиц, в молекулах ДНК можно кодировать любую информацию путем сочетания базовых оснований.

Базовые основания в молекулах ДНК находятся друг от друга на расстоянии 0,34 нанометра, что обусловливает их огромную информативную емкость - линейная плотность составляет 18 Мбит/дюйм. Если же говорить о поверхностной информативной плотности, предполагая, что на одно базовое основание приходится площадь в 1 квадратный нанометр, то она составляет более миллиона гигабит на квадратный дюйм. Для сравнения отметим, что поверхностная плотность записи современных жестких дисков составляет порядка 7 Гбит/дюйм 2.

Другое важное свойство ДНК-молекул заключается в том, что они могут иметь форму регулярной двойной спирали, диаметр которой составляет всего 2 нм. Такая спираль состоит из двух цепей (последовательностей базовых оснований), причем содержание первой цепи строго соответствует содержанию второй.

Это соответствие достигается благодаря наличию водородных связей между направленными навстречу друг другу основаниями двух цепей - попарно G и C или A и T. Описывая это свойство двойной спирали, молекулярные биологи говорят, что цепи ДНК комплементарны за счет образования пар G-C и A-T.

К примеру, если последовательность S записывается как ATTACGTCG, то дополняющая ее последовательность S’ будет иметь вид TAATGCAGC.

Процесс соединения двух одинарных цепочек ДНК путем связывания комплементарных оснований в регулярную двойную спираль называется ренатурацией, а обратный процесс, то есть разъединение двойной цепочки и получение двух одинарных цепочек, - денатурацией (рис. 1).

Рис. 1. Процессы ренатурации и денатурации

Комплементарная особенность строения ДНК-молекул может использоваться при ДНК-вычислениях. К примеру, на основе дополняющих друг друга последовательностей можно реализовать мощнейший механизм коррекции ошибок, который чем-то напоминает технологию зеркалирования данных RAID Level 1.

Базовые операции над ДНК-молекулами

Для различных манипуляций над ДНК-молекулами используются различные энзимы (ферменты). И точно так же, как современные микропроцессоры имеют набор базовых операций типа сложения, сдвига, логических операций AND, OR и NOT NOR, ДНК-молекулы под воздействием энзимов могут выполнять такие базовые операции, как разрезание, копирование, вставка и др. Причем все операции над ДНК-молекулами можно производить параллельно и независимо от других операций, к примеру дополнение цепочки ДНК осуществляется при воздействии на исходную молекулу ферментов - полимераз. Для работы полимеразы необходимо наличие одноцепочечной молекулы (матрицы), определяющей добавляемую цепочку по принципу комплементарности, праймера (небольшого двухцепочечного участка) и свободных нуклеотидов в растворе. Процесс дополнения цепочки ДНК показан на рис. 2.

Рис. 2. Процесс дополнения цепочки ДНК
при воздействии на исходную молекулу полимеразы

Существуют полимеразы, которым не требуются матрицы для удлинения цепочки ДНК. Например, терминальная трансфераза добавляет одинарные цепочки ДНК к обоим концам двухцепочечной молекулы. Таким образом можно конструировать произвольную цепь ДНК (рис. 3).

Рис. 3. Процесс удлинения цепочки ДНК

За укорачивание и разрезание молекул ДНК отвечают ферменты - нуклеазы. Различают эндонуклеазы и экзонуклеазы. Последние могут укорачивать и одноцепочечные и двухцепочечные молекулы с одного или с обоих концов (рис. 4), а эндонуклеазы - только с концов.

Рис. 4. Процесс укорачивания молекулы
ДНК под воздействием экзонуклеазы

Разрезание молекул ДНК возможно под воздействием сайт-специфичных эндонуклеазов - рестриктазов, которые разрезают их в определенном месте, закодированном последовательностью нуклеотидов (сайтом узнавания). Разрез может быть прямым или несимметричным и проходить по сайту узнавания либо вне его. Эндонуклеазы разрушают внутренние связи в молекуле ДНК (рис. 5).

Рис. 5. Разрезание молекулы ДНК
под воздействием рестриктазов

Сшивка - операция, обратная разрезанию, - происходит под воздействием ферментов - лигазов. «Липкие концы» соединяются вместе с образованием водородных связей. Лигазы служат для того, чтобы закрыть насечки, то есть способствовать образованию в нужных местах фосфодиэфирных связей, соединяющих основания друг с другом в пределах одной цепочки (рис. 6).

Рис. 6. Сшивка ДНК-молекул под воздействием лигазов

Еще одна интересная операция над ДНК-молекулами, которую можно отнести к числу базовых, - это модификация. Она используется для того, чтобы рестриктазы не смогли найти определенный сайт и не разрушили молекулу. Существует несколько типов модифицирующих ферментов - метилазы, фосфатазы и т.д.

Метилаза имеет тот же сайт узнавания, что и соответствующая рестриктаза. При нахождении нужной молекулы метилаза модифицирует участок с сайтом так, что рестриктаза уже не сможет идентифицировать эту молекулу.

Копирование, или размножение, ДНК-молекул осуществляется в ходе полимеразной цепной реакции (Polymerase Chain Reaction, PCR) - рис. 7. Процесс копирования можно разделить на несколько стадий: денатурация, праймирование и удлинение. Он происходит лавинообразно. На первом шаге из одной молекулы образуются две, на втором - из двух молекул - четыре, а после n-шагов получается уже 2n молекул.

Рис. 7. Процесс копирования ДНК-молекулы

Еще одна операция, которую можно производить над ДНК-молекулами, - это секвенирование, то есть определение последовательности нуклеотидов в ДНК. Для секвенирования цепочек разной длины применяют различные методы. При помощи метода праймер-опосредованной прогулки удается на одном шаге секвенировать последовательность в 250-350 нуклеотидов. После открытия рестриктаз стало возможным секвенировать длинные последовательности по частям.

Ну и последняя процедура, которую мы упомянем, - это гель-электрофорез, используемый для разделения молекул ДНК по длине. Если молекулы поместить в гель и приложить постоянное электрическое поле, то они будут двигаться по направлению к аноду, причем более короткие молекулы будут двигаться быстрее. Используя данное явление, можно реализовать сортировку ДНК-молекул по длине.

ДНК-вычисления

ДНК-молекулы со своей уникальной формой строения и возможностью реализовать параллельные вычисления позволяют по-другому взглянуть на проблему компьютерных вычислений. Традиционные процессоры выполняют программы последовательно. Несмотря на существование многопроцессорных систем, многоядерных процессоров и различных технологий, направленных на повышение уровня параллелизма, в своей основе все компьютеры, построенные на основе фон-неймановской архитектуры, являются устройствами с последовательным режимом выполнения команд. Все современные процессоры реализуют следующий алгоритм обработки команд и данных: выборка команд и данных из памяти и исполнение инструкций над выбранными данными. Этот цикл повторяется многократно и с огромной скоростью.

ДНК-вычисления имеют в своей основе абсолютно иную, параллельную архитектуру и в ряде случаев именно благодаря этому способны с легкостью рассчитывать те задачи, для решения которых компьютерам на базе фон-неймановской архитектуры потребовались бы годы.

Эксперимент Эдлмана

История ДНК-вычислений начинается в 1994 году. Именно тогда Леонард М. Эдлман (Leonard M. Adleman) попытался решить весьма тривиальную математическую задачу абсолютно нетривиальным способом - с использованием ДНК-вычислений. Фактически это было первой демонстраций прототипа биологического компьютера на основе ДНК-вычислений.

Задача, которую Эдлман выбрал для выполнения с помощью ДНК-вычислений, известна как поиск гамильтонова пути в графе или выбор маршрута путешествия (traveling salesman problem). Смысл ее заключается в следующем: имеется несколько городов, которые необходимо посетить, причем побывать в каждом городе можно только один раз.

Зная пункт отправления и конечный пункт, необходимо определить маршрут путешествия (если он существует). При этом маршрут составляется с учетом возможных авиаперелетов и коннектов различных авиарейсов.

Итак, предположим, что имеется всего четыре города (в эксперименте Эдлмана использовалось семь городов): Атланта (Atlanta), Бостон (Boston), Детройт (Detroit) и Чикаго (Chicago). Перед путешественником ставится задача выбрать маршрут, чтобы попасть из Атланты в Детройт, побывав при этом в каждом городе только один раз. Схемы возможных сообщений между городами показаны на рис. 8.

Рис. 8. Схемы возможных сообщений
между городами

Нетрудно заметить (для этого требуется всего несколько секунд), что единственно возможный маршрут (гамильтонов путь) следующий: Атланта - Бостон - Чикаго - Детройт.

Действительно, при небольшом количестве городов составить такой маршрут довольно просто. Но с увеличением их числа сложность решения задачи экспоненциально возрастает и становится трудновыполнимой не только для человека, но и для компьютера.

Так, на рис. 9 показан граф из семи вершин с указанием возможных переходов между ними. Для поиска гамильтонова пути обычному человеку требуется не более одной минуты. Именно такой граф был использован в эксперименте Эдлмана. На рис. 10 представлен граф из 12 вершин - в этом случае поиск гамильтонова пути оказывается уже не такой простой задачей. Вообще, сложность решения задачи поиска гамильтонова пути возрастает экспоненциально с ростом числа вершин в графе. К примеру, для графа из 10 вершин существует 106 возможных путей; для графа из 20 вершин - 1012, а для графа из 100 вершин - 10100 вариантов. Понятно, что в последнем случае для генерации всех возможных путей и их проверки потребуется огромное время даже для современного суперкомпьютера.

Рис. 9. Поиск оптимального маршрута путешествия

Рис. 10. Граф, состоящий из 12 вершин

Итак, вернемся к нашему примеру с поиском гамильтонова пути в случае четырех городов (см. рис. 8).

Для решения данной задачи с использованием ДНК-вычислений Эдлман закодировал название каждого города в виде одной цепочки ДНК, причем каждая из них содержала 20 базовых оснований. Для простоты мы будем кодировать каждый город ДНК-цепочкой из восьми оснований. ДНК-коды городов показаны в табл. 1. Обратите внимание, что цепочка длиной в восемь базовых оснований оказывается избыточной для кодирования всего четырех городов.

Таблица 1. ДНК-коды городов

Отметим, что для каждого ДНК-кода города, который определяет одинарную ДНК-цепочку, существует и комплементарная цепочка, то есть комплементарный ДНК-код города, причем и ДНК-код города, и комплементраный код абсолютно равноправны.

Далее с помощью одинарных ДНК-цепочек необходимо закодировать все возможные перелеты (Атланта - Бостон, Бостон - Детройт, Чикаго - Детройт и т.д.). Для этого использовался следующий подход. Из названия города отправления брались четыре последних базовых основания, а из названия города прибытия - четыре первых.

К примеру, перелету Атланта - Бостон будет соответствовать следующая последовательность: GCAG TCGG (рис. 11).

Рис. 11. Кодирование перелетов между городами

ДНК-кодирование всех возможных перелетов показано в табл. 2.

Таблица 2. ДНК-коды всех возможных перелетов

Итак, после того как готовы коды городов и возможных перелетов между ними, можно непосредственно переходить к вычислению гамильтонова пути. Процесс вычисления состоит из четырех этапов:

  1. Сгенерировать все возможные маршруты.
  2. Отобрать маршруты, которые начинаются в Атланте и заканчиваются Детройтом.
  3. Выбрать маршруты, длина которых соответствует количеству городов (в нашем случае длина маршрута составляет четыре города).
  4. Выбрать маршруты, в которых каждый город присутствует только один раз.

Итак, на первом этапе мы должны сгенерировать все возможные маршруты. Напомним, что правильный маршрут соответствует перелетам Атланта - Бостон - Чикаго - Детройт. Этому маршруту соответствует ДНК-молекула GCAG TCGG ACTG GGCT ATGT CCGA.

Для того чтобы сгенерировать все возможные маршруты достаточно поместить в пробирку все необходимые и заранее заготовленные ингредиенты, то есть ДНК-молекулы, соответствующие всем возможным перелетам, и ДНК-молекулы, соответствующие всем городам. Но вместо того, чтобы применять одинарные ДНК-цепочки, соответствующие названиям городов, необходимо использовать комплементарные им ДНК-цепочки, то есть вместо ДНК-цепочки ACTT GCAG, соответствующей Атланте, будем применять комплементарную ДНК-цепочку TGAA CGTC и т.д., поскольку ДНК-код города и комплементраный код абсолютно равноправны.

Далее все эти молекулы (достаточно буквально щепотки, которая будет содержать порядка 1014 различных молекул) помещаем в воду, добавляем лигазов, произносим заклинание и… буквально через несколько секунд получаем все возможные маршруты.

Процесс образования цепочек ДНК, соответствующих различным маршрутам, происходит следующим образом. Рассмотрим, к примеру, цепочку GCAG TCGG, отвечающую за перелет Атланта - Бостон. Вследствие высокой концентрации различных молекул, данная цепочка обязательно встретится с комплементарной ДНК-цепочкой AGCC TGAC, соответствующей Бостону. Поскольку группы TCGG и AGCC комплементарны друг другу, то за счет образования водородных связей эти цепочки сцепятся друг с другом (рис. 12).

Рис. 12. Сцепление цепочек, соответствующих
перелету Атланта - Бостон и Бостону

Теперь образовавшаяся цепочка неминуемо встретится с ДНК-цепочкой ACTG GGCT, соответствующей авиаперелету Бостон - Чикаго, и поскольку группа ACTG (первые четыре основания в этой цепочке) комплементарна группе TGAC (последние четыре основания в комплементарном коде Бостона), то ДНК-цепочка ACTG GGCT присоединится к уже образовавшейся цепочке. Далее к этой цепочке таким же образом присоединится ДНК-цепочка, соответствующая городу Чикаго (комплементарный код), а затем и цепочка авиаперелета Чикаго - Детройт. Процесс образования маршрута показан на рис. 13.

Рис. 13. Процесс образования ДНК-цепочки, соответствующей маршруту
Атланта - Бостон - Чикаго - Детройт

Мы рассмотрели пример образования только одного маршрута (причем это именно гамильтонов маршрут). Аналогичным образом получаются и все остальные возможные маршруты (например, Атланта - Бостон - Атланта - Детройт). Важно, что все маршруты формируются одновременно, то есть параллельно. Причем время, требуемое для создания всех возможных маршрутов в данной задаче и всех маршрутов в задаче с 10 или 20 городами, абсолютно одинаково (лишь бы хватило исходных ДНК-молекул). Собственно, именно в параллельном алгоритме ДНК-вычислений и заключается основное преимущество в сравнении с фон-неймановской архитектурой.

Итак, в пробирке образованы ДНК-молекулы, соответствующие всем возможным маршрутам. Однако это еще не решение задачи - нам необходимо выделить ту единственную ДНК-молекулу, которая отвечает за гамильтонов маршрут. Поэтому на следующем этапе необходимо отобрать молекулы, соответствующие маршрутам, начинающимся в Атланте и заканчивающимся в Детройте.

Для этого используется полимеразная цепная реакция (PCR), в результате которой создается множество копий только тех ДНК-цепочек, которые начинаются с кода Атланты и заканчиваются кодом Детройта.

Для реализации полимеразной цепной реакции применяются два прайма: GCAG и GGCT. Процесс копирования ДНК-модекул, начинающихся с ДНК-кода Атланты и заканчивающихся ДНК-кодом Детройта, показан на рис. 14.

Рис. 14. Процесс копирования ДНК-молекул в ходе PCR-реакции

Отметим, что в присутствии праймов GCAG и GGCT будут копироваться и те ДНК-молекулы, которые начинаются с ДНК-кодов Атланты, но не заканчиваются ДНК-кодом Детройта (под действием прайма GCAG), а также ДНК-молекулы, которые заканчиваются ДНК-кодом Детройта, но не начинаются с ДНК-кода Атланты (под действием прайма GGCT). Понятно, что скорость копирования таких молекул будет гораздо ниже скорости копирования ДНК-молекул, начинающихся с ДНК-кода Атланты и заканчивающихся ДНК-кодом Детройта. Следовательно, после PCR-реакции мы получим преобладающее количество ДНК-молекул в форме регулярной двойной спирали, соответствующих маршрутам, начинающимся в Атланте и заканчивающимся в Детройте.

На следующем этапе необходимо выделить молекулы нужной длины, то есть те, что содержат ДНК-коды ровно четырех городов. Для этого используется гель-электрофорез, что позволяет отсортировать молекулы по длине. В результате мы получаем молекулы нужной длины (ровно четыре города), начинающиеся с кода Атланты и заканчивающиеся кодом Детройта.

Теперь необходимо убедиться, что в отобранных молекулах код каждого города присутствует только один раз. Эта операция реализуется с применением процесса, известного как affinity purification.

Для данной операции используется микроскопический магнитный шарик диаметром порядка одного микрона. К нему притягиваются комлементарные ДНК-коды того или иного города, которые выполняют функцию пробы. К примеру, если требуется проверить, присутствует ли в исследуемой ДНК-цепочке код города Бостона, то необходимо сначала поместить магнитный шарик в пробирку с ДНК-молекулами, соответствующими ДНК-кодам Бостона. В результате мы получим магнитный шарик, облепленный нужными нам пробами. Затем этот шарик помещается в пробирку с исследуемыми ДНК-цепочками - в результате к нему (за счет образования водородных связей между комплементарными группами) притянутся ДНК-цепочки, в которых присутствует комплементарный код Бостона. Далее шарик с отсортированными молекулами вынимается и помещается в новый раствор, из которого затем удаляется (при повышении температуры ДНК-молекулы отваливаются от шарика). Данная процедура (сортировка) повторяется последовательно для каждого города, и в результате мы получаем только те молекулы, в которых содержатся ДНК-коды всех городов, а значит, и маршруты, соответствующие гамильтонову пути. Фактически задача решена - осталось лишь просчитать ответ.

Заключение

Эдлман продемонстрировал решение задачи поиска гамильтонова пути на примере всего семи городов и потратил на это семь дней. Это был первый эксперимент, продемонстрировавший возможности ДНК-вычислений. Фактически Эдлман доказал, что, пользуясь вычислениями на ДНК, можно эффективно решать задачи переборного характера, и обозначил технику, которая в дальнейшем послужила основой для создания модели параллельной фильтрации.

Впрочем, многие исследователи не испытывают оптимизма по поводу будущего биологических компьютеров. Вот лишь маленький пример. Если бы подобным методом понадобилось найти гамильтонов путь в графе, состоящем из 200 вершин, потребовалось бы количество ДНК-молекул, сопоставимое по весу со всей нашей планетой! Это принципиальное ограничение, конечно же, является своего рода тупиковой ситуацией. Поэтому многие исследовательские лаборатории (например, компания IBM) предпочли сфокусировать свое внимание на других идеях альтернативных компьютеров, таких как углеродные нанотрубки и квантовые компьютеры.

После эксперимента Эдлмана было проведено множество других исследований возможностей ДНК-вычислений. Например, можно вспомнить опыт Э.Шапиро: в нем был реализован конечный автомат, который может находиться в двух состояниях: S0 и S1 - и отвечает на вопрос: четное или нечетное количество символов содержится во входной последовательности символов.

Сегодня ДНК-вычисления - это не более чем перспективные технологии на уровне лабораторных исследований, причем в таком состоянии они будут находиться еще не один год. Фактически на современном этапе развития необходимо ответить на следующий глобальный вопрос: какой класс задач поддается решению при помощи ДНК и можно ли построить общую модель ДНК-вычислений, пригодную как для реализации, так и для использования?

Пространственную модель молекулы ДНК в 1953 году предложили американские исследователи генетик Джеймс Уотсон (род. 1928) и физик Фрэнсис Крик (род. 1916). За выдающийся вклад в это открытие им была присуждена Нобелевская премия по физиологии и медицине 1962 года.

Дезоксирибонуклеиновая кислота (ДНК) представляет собой биополимер, мономером которого является нуклеотид. В состав каждого нуклеотида входят остаток фосфорной кислоты, соединенный с сахаром дезоксирибозой, который, в свою очередь, соединен с азотистым основанием. Азотистых оснований в молекуле ДНК четыре вида: аденин, тимин, гуанин и цитозин.

Молекула ДНК состоит из двух длинных цепей, сплетенных между собой в виде спирали, чаще всего, правозакрученной. Исключение составляют вирусы, которые содержат одноцепочную ДНК.

Фосфорная кислота и сахар, которые входят в состав нуклеотидов, образуют вертикальную основу спирали. Азотистые основания располагаются перпендикулярно и образуют «мостики» между спиралями. Азотистые основания одной цепи соединяются с азотистыми основаниями другой цепи согласно принципу комплементарности, или соответствия.

Принцип комплементарности. В молекуле ДНК аденин соединяется только с тимином, гуанин – только с цитозином.

Азотистые основания оптимально соответствуют друг другу. Аденин и тимин соединяется двумя водородными связями, гуанин и цитозин – тремя. Поэтому на разрыв связи гуанин-цитозин требуется больше энергии. Одинаковые по размеру тимин и цитозин гораздо меньше аденина и гуанина. Пара тимин-цитозин была бы слишком мала, пора аденин-гуанин – слишком велика, и спираль ДНК искривилась бы.

Водородные связи непрочны. Они легко разрываются и так же легко восстанавливаются. Цепи двойной спирали под действием ферментов или при высокой температуре могут расходиться, как замок-молния.

5. Молекула рнк Рибонуклеиновая кислота (рнк)

Молекула рибонуклеиновой кислоты (РНК) тоже является биополимером, который состоит из четырех типов мономеров – нуклеотидов. Каждый мономер молекулы РНК содержат остаток фосфорной кислоты, сахар рибозу и азотистое основание. Причем, три азотистых основания такие же, как в ДНК – аденин, гуанин и цитозин, но вместо тимина в РНК присутствует близкий ему по строению урацил. РНК – одноцепочечная молекула.

Количественное содержание молекул ДНК в клетках какого-либо вида практически постоянно, однако количество РНК может существенно меняться.

Виды рнк

В зависимости от строения и выполняемой функции различают три вида РНК.

1. Транспортная РНК (тРНК). Транспортные РНК в основном находятся в цитоплазме клетки. Они переносят аминокислоты к месту синтеза белка в рибосому.

2. Рибосомальная РНК (рРНК). Рибосомальная РНК связывается с определенными белками и образует рибосомы – органеллы, в которых происходит синтез белков.

3. Информационная РНК (иРНК), или матричная РНК (мРНК). Информационная РНК переносит информацию о структуре белка от ДНК рибосоме. Каждая молекула иРНК соответствует определенному участку ДНК, который кодирует структуру одной белковой молекулы. Поэтому для каждого из тысяч белков, которые синтезируются в клетке, имеется своя особенная иРНК.

Мономерными звеньями которого являются нуклиатиды.

Что такое ДНК?

Вся информация о строении и функционировании любого живого организма содержится в закодированном виде в его генетическом материале. Основу генетического материала организма составляет дезоксирибонуклеиновая кислота (ДНК) .

ДНК большинства организмов – это длинная двухцепочечная полимерная молекула. Последовательность мономерных звеньев (дезоксирибонуклеотидов ) в одной ее цепи соответствует (комплементарна ) последовательности дезоксирибонуклеотидов в другой. Принцип комплементарности обеспечивает синтез новых молекул ДНК, идентичных исходным, при их удвоении (репликации ).

Участок молекулы ДНК, кодирующий определенный признак, – ген .

Гены – это индивидуальные генетические элементы, имеющие строго специфичную нуклеотидную последовательность, и кодирующие определенные признаки организма. Одни из них кодируют белки, другие - только молекулы РНК.

Информация, которая содержится в генах, кодирующих белки (структурных генах), расшифровывается в ходе двух последовательных процессов:

  • синтеза РНК (транскрипции ): на определенном участке ДНК как на матрице синтезируется матричная РНК (мРНК).
  • синтеза белка (трансляции): В ходе согласованной работы многокомпонентной системы при участии транспортных РНК (тРНК ), мРНК , ферментов и различных белковых факторов осуществляется синтез белковой молекулы .

Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы определяет ее структуру и функции.

Строение ДНК

ДНК – это линейный органический полимер . Его – нуклеотиды , которые, в свою очередь, состоят из:

При этом, фосфатная группа присоединена к 5′-атому углерода моносахаридного остатка, а органическое основание - к 1′-атому .

Основания в ДНК бывают двух типов:


Строение нуклеотидов в молекуле ДНК

В ДНК моносахарид представлен 2′-дезоксирибозой , содержащей только 1 гидроксильную группу (ОН) , а в РНК - рибозой , имеющей 2 гидроксильные группы (OH ).

Нуклеотиды соединены друг с другом фосфодиэфирными связями , при этом фосфатная группа 5′-углеродного атома одного нуклеотида связана с З’-ОН-группой дезоксирибозы соседнего нуклеотида (рисунок 1). На одном конце полинуклеотидной цепи находится З’-ОН-группа (З’-конец), а на другом - 5′-фосфатная группа (5′-конец).

Уровни структуры ДНК

Принято выделять 3 уровня структуры ДНК:

  • первичную;
  • вторичную;
  • третичную.

Первичная структура ДНК – это последовательность расположения нуклеотидов в полинуклеотидной цепи ДНК.

Вторичная структура ДНК стабилизируется между комплементарными парами оснований и представляет собой двойную спираль из двух антипараллелных цепочек, закрученных вправо вокруг одной оси.

Общий виток спирали- 3,4нм , расстояние между цепочками 2нм.

Третичная структура ДНК – суперсперализация ДНК. Двойная спираль ДНК на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы, что часто вызвано ковалентным соединением их открытых концов. Суперспиральная структура ДНК обеспечивает экономную упаковку очень длинной молекулы ДНК в хромосоме. Так, в вытянутой форме длина молекулы ДНК составляет 8 см , а в форме суперспирали укладывается в 5 нм .

Правило Чаргаффа

Правило Э. Чаргаффа – это закономерность количественного содержания азотистых оснований в молекуле ДНК:

  1. У ДНК молярные доли пуриновых и пиримидиновых оснований равны: А+ G = C + Т или (А + G )/(C + Т)=1 .
  2. В ДНК количество оснований с аминогруппами (А + C ) равно количеству оснований с кетогруппами (G + Т): А + C = G + Т или (А + C )/(G + Т)= 1
  3. Правило эквивалентности, то есть: А=Т, Г=Ц; А/Т = 1; Г/Ц=1.
  4. Нуклеотидный состав ДНК у организмов различных групп специфичен и характеризуется коэффициентом специфичности: (Г+Ц)/(А+Т). У высших растений и животных коэффициент специфичности меньше 1, и колеблется незначительно: от 0,54 до 0,98 , у микроорганизмов он больше 1.

Модель ДНК Уотсона-Крика

Б 1953 г. Джеймс Уотсон и Фрэнсис Крик , основываясь на данных рентгеноструктурного анализа кристаллов ДНК, пришли к выводу, что нативная ДНК состоит из двух полимерных цепей, образующих двойную спираль (рисунок 3).

Навитые одна на другую полинуклеотидные цепи удерживаются вместе водородными связями , образующимися между комплементарными основаниями противоположных цепей (рисунок 3). При этом аденин образует пару только с тимином , а гуанин - с цитозином . Пара оснований А-Т стабилизируется двумя водородными связями , а пара G-С - тремя .

Длина двухцепочечной ДНК обычно измеряется числом пар комплементарных нуклеотидов (п .н .). Для молекул ДНК, состоящих из тысяч или миллионов пар нуклеотидов, приняты единицы т.п.н. и м.п.н. соответственно. Например, ДНК хромосомы 1 человека представляет собой одну двойную спираль длиной 263 м.п.н .

Сахарофосфатный остов молекулы , который состоит из фосфатных групп и дезоксирибозных остатков, соединенных 5’-З’-фосфодиэфирными связями , образует «боковины винтовой лестницы», а пары оснований А-Т и G-С - ее ступеньки (рисунок 3).

Рисунок 3: Модель ДНК Уотсона-Крика

Цепи молекулы ДНК антипараллельны : одна из них имеет направление 3’→5′ , другая 5’→3′ . В соответствии с принципом комплементарности , если в одной из цепей имеется нуклеотидная последовательность 5-TAGGCAT-3′ , то в комплементарной цепи в этом месте должна находиться последовательность 3′-ATCCGTA-5′ . В этом случае двухцепочечная форма будет выглядеть следующим образом:

  • 5′-TAGGCAT-3′
  • 3-ATCCGTA-5′.

В такой записи 5′-конец верхней цепи всегда располагают слева, а 3′-конец - справа.

Носитель генетической информации должен удовлетворять двум основным требованиям: воспроизводиться (реплицироваться) с высокой точностью и детерминировать (кодировать) синтез белковых молекул .

Модель ДНК Уотсона-Крика полностью отвечает этим требованиям, так как:

  • согласно принципу комплементарности каждая цепь ДНК может служить матрицей для образования новой комплементарной цепи. Следовательно, после одного раунда образуются две дочерние молекулы, каждая из которых имеет такую же нуклеотидную последовательность, как исходная молекула ДНК.
  • нуклеотидная последовательность структурного гена однозначно задает аминокислотную последовательность кодируемого ею белка.
  1. Одна молекула ДНК человека вмещает порядка 1,5 гигабайта информации . При этом, ДНК всех клеток человеческого организма занимают 60 млрд. терабайт, что сохраняются на 150-160 граммах ДНК.
  2. Международный день ДНК отмечается 25 апреля. Именно в этот день в 1953 году Джеймс Уотсон и Фрэнсис Крик опубликовали в журнале Nature свою статью под названием «Молекулярная структура нуклеиновых кислот» , где описали двойную спираль молекулы ДНК.

Список литературы: Молекулярная биотехнология: принципы и применение, Б.Глик, Дж. Пастернак, 2002 год

Многих людей всегда интересовало, почему некоторые признаки, имеющиеся у родителей, передаются ребенку (например, цвет глаз, волос, форма лица и другие). Наукой было доказано, что данная передача признака зависит от генетического материала, или ДНК.

Что такое ДНК?

Нуклеотид

Как было сказано, основной структурной единицей дезоксирибонуклеиновой кислоты является нуклеотид. Это сложное образование. Состав нуклеотида ДНК следующий.

По центру нуклеотида находится пятикомпонентный сахар (в ДНК в отличие от РНК, в которой содержится рибоза). К нему присоединяется азотистое основание, которых выделяют 5 типов: аденин, гуанин, тимин, урацил и цитозин. Кроме того, каждый нуклеотид имеет в своем составе и остаток фосфорной кислоты.

В состав ДНК входят только те нуклеотиды, которые имеют указанные структурные единицы.

Все нуклеотиды расположены в виде цепи и следуют друг за другом. Группируясь по триплетам (по три нуклеотида), они образуют последовательность, в которой каждый триплет соответствует определенной аминокислоте. В результате образуется цепь.

Они объединяются между собой за счет связей азотистых оснований. Основная связь между нуклеотидами параллельных цепей - водородная.

Нуклеотидные последовательности являются основой генов. Нарушение в их структуре ведет к сбою в синтезе белков и проявлению мутаций. В состав ДНК входят одинаковые гены, определяющиеся практически у всех людей и отличающие их от других организмов.

Модификация нуклеотида

В некоторых случаях для более стабильной передачи того или иного признака используется модифицирование азотистого основания. Химический состав ДНК изменяется за счет присоединения метильной группы (СН3). Подобная модификация (на одном нуклеотиде) позволяет стабилизировать генную экспрессию и передачу признаков дочерним клеткам.

Подобное “улучшение” структуры молекулы никоим образом не сказывается на объединении азотистых оснований.

Данная модификация используется и при инактивации Х-хромосомы. В результате этого образуются тельца Барра.

При усиленном канцерогенезе анализ ДНК показывает, что цепочка нуклеотидов была подвержена метилированию на многих основаниях. В проведенных наблюдениях было замечено, что источником мутации обычно служит метилированный цитозин. Обычно при опухолевом процессе деметилирование может способствовать остановке процесса, но за счет своей сложности данная реакция не проводится.

Структура ДНК

В строении молекулы выделяют два типа структуры. Первый тип - линейная последовательность, образованная нуклеотидами. Их построение подчиняется некоторым законам. Запись нуклеотидов на молекуле ДНК начинается с 5’-конца и заканчивается 3’-концом. Вторая цепь, расположенная напротив, строится таким же образом, только в пространственном отношении молекулы находятся одна напротив другой, причем 5’-конец одной цепи расположен напротив 3’-конца второй.

Вторичная структура ДНК - спираль. Обуславливается наличием водородных связей между располагающимися друг напротив друга нуклеотидами. Водородная связь образуется между комплементарными азотистыми основаниями (например, напротив аденина первой цепи может находиться только тимин, а напротив гуанина - цитозин либо урацил). Подобная точность обусловлена тем, что построение второй цепи происходит на основе первой, поэтому между азотистыми основаниями наблюдается точное соответствие.

Синтез молекулы

Каким же образом образуется молекула ДНК?

В цикле ее образования выделяют три стадии:

  • Рассоединение цепей.
  • Присоединение синтезирующих единиц к одной из цепей.
  • Достраивание второй цепи по принципу комплементарности.

На стадии разъединения молекулы основную роль играют ферменты - ДНК-гиразы. Данные ферменты ориентированы на разрушение водородных связей между цепями.

После расхождения цепей в дело вступает основной синтезирующий фермент - ДНК-полимераза. Ее присоединение наблюдается на участке 5’. Далее данный фермент движется в сторону 3’-конца, попутно присоединяя необходимые нуклеотиды с соответствующими азотистыми основаниями. Дойдя до определенного участка (терминатора) на 3’-конце, полимераза отсоединяется от исходной цепи.

После того как образовалась дочерняя цепь, между основаниями образуется водородная связь, которая и скрепляет вновь образованную молекулу ДНК.

Где можно найти данную молекулу?

Если углубиться в строение клеток и тканей, то можно увидеть, что ДНК в основном содержится в отвечает за образование новых, дочерних, клеток или их клонов. При этом находящаяся в нем, разделяется между новообразованными клетками равномерно (образуются клоны) или по частям (часто можно наблюдать такое явление при мейозе). Поражение ядра влечет за собой нарушение образования новых тканей, что приводит к мутации.

Кроме того, особый тип наследственного материала содержится в митохондриях. В них ДНК несколько отличается от таковой в ядре (митохондриальная дезоксирибонуклеиновая кислота имеет кольцевидную форму и выполняет несколько другие функции).

Сама молекула может выделяться из любых клеток организма (для исследования чаще всего используют мазок с внутренней стороны щеки либо кровь). Отсутствует генетический материал только в отшелушивающемся эпителии и некоторых клетках крови (эритроцитах).

Функции

Состав молекулы ДНК обуславливает выполнение ею функции передачи информации из поколения в поколение. Это происходит за счет синтеза определенных белков, обуславливающих проявление того или иного генотипического (внутреннего) или фенотипического (внешнего - например, цвет глаз или волос) признака.

Передача информации осуществляется за счет реализации ее из генетического кода. На основании сведений, зашифрованных в генетическом коде, происходит выработка специфических информационных, рибосомальных и транспортных РНК. Каждая из них отвечает за определенное действие - информационная РНК используется для синтеза белков, рибосомальная участвует в сборке белковых молекул, а транспортная образует соответствующие белки.

Любой сбой в их работе или изменение структуры приводят к нарушению выполняемой функции и появлению нетипичных признаков (мутаций).

ДНК-тест на отцовство позволяет определить наличие родственных признаков между людьми.

Генетические тесты

Для чего в настоящее время может использоваться исследование генетического материала?

Анализ ДНК используется для определения многих факторов или изменений в организме.

В первую очередь исследование позволяет определить наличие врожденных, передающихся по наследству заболеваний. К таким болезням можно отнести синдром Дауна, аутизм, синдром Марфана.

Для определения родственных связей также можно исследовать ДНК. Тест на отцовство уже давно получил широкое распространение во многих, в первую очередь юридических, процессах. Данное исследование назначают при определении генетического родства между внебрачными детьми. Часто этот тест сдают претенденты на наследство при возникновении вопросов со стороны органов власти.

Химический состав ДНК и её макромолекулярная организация. Типы спиралей ДНК. Молекулярные механизмы рекомбинации, репликации и репарации ДНК. Понятие о нуклеазах и полимеразах. Репликация ДНК как условие передачи генетической информации потомкам. Общая характеристика процесса репликации. Действия, происходящие в вилке репликации. Репликация теломеров, теломераза. Значение недорепликации конечных фрагментов хромосом в механизме старения. Системы исправления ошибок репликации. Корректорские свойства ДНК-полимераз. Механизмы репарации поврежденной ДНК. Понятие о заболеваниях репарации ДНК. Молекулярные механизмы общей генетической рекомбинации. Сайт-специфическая рекомбинация. Генная конверсия.

В 1865г. Грегор Мендель открыл гены, а его современник Фридрих Мишер в 1869г. открыл нуклеиновые кислоты (в ядрах клеток гноя и сперматозоидов лосося). Однако долго еще эти открытия не связывали друг с другом, долго еще структуру и природу вещества наследственности не знали. Генетическая роль НК была установлена после открытия и объяснения явлений трансформации (1928, Ф.Гриффитс; 1944, О. Эвери), трансдукции (1951, Ледерберг, Циндер) и размножения бактериофагов (1951, А. Херши, М. Чейз).

Трансформация, трансдукция и размножение бактериофагов убедительно доказали генетическую роль ДНК. У РНК - содержащих вирусов (СПИДа, гепатита В, гриппа, ВТМ, лейкоза мышей и др.) эту роль выполняет РНК.

Строение нуклеиновых кислот . НК - биополимеры, участвующие в хранении и передаче генети­ческой информации. Мономеры НК - нуклеотиды, состоящие из азо­тистого основания, моносахарида и одной или нескольких фосфатных групп. В составе НК все нуклеотиды являются монофосфа­тами. Нуклеотид без фосфатной группы называется нуклеозидом. Сахар, входящий в состав НК, представляет собой D-изомер и β-аномер рибозы или 2-дезоксирибозы. Нуклеотиды, содержащие рибозу, называ­ются рибонуклеотидами и являются мономерами РНК, а нуклеотиды - производные дезоксирибозы, являются дезоксирибонуклеотидами, и из них состоит ДНК. Азотистые основания бывают двух типов: пурины - аденин, гуанин и пиримидины - цитозин, тимин, урацил. В состав РНК и ДНК входят аденин, гуанин, цитозин; урацил встречается только в РНК, а тимин только в ДНК.

В ряде случаев в НК присутствуют редко встречающиеся минор­ные нуклеотиды, такие как дигидроуридин, 4-тиоуридин, инозин и др. Разнообразие их особенно велико у тРНК. Минор­ные нуклеотиды образуются в результате химических превращений оснований НК, происходящих уже после образования полимерной цепи. Чрезвычайно распространены в РНК и ДНК различные метилированные производные: 5-метилуридин, 5-метилцитидин, l-N-метиладенозин, 2-И-метилгуанозин. У РНК объектом метилирования могут быть и 2"-гидроксигруппы остатков рибозы, что приводит к обра­зованию 2"-О-метилцитидина или 2"-О-метилгуанозина.

Рибонуклеотидные и дезоксирибонуклеотидные звенья соединяют­ся между собой с помощью фосфодиэфирных мостиков, связывающих 5"-гидроксильную группу одного нуклеотида с 3"-гидроксильной груп­пой следующего. Таким образом, регулярная основная цепь образована фосфатными и рибозными остатками, а основания присо­единены к сахарам подобно тому, как присоединены боковые группы в белках. Порядок следования оснований вдоль цепи называется пер­вичной структурой НК. Последовательность оснований принято читать в направлении от 5"- к 3"- углеродному атому пентозы.

Структура ДНК. Модель структуры ДНК в виде двойной спирали была предложена Уотсоном и Криком в 1953 г (рис.7).

Согласно этой трехмерной модели, молекула ДНК состоит из двух противоположно направленных полинуклеотидных цепей, которые относительно одной и той же оси образуют правую спираль. Азотистые основания находятся внутри двойной спирали, и их плоскости перпендикулярны основной оси, а сахарофосфатные остатки экспонированы наружу. Между основаниями образуются специфические Н-связи: аденин - тимин (или урацил), гуанин - цитозин, получившие название уотсон-криковского спаривания. В результате более объемные пурины всегда взаимодействуют с пиримидинами, имеющими меньшие размеры, что обеспечивает оптимальную геометрию остова. Антипараллельные цепи двойной спирали не являются идентичными ни по последовательнос­ти оснований, ни по нуклеотидному составу, но они комплементарны друг другу именно благодаря наличию специфического водородного связывания между указанными выше основаниями.

Комплементарность очень важна для копирования (репликации) ДНК. Соотношения между числом различных оснований в ДНК, выявленные

Рис.7. В - форма ДНК

Чарграффом с соавт. в 50-х гг., имели большое значе­ние для установления структуры ДНК: было показано, что число адениновых остатков в основаниях цепи ДНК, независимо от организма, равно числу тиминовых, а число гуаниновых - числу цитозиновых. Эти равенства являются следствием избирательного спаривания оснований (рис.8).

Геометрия двойной спирали такова, что соседние пары основа­ний находятся друг от друга на расстоянии 0.34 нм и повернуты на 36° вокруг оси спирали. Следовательно, на один виток спирали прихо­дится 10 пар оснований, и шаг спирали равен 3.4 нм. Диаметр двой­ной спирали равен 20 нм и в ней образуются два желобка - большой и малый. Это связано с тем, что сахарофосфатный остов расположен дальше от оси спирали, чем азотистые основания.

Стабильность структуры ДНК обусловлена разными типами взаимо­действия, среди которых основными являются Н-связи между основа­ниями и межплоскостное взаимодействие (стэкинг). Благодаря послед­нему обеспечиваются не только выгодные ван-дер-ваальсовы контакты между атомами, но и возникает

Рис.8. Принцип комплементарности и антипараллельности цепей ДНК

дополнительная стабилизация вслед­ствие перекрывания р-орбиталей атомов параллельно расположенных оснований. Стабилизации способствует также благоприятный гидрофобный эффект, проявляющийся в защищенности малополярных ос­нований от непосредственного контакта с водной средой. Напротив, сахарофосфатный остов с его полярными и ионизированными группами экспонирован, что также стабилизирует структуру.

Для ДНК известны четыре полиморфные формы: А, В, С и Z. Обычной структурой является В-ДНК, в которой плоскости пар оснований перпендикулярны оси двойной спирали (рис.7.). В А-ДНК плоско­сти пар оснований повернуты примерно на 20° от нормали к оси пра­вой двойной спирали; на виток спирали здесь приходится 11 пар ос­нований. В С-ДНК на витке спирали 9 пар оснований. Z-ДНК - это левая спираль с 12 парами оснований на виток; плоскости оснований примерно перпендикулярны оси спирали. ДНК в клетке обычно находится в В-форме, но отдельные ее участки могут находиться в A, Z или даже в иной конформации.

Двойная спираль ДНК не застывшее образование, она находится в постоянном движении:

· деформируются связи в цепях;

· раскрываются и закрываются комплементарные пары оснований;

· ДНК взаимодействует с белками;

· если напряжение в молекуле велико, то она локально расплетается;

· правая спираль переходит в левую.

Различают 3 фракции ДНК:

1.Частоповторяемая (сателлитная) – до 106 копий генов (у мыши 10%). Она не участвует в синтезе белка; разделяет гены; обеспечивает кроссинговер; содержит транспозоны.

2.Слабоповторяемая – до 102 - 103 копий генов (у мыши 15%). Содержит гены синтеза т-РНК, гены синтеза белков рибосом и белков хроматина.

3.Уникальная (неповторяемая) – у мыши 75% (у человека 56%). Состоит из структурных генов.

Локализация ДНК: 95 % ДНК локализуется в ядре в хромосомах (линейные ДНК) и 5 % - в митохондриях, пластидах и клеточном центре в виде кольцевой ДНК.

Функции ДНК : хранение и передача информации; репарация; репликация.

Две цепи ДНК в области гена принципиально различаются по своей функциональной роли: одна из них является кодирую­щей, или смысловой, вторая - матричной.

Это значит, что в процессе «считывания» гена (транскрипции или синтеза пре-мРНК) в качестве матрицы выступает матричная цепь ДНК. Продукт же этого процесса-пре-мРНК - по последовательности нуклеотидов совпадает с кодирующей цепью ДНК (с заменой тиминовых основа­ний на урациловые).

Таким образом, получается, что с помощью матричной цепи ДНК при транскрипции воспроизводится в структуре РНК генетическая информация кодирующей цепи ДНК.

Главными матричными процессами, присущими всем живым орга­низмам, являются репликация ДНК, транскрипция и трансляция.

Репликация - процесс, при котором информация, закодирован­ная в последовательности оснований молекулы родительской ДНК, передается с максимальной точностью дочерней ДНК. При полукон­сервативной репликации дочерние клетки первого поколения полу­чают одну цепь ДНК от родителей, а вторая цепь является вновь синтезированной. Процесс осуществляется при участии ДНК-полимераз, которые относятся к классу трансфераз. Роль матрицы играют разделенные цепи двунитевой материнской ДНК, а субстратами яв­ляются дезоксирибонуклеозид-5"-трифосфаты.

Транскрипция - процесс переноса генетической информации от ДНК к РНК. Все виды РНК - мРНК, рРНК и тРНК - синтезируют­ся в соответствии с последовательностью оснований в ДНК, служа­щей матрицей. Транскрибируется только одна, так называемая «+»-цепь ДНК. Процесс протекает при участии РНК-полимераз. Субстратами являются рибонуклеозид-5"-трифосфаты.

Процессы репликации и транскрипции у прокариот и эукариот существенно различаются по скорости протекания и по отдельным механизмам.

Трансляция - процесс декодирования мРНК, в результате которого информация с языка последовательности оснований мРНК перево­дится на язык аминокислотной последовательности белка. Осуще­ствляется трансляция на рибосомах, субстратами являются аминоацил-тРНК.

Матричный синтез ДНК, катализируемый ДНК-полимеразами, выполняет две основные функции: репликацию ДНК - синтез но­вых дочерних цепей и репарацию двунитевых ДНК, имеющих разры­вы в одной из цепей, образовавшихся в результате вырезания нуклеазами поврежденных участков этой цепи. У прокариот и эукариот существует три разновидности ДНК-полимераз. У прокариот выделе­ны полимеразы I, II и III типов, обозначаемые как pol l, pol ll и pol III. Последняя катализирует синтез растущей цепи, pol играет важную роль в процессе созревания ДНК, функции pol ll изучены не полно­стью. В эукариотических клетках в репликации хромосом участвует ДНК-полимераза ά, в репарации - ДНК-полимераза β, а γ разновид­ность является ферментом, осуществляющим репликацию ДНК митохондрий. Эти Ферменты, независимо от типа клеток, в которых происходит реплика­ция, присоединяют нуклеотид к ОН-группе на З"-конце одной из цепей ДНК, которая растет в направлении 5"→3. Поэтому говорят, что дан­ные Ф обладают 5"→3"-полимеразной активностью. Помимо этого все они проявляют способность деградировать ДНК, отщепляя, нуклеотиды в направлении 3"→5, т. е. являются 3"→5"-экзонуклеазами.

В 1957 г. Мезельсон и Сталь, изучая E. coli установили, что на каждой свободной цепи фермент ДНК-полимераза строит новую, комплементарную цепь. Это полукон­сервативный способ репликации: одна цепь старая – другая новая!

Обычно репликация начинается в строго определенных участках, получивших название участков ori (от origin of replication), и от этих участков распространяется в обе стороны. Участкам ori предшеству­ют точки разветвления материнских цепей ДНК. Участок, примыка­ющий к точке разветвления, получил название репликативной вилки (рис.9). В ходе синтеза репликативная вилка перемещается вдоль молекулы, при этом расплетаются все новые участки родительской ДНК до тех пор, пока вилка не дойдет до точки терминации. Разделе­ние цепей достигается с помощью специальных Ф - геликаз (топоизомераз). Энергия, необходимая для этого, высвобождается за счет гидролиза АТФ. Геликазы перемещаются вдоль полинуклеотидных цепей в двух направлениях.

Для начала синтеза ДНК необходима затравка - праймер. Роль праймера выполняет короткая РНК (10-60 нуклеотидов). Она синте­зируется комплементарно определенному участку ДНК при участии праймазы. После образования праймера в работу включается ДНК-полимераза. В отличие от геликаз ДНК-полимеразы могут переме­щаться только от 3" к 5" концу матрицы. Поэтому элонгация расту­щей цепи по мере раскручивания двунитевой материнской ДНК мо­жет идти только вдоль одной цепи матрицы, той, относительно которой вилка репликации движется от 3" к 5" концу. Непрерывно синтезиру­емая цепь получила название лидирующей. Синтез на запаздывающей цепи также начинается с образования праймера и идет в направлении, противоположном ведущей цепи - от вилки репликации. Запаздыва­ющая цепь синтезируется фрагментарно (в виде фрагментов Оказа­ки), т. к. праймер образуется только тогда, когда вилка репликации освободит тот участок матрицы, который имеет сродство к праймазе. Лигирование (сшивание) фрагментов Оказаки с образованием еди­ной цепи носит название процесса созревания.

При созревании цепи РНК-затравка удаляется как с 5" конца ве­дущей цепи, так и с 5" концов фрагментов Оказаки, а эти фрагменты сшиваются друг с другом. Удаление затравки осуществляется при уча­стии 3"→5" экзонуклеазы. Этот же Ф вместо удаленной РНК присо­единяет дезоксинуклеотиды, используя свою 5"→3" полимеразную активность. При этом в случае присоединения «неправильного» нуклеотида осуществляется «корректорская правка» - удаление основа­ний, образующих некомплементарные пары. Этот процесс обеспечи­вает чрезвычайно высокую точность репликации, отвечающую одной ошибке на 109 пар оснований.

Рис.9. Репликация ДНК:

1 - репликативная вилка, 2 - ДНК-полимераза (pol I - созревание);

3 - ДНК-полимераза (pol III - «корректорская правка»); 4-геликаза;

5-гираза (топоизомераза); 6-белки, дестабилизирующие двойную спираль.


Коррекция осу­ществляется в тех случаях, когда к З"-концу расту­щей цепи присоединяется «неправильный» нуклеотид, неспособный образовать нужные водородные связи с матрицей. Когда pol III ошибочно при­соединяет неправильное основание, «включается» ее 3" -» 5"-экзонуклеазная активность, и это основа­ние немедленно удаляется, после чего восстанавли­вается полимеразная активность. Такой простой механизм действует благодаря тому, что pol III способна работать как полимераза лишь на совер­шенной двойной спирали ДНК с абсолютно пра­вильным спариванием оснований.

Еще один механизм удаления РНК-фрагментов основан на присутствии в клетках особой рибонуклеазы, получившей название РНКазы Н. Этот Ф специфичен к двунитевым структурам, построенным из одной рибонуклеотидной и одной дезоксирибонуклеотидной цепи, причем он гидролизует первую из них.

РНКаза Н также способна удалять РНК-праймер с последующей за­стройкой разрыва с помощью ДНК-полимеразы. На заключительных этапах сборки фрагментов в нужном порядке действует ДНК-лигаза, катализирующая образование фосфодиэфирной связи.

Раскручивание геликазами части двойной спирали ДНК в хромо­сомах эукариот приводит к сверхспирализации остальной части струк­туры, что неизбежно сказывается на скорости процесса репликации. Сверхспирализации препятствуют ДНК-топоизомеразы.

Таким образом, в репликации ДНК, помимо ДНК-полимеразы, принимает участие большой набор Ф: геликаза, праймаза, РНКаза Н, ДНК-лигаза и топоизомераза. Этим перечень Ф и белков, участвую­щих в матричном биосинтезе ДНК, далеко не исчерпывается. Однако многие из участников этого процесса до настоящего времени остают­ся мало изученными.

В процессе репликации происходит «корректорская правка» - удаление непра­вильных (образующих некомплементарные пары) оснований, включенных во вновь синтезированную ДНК. Этот процесс обеспечивает чрезвычайно вы­сокую точность репликации, отвечающую одной ошибке на 109 пар оснований.

Теломеры. В 1938г. классики генетики Б.Мак-Клинтон и Г. Мёллер доказали, что на концах хромосом есть специальные структуры, которые назвали теломерами (телос-конец, мерос-часть).

Ученые обнаружили, что при воздействии рентгеновским облучением устойчивость проявляют лишь теломеры. Напротив, лишенные концевых участков, хромосомы начинают сливаться, что ведет к тяжелым генетическим аномалиям. Т.о., теломеры обеспечивают индивидуальность хромосом. Теломеры плотно упакованы (гетерохроматин) и малодоступны для ферментов (теломеразы, метилазы, эндонуклеаз и др.)

Функции теломер.

1.Механические: а) соединение концов сестринских хроматид после S-фазы; б) фиксация хромосом к ядерной мембране, что обеспечивает конъюгацию гомологов.

2.Стабилизационные: а) предохранение от недорепликации генетически значимых отделов ДНК (теломеры не транскрибируются); б) стабилизация концов разорванных хромосом. У больных α - талассемией в генах α - глобина происходят разрывы хромосомы 16д и к поврежденному концу добавляются теломерные повторы (ТТАГГГ).

3.Влияние на экспрессию генов. Активность генов, расположенных рядом с теломерами, снижена. Это проявление сайленсинга – транскрипционное молчание.

4.«Счетная функция». Теломеры выступают в качестве часового устройства, которое отсчитывает количество делений клетки. Каждое деление укорачивает теломеры на 50-65 н.п. А всего их длина в клетках эмбриона человека составляет 10-15 тысяч н.п.

Теломерная ДНК попала в поле зрения биологов совсем недавно. Первые объекты исследования – одноклеточные простейшие – ресничная инфузория (тетрахимена), которая содержит несколько десятков тысяч очень мелких хромосом и, значит, множество теломер в одной клетке (у высших эукариот менее 100 теломер на клетку).

В теломерной ДНК инфузории многократно повторяются блоки из 6-ти нуклеотидных остатков. Одна цепь ДНК содержит блок 2 тимин – 4 гуанин (ТТГГГГ - Г-цепь), а комплементарная цепь - 2 аденин – 4 цитозин (ААЦЦЦЦ - Ц-цепь).

Каково же было удивление ученых, когда обнаружили, что теломерная ДНК человека отличается от таковой у инфузории всего лишь одной буквой и образует блоки 2 тимин – аденин – 3 гуанин (ТТАГГГ). Более того, оказалось, что из ТТАГГГ - блоков построены теломеры (Г – цепь) всех млекопитающих, рептилий, амфибий, птиц и рыб.

Впрочем, удивляться здесь нечему, так как в теломерной ДНК не закодировано никаких белков (она не содержит гены). У всех организмов теломеры выполняют универсальные функции, речь о которых шла выше. Очень важная характеристика теломерных ДНК – их длина. У человека она колеблется от 2 до 20 тысяч пар оснований, а у некоторых видов мышей может достигать сотен тысяч н.п. Известно, что около теломер есть специальные белки, обеспечивающие их работу и участвующие в построении теломер.

Доказано, что для нормального функционирования каждая линейная ДНК должна иметь две теломеры: по одной теломере на каждый конец.

У прокариот теломеров нет – их ДНК замкнута в кольцо.