Электронная конфигурация внешнего слоя калия. Электронные формулы химических элементов

Электронная конфигурация атома - это формула, показывающая расположение электронов в атоме по уровням и подуровням. После изучения статьи Вы узнаете, где и как располагаются электроны, познакомитесь с квантовыми числами и сможете построить электронную конфигурацию атома по его номеру, в конце статьи приведена таблица элементов.

Для чего изучать электронную конфигурацию элементов?

Атомы как конструктор: есть определённое количество деталей, они отличаются друг от друга, но две детали одного типа абсолютно одинаковы. Но этот конструктор куда интереснее, чем пластмассовый и вот почему. Конфигурация меняется в зависимости от того, кто есть рядом. Например, кислород рядом с водородом может превратиться в воду, рядом с натрием в газ, а находясь рядом с железом вовсе превращает его в ржавчину. Что бы ответить на вопрос почему так происходит и предугадать поведение атома рядом с другим необходимо изучить электронную конфигурацию, о чём и пойдёт речь ниже.

Сколько электронов в атоме?

Атом состоит из ядра и вращающихся вокруг него электронов, ядро состоит из протонов и нейтронов. В нейтральном состоянии у каждого атома количество электронов равно количеству протонов в его ядре. Количество протонов обозначили порядковым номером элемента, например, сера, имеет 16 протонов - 16й элемент периодической системы. Золото имеет 79 протонов - 79й элемент таблицы Менделеева. Соответственно, в сере в нейтральном состоянии 16 электронов, а в золоте 79 электронов.

Где искать электрон?

Наблюдая поведение электрона были выведены определённые закономерности, они описываются квантовыми числами, всего их четыре:

  • Главное квантовое число
  • Орбитальное квантовое число
  • Магнитное квантовое число
  • Спиновое квантовое число

Орбиталь

Далее, вместо слова орбита, мы будем использовать термин "орбиталь", орбиталь - это волновая функция электрона, грубо - это область, в которой электрон проводит 90% времени.
N - уровень
L - оболочка
M l - номер орбитали
M s - первый или второй электрон на орбитали

Орбитальное квантовое число l

В результате исследования электронного облака, обнаружили, что в зависимости от уровня энергии, облако принимает четыре основных формы: шар, гантели и другие две, более сложные. В порядке возрастания энергии, эти формы называются s-,p-,d- и f-оболочкой. На каждой из таких оболочек может располагаться 1 (на s), 3 (на p), 5 (на d) и 7 (на f) орбиталей. Орбитальное квантовое число - это оболочка, на которой находятся орбитали. Орбитальное квантовое число для s,p,d и f-орбиталей соответственно принимает значения 0,1,2 или 3.

На s-оболочке одна орбиталь (L=0) - два электрона
На p-оболочке три орбитали (L=1) - шесть электронов
На d-оболочке пять орбиталей (L=2) - десять электронов
На f-оболочке семь орбиталей (L=3) - четырнадцать электронов

Магнитное квантовое число m l

На p-оболочке находится три орбитали, они обозначаются цифрами от -L, до +L, то есть, для p-оболочки (L=1) существуют орбитали "-1", "0" и "1". Магнитное квантовое число обозначается буквой m l .

Внутри оболочки электронам легче располагаться на разных орбиталях, поэтому первые электроны заполняют по одному на каждую орбиталь, а затем уже к каждому присоединяется его пара.

Рассмотрим d-оболочку:
d-оболочке соответствует значение L=2, то есть пять орбиталей (-2,-1,0,1 и 2), первые пять электронов заполняют оболочку принимая значения M l =-2,M l =-1,M l =0, M l =1,M l =2.

Спиновое квантовое число m s

Спин - это направление вращения электрона вокруг своей оси, направлений два, поэтому спиновое квантовое число имеет два значения: +1/2 и -1/2. На одном энергетическом подуровне могут находиться два электрона только с противоположными спинами. Спиновое квантовое число обозначается m s

Главное квантовое число n

Главное квантовое число - это уровень энергии, на данный момент известны семь энергетических уровней, каждый обозначается арабской цифрой: 1,2,3,...7. Количество оболочек на каждом уровне равно номеру уровня: на первом уровне одна оболочка, на втором две и т.д.

Номер электрона


Итак, любой электрон можно описать четырьмя квантовыми числами, комбинация из этих чисел уникальна для каждой позиции электрона, возьмём первый электрон, самый низкий энергетический уровень это N=1, на первом уровне распологается одна оболочка, первая оболочка на любом уровне имеет форму шара (s-оболочка), т.е. L=0, магнитное квантовое число может принять только одно значение, M l =0 и спин будет равен +1/2. Если мы возьмём пятый электрон (в каком бы атоме он не был), то главные квантовые числа для него будут: N=2, L=1, M=-1, спин 1/2.

Расположение электронов на энергетических оболочках или уровнях записывают с помощью электронных формул химических элементов. Электронные формулы или конфигурации помогают представить структуру атома элемента.

Строение атома

Атомы всех элементов состоят из положительно заряженного ядра и отрицательно заряженных электронов, которые располагаются вокруг ядра.

Электроны находятся на разных энергетических уровнях. Чем дальше электрон находится от ядра, тем большей энергией он обладает. Размер энергетического уровня определяется размером атомной орбитали или орбитального облака. Это пространство, в котором движется электрон.

Рис. 1. Общее строение атома.

Орбитали могут иметь разную геометрическую конфигурацию:

  • s-орбитали - сферические;
  • р-, d и f-орбитали - гантелеобразные, лежащие в разных плоскостях.

На первом энергетическом уровне любого атома всегда располагается s-орбиталь с двумя электронами (исключение - водород). Начиная со второго уровня, на одном уровне находятся s- и р-орбитали.

Рис. 2. s-, р-, d и f-орбитали.

Орбитали существуют вне зависимости от нахождения на них электронов и могут быть заполненными или вакантными.

Запись формулы

Электронные конфигурации атомов химических элементов записываются по следующим принципам:

  • каждому энергетическому уровню соответствует порядковый номер, обозначаемый арабской цифрой;
  • за номером следует буква, означающая орбиталь;
  • над буквой пишется верхний индекс, соответствующий количеству электронов на орбитали.

Примеры записи:

  • кальций -

    1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 ;

  • кислород -

    1s 2 2s 2 2p 4 ;

  • углерод -

    1s 2 2s 2 2p 2 .

Записать электронную формулу помогает таблица Менделеева. Количеству энергетических уровней соответствует номер периода. На заряд атома и количество электронов указывает порядковый номер элемента. Номер группы показывает, сколько валентных электронов находится на внешнем уровне.

Для примера возьмём Na. Натрий находится в первой группе, в третьем периоде, под 11 номером. Это значит, что атом натрия имеет положительно заряженное ядро (содержит 11 протонов), вокруг которого на трёх энергетических уровнях располагается 11 электронов. На внешнем уровне находится один электрон.

Вспомним, что первый энергетический уровень содержит s-орбиталь с двумя электронами, а второй - s- и р-орбитали. Остаётся заполнить уровни и получить полную запись:

11 Na) 2) 8) 1 или 1s 2 2s 2 2p 6 3s 1 .

Для удобства созданы специальные таблицы электронных формул элемента. В длинной периодической таблице формулы также указываются в каждой клетке элемента.

Рис. 3. Таблица электронных формул.

Для краткости в квадратных скобках записаны элементы, электронная формула которых совпадает с началом формулы элемента. Например, электронная формула магния - 3s 2 , неона - 1s 2 2s 2 2p 6 . Следовательно, полная формула магния - 1s 2 2s 2 2p 6 3s 2 . 4.6 . Всего получено оценок: 195.

Знание возможных состояний электрона в атоме, правило Клечковского, принцип Паули и правило Гунда позволяют рассмотреть электронную конфигурацию атома. Для этого используют электронные формулы.

Электронной формулой обозначают состояние электрона в атоме, указывая цифрой главное квантовое число, характеризующее его состояние, а буквой - орбитальное квантовое число. Число, показывающее, сколько электронов находится в данном состоянии, записывают справа сверху от буквы, обозначающей форму электронного облака.

Для атома водорода (n = 1, l = 0, m = 0) электронная формула будет такой: 1s 1 . Оба электрона следующего элемента гелия Не характеризуются одинаковыми значениями n, l, m и отличаются лишь спинами. Электронная формула атома гелия ls 2 . Электронная оболочка атома гелия завершена и очень устойчива. Гелий - благородный газ.

У элементов 2-го периода {n = 2, l = 0 или l = 1) заполняется сначала 2s-состояние, а затем р-подуровень второго энергетического уровня.

Электронная формула атома лития: ls 2 2s 1 . Электрон 2s 1 слабее связан с ядром атома (рис. 6), поэтому атом лития может легко отдавать его (как вы, очевидно, помните, этот процесс называется окислением), превращаясь в ион Li + .

Рис. 6.
Сечения 1s- и 2s-электронных облаков плоскостью, проходящей через ядро

В атоме бериллия четвертый электрон также занимает 2s-состояние: ls 2 2s 2 . Два внешних электрона атома бериллия легко отрываются - Be при этом окисляется в катион Ве 2+ .

У атома бора появляется электрон в 2р-состоянии: ls 2 2s 2 2p 1 . Далее у атомов углерода, азота, кислорода и фтора (в соответствии с правилом Гунда) идет заполнение 2р-подуровня, которое заканчивается у благородного газа неона: ls 2 2s 2 2p 6 .

Если хотят подчеркнуть, что электроны на данном подуровне занимают квантовые ячейки поодиночке, в электронной формуле обозначение подуровня сопровождает индеке. Например, электронная формула атома углерода

У элементов 3-го периода заполняется соответственно Зs-состояние (n = 3, l = 0) и Зр-подуровень (n = 3, l - 1). Зd-подуровень (n = 3, l = 2) при этом остается свободным:

Иногда в схемах, изображающих распределение электронов в атомах, указывают только число электронов на каждом энергетическом уровне, т. е. записывают сокращенные электронные формулы атомов химических элементов, в отличие от приведенных выше полных электронных формул, например:

У элементов больших периодов (4-го и 5-го), в соответствии с правилом Клечковского, первые два электрона внешнего электронного слоя занимают соответственно 4s-(n = 4, l = 0) и 5s-состояния (n = 5, l = 0):

Начиная с третьего элемента каждого большого периода, последующие десять электронов поступают на предыдущие 3d- и 4d-подуровни соответственно (у элементов побочных подгрупп):

Как правило, когда будет заполнен предыдущий d-подуровень, тогда начнет заполняться внешний (соответственно 4р- и 5р) р-подуровень:

У элементов больших периодов - 6-го и незавершенного 7-го - энергетические уровни и подуровни заполняются электронами, как правило, так: первые два электрона поступают на внешний s-подуровень, например:

следующий один электрон (у La и Ас) - на предыдущий d-подуровень:

Затем последующие 14 электронов поступают на третий снаружи энергетический уровень на 4f- и 5f-подуровни соответственно у лантаноидов и актиноидов:

Затем снова начнет застраиваться второй снаружи энергетический уровень (d-подуровень) у элементов побочных подгрупп:

Только после полного заполнения десятью электронами d-подуровня будет снова заполняться внешний р-подуровень:

В заключение еще раз рассмотрим разные способы отображения электронных конфигураций атомов элементов по периодам таблицы Д. И. Менделеева.

Рассмотрим элементы 1-го периода - водород и гелий.

Электронные формулы атомов показывают распределение электронов по энергетическим уровням и подуровням.

Графические электронные формулы атомов показывают распределение электронов не только по уровням и подуровням, но и по квантовым ячейкам (атомным орбиталям).

В атоме гелия первый электронный слой завершен - в нем 2 электрона.

Водород и гелий - s-элементы, у этих атомов заполняется электронами ls-подуровень.

У всех элементов 2-го периода первый электронный слой заполнен, и электроны заполняют 2s- и 2р-состояния в соответствии с принципом наименьшей энергии (сначала S-, а затем р) и правилами Паули и Хунда (табл. 2).

В атоме неона второй электронный слой завершен - в нем 8 электронов.

Таблица 2
Строение электронных оболочек атомов элементов 2-го периода


Литий Li, бериллий Be - s-элементы.

Бор В, углерод С, азот N, кислород О, фтор F, неон Ne - р-элементы, у этих атомов заполняется электронами р-подуровень.

У атомов элементов 3-го периода первый и второй электронные слои завершены, поэтому заполняется третий электронный слой, в котором электроны могут занимать 3s-, 3р- и Зd-состояния (табл. 3).

Таблица 3
Строение электронных оболочек атомов элементов 3-го периода

У атома магния достраивается Зs-подуровень. Натрий Na и магний Mg - s-элементы.

У алюминия и последующих за ним элементов заполняется электронами Зр-подуровень.

В атоме аргона на внешнем слое (третьем электронном слое) 8 электронов. Как внешний слой, он завершен, но всего в третьем электронном слое, как вы уже знаете, может быть 18 электронов, а это значит, что у элементов 3-го периода остается незаполненным 3d-состояние.

Все элементы от алюминия Аl до аргона Аr - р-элементы.

s- и p-элементы образуют главные подгруппы в Периодической системе.

У атомов элементов 4-го периода - калия и кальция - появляется четвертый энергетический уровень, заполняется 48-подуровень (табл. 4), так как, согласно правилу Клечковского, он имеет меньшую энергию, чем Зd-подуровень.

Таблица 4
Строение электронных оболочек атомов элементов 4-го периода


Для упрощения графических электронных формул атомов элементов 4-го периода:

Калий К и кальций Са - s-элементы, входящие в главные подгруппы. У атомов от скандия Sc до цинка Zn заполняется электронами 3d-подуровень. Это 3d-элементы. Они входят в побочные подгруппы, у них заполняется предвнешний электронный слой, их относят к переходным элементам.

Обратите внимание на строение электронных оболочек атомов хрома и меди. В них происходит «провал» одного электрона с 4s- на Зd-подуровень, что объясняется большей энергетической устойчивостью образующихся при этом электронных конфигураций 3d 5 и 3d 10:

В атоме цинка третий энергетический уровень завершен, в нем заполнены все подуровни - 3s, 3р и 3d, всего на них 18 электронов.

У следующих за цинком элементов продолжает заполняться четвертый энергетический уровень, 4р-подуровень.

Элементы от галлия Ga до криптона Кr - р-элементы.

У атома криптона Кr внешний слой (четвертый) завершен, имеет 8 электронов. Но всего в четвертом электронном слое, как вы знаете, может быть 32 электрона; у атома криптона пока остаются незаполненными 4d- и 4f-состояния.

У элементов 5-го периода, в соответствии с правилом Клечковского, идет заполнение подуровней в следующем порядке: 5s ⇒ 4d ⇒ 5р. И также встречаются исключения, связанные с «провалом» электронов, у 41 Nb, 42 Мо, 44 Ru, 45 Rh, 46 Pd, 47 Аg.

В 6-м и 7-м периодах появляются f-элементы, т. е. элементы, у которых идет заполнение соответственно 4f- и 5f-подуровней третьего снаружи энергетического уровня.

4f-Элементы называют лантаноидами.

5f-Элементы называют актиноидами.

Порядок заполнения электронных подуровней в атомах элементов 6-го периода: 55 Cs и 56 Ва - бs-элементы; 57 La ...6s 2 5d 1 - 5d-элeмeнт; 58 Се - 71 Lu - 4f-элементы; 72 Hf - 80 Нg - 5d-элементы; 81 Тl - 86 Rn - бр-элементы. Но и здесь встречаются элементы, у которых «нарушается» порядок заполнения энергетических подуровней, что, например, связано с большей энергетической устойчивостью наполовину и полностью заполненных f-подуровней, т. е. nf 7 и nf 14 .

В зависимости от того, какой подуровень атома заполняется электронами последним, все элементы, как вы уже поняли, делят на четыре электронных семейства или блока (рис. 7):

Рис. 7.
Деление Периодической системы (таблицы) на блоки элементов

  1. s-элементы; заполняется электронами s-подуровень внешнего уровня атома; к s-элементам относят водород, гелий и элементы главных подгрупп I и II групп;
  2. p-элементы; заполняется электронами р-подуровень внешнего уровня атома; к p-элементам относят элементы главных подгрупп III-VIII групп;
  3. d-элементы; заполняется электронами d-подуровень предвнешнего уровня атома; к d-элементам относят элементы побочных подгрупп I-VIII групп, т. е. элементы вставных декад больших периодов, расположенные между s- и p-элементами. Их также называют переходными элементами;
  4. f-элементы; заполняется электронами f-подуровень третьего снаружи уровня атома; к ним относят лантаноиды и актиноиды.

Вопросы и задания к § 3

  1. Составьте схемы электронного строения, электронные формулы и графические электронные формулы атомов следующих химических элементов:
        а) кальция;
        б) железа;
        в) циркония;
        г) ниобия;
        д) гафния;
        е) золота.
  2. Напишите электронную формулу элемента № 110, используя символ соответствующего благородного газа.
  3. Что такое «провал» электрона? Приведите примеры элементов, у которых это явление наблюдается, запишите их электронные формулы.
  4. Как определяется принадлежность химического элемента к тому или иному электронному семейству?
  5. Сравните электронную и графическую электронную формулы атома серы. Какую дополнительную информацию содержит последняя формула?

>> Химия: Электронные конфигурации атомов химических элементов

Швейцарский физик В. Паули в 1925 г. установил, что в атоме на одной орбитали может находиться не более двух электронов, имеющих противоположные (антипараллельные) спины (в переводе с английского «веретено»), то есть обладающих такими свойствами, которые условно можно представить себе как вращение электрона вокруг своей воображаемой оси: по часовой или против часовой стрелки. Этот принцип носит название принципа Паули.

Если на орбитали находится один электрон, то он называется неспаренным, если два, то это спаренные электроны, то есть электроны с противоположными спинами.

На рисунке 5 показана схема подразделения энергетических уровней на подуровни.

s-Орбиталь, как вы уже знаете, имеет сферическую форму. Электрон атома водорода (s = 1) располагается на этой ор-битали и неспарен. Поэтому его электронная формула или электронная конфигурация будет записываться так: 1s 1 . В электронных формулах номер энергетического уровня обозначается цифрой, стоящей перед буквой (1 ...), латинской буквой обозначают подуровень (тип орбитали), а цифра, которая записывается справа вверху от буквы (как показатель степени), показывает число электронов на подуровне.

Для атома гелия Не, имеющего два спаренных электрона на одной s-орбитали, эта формула: 1s 2 .

Электронная оболочка атома гелия завершена и очень устойчива. Гелий - это благородный газ.

На втором энергетическом уровне (n = 2) имеется четыре орбитали: одна s и три р. Электроны s-орбитали второго уровня (2s-орбитали) обладают более высокой энергией, так как находятся на большем расстоянии от ядра, чем электроны 1s-орбитали (n = 2).

Вообще, для каждого значения n существует одна s-орбиталь, но с соответствующим запасом энергии электронов на нем и, следовательно, с соответствующим диаметром, растущим по мере увеличения значения n.

р-Орбиталь имеет форму гантели или объемной восьмерки. Все три р-орбитали расположены в атоме взаимно перпендикулярно вдоль пространственных координат, проведенных через ядро атома. Следует подчеркнуть еще раз, что каждый энергетический уровень (электронный слой), начиная с n = 2, имеет три р-орбитали. С увеличением значения n электроны анимают р-орбитали, расположенные на больших расстояниях от ядра и направленные по осям х, у, г.

У элементов второго периода (n = 2) заполняется сначала одна в-орбиталь, а затем три р-орбитали. Электронная формула 1л: 1s 2 2s 1 . Электрон слабее связан с ядром атома, поэтому атом лития может легко отдавать его (как вы, очевидно, помните, этот процесс называется окислением), превращаясь в ион Li+.

В атоме бериллия Ве 0 четвертый электрон также размещается на 2s-орбитали: 1s 2 2s 2 . Два внешних электрона атома бериллия легко отрываются - Ве 0 при этом окисляется в катион Ве 2+ .

У атома бора пятый электрон занимает 2р-орбиталь: 1s 2 2s 2 2р 1 . Далее у атомов С, N, О, Е идет заполнение 2р-орбиталей, которое заканчивается у благородного газа неона: 1s 2 2s 2 2р 6 .

У элементов третьего периода заполняются соответственно Зв- и Зр-орбитали. Пять d-орбиталей третьего уровня при этом остаются свободными:

11 Nа 1s 2 2s 2 Зв1; 17С11в22822р63р5; 18Аг П^Ёр^Зр6.

Иногда в схемах, изображающих распределение электронов в атомах, указывают только число электронов на каждом энергетическом уровне, то есть записывают сокращенные электронные формулы атомов химических элементов, в отличие от приведенных выше полных электронных формул.

У элементов больших периодов (четвертого и пятого) первые два электрона занимают соответственно 4я- и 5я-орбитали: 19 К 2, 8, 8, 1; 38 Sr 2, 8, 18, 8, 2. Начиная с третьего элемента каждого большого периода, последующие десять электронов поступят на предыдущие 3d- и 4d- орбитали соответственно (у элементов побочных подгрупп): 23 V 2, 8, 11, 2; 26 Tr 2, 8, 14, 2; 40 Zr 2, 8, 18, 10, 2; 43 Тг 2, 8, 18, 13, 2. Как правило, тогда, когда будет заполнен предыдущий d-подуровень, начнет заполняться внешний (соответственно 4р- и 5р) р-подуровень.

У элементов больших периодов - шестого и незавершенного седьмого - электронные уровни и подуровни заполняются электронами, как правило, так: первые два электрона поступят на внешний в-подуровень: 56 Ва 2, 8, 18, 18, 8, 2; 87Гг 2, 8, 18, 32, 18, 8, 1; следующий один электрон (у Nа и Ас) на предыдущий (p-подуровень: 57 Lа 2, 8, 18, 18, 9, 2 и 89 Ас 2, 8, 18, 32, 18, 9, 2.

Затем последующие 14 электронов поступят на третий снаружи энергетический уровень на 4f- и 5f-орбитали соответственно у лантаноидов и актиноидов.

Затем снова начнет застраиваться второй снаружи энергетический уровень (d-подуровень): у элементов побочных подгрупп: 73 Та 2, 8,18, 32,11, 2; 104 Rf 2, 8,18, 32, 32,10, 2, - и, наконец, только после полного заполнения десятью электронами сйгоду-ровня будет снова заполняться внешний р-подуровень:

86 Rn 2, 8, 18, 32, 18, 8.

Очень часто строение электронных оболочек атомов изображают с помощью энергетических или квантовых ячеек - записывают так называемые графические электронные формулы. Для этой записи используют следующие обозначения: каждая квантовая ячейка обозначается клеткой, которая соответствует одной орбитали; каждый электрон обозначается стрелкой, соответствующей направлению спина. При записи графической электронной формулы следует помнить два правила: принцип Паули, согласно которому в ячейке (орбитали) может быть не более двух электронов, но с антипараллельными спинами, и правило Ф. Хунда, согласно которому электроны занимают свободные ячейки (орбитали), располагаются в них сначала по одному и имеют при этом одинаковое значение спина, а лишь затем спариваются, но спины при этом по принципу Паули будут уже противоположно направленными.

В заключение еще раз рассмотрим отображение электронных конфигураций атомов элементов по периодам системы Д. И. Менделеева . Схемы электронного строения атомов показывают распределение электронов по электронным слоям (энергетическим уровням).

В атоме гелия первый электронный слой завершен - в нем 2 электрона.

Водород и гелий - s-элементы, у этих атомов заполняется электронами s-орбиталь.

Элементы второго периода

У всех элементов второго периода первый электронный слой заполнен и электроны заполняют е- и р-орбитали второго электронного слоя в соответствии с принципом наименьшей энергии (сначала s-, а затем р) и правилами Паули и Хунда (табл. 2).

В атоме неона второй электронный слой завершен - в нем 8 электронов.

Таблица 2 Строение электронных оболочек атомов элементов второго периода

Окончание табл. 2

Li, Ве - в-элементы.

В, С, N, О, F, Nе - р-элементы, у этих атомов заполняются электронами р-орбитали.

Элементы третьего периода

У атомов элементов третьего периода первый и второй электронные слои завершены, поэтому заполняется третий электронный слой, в котором электроны могут занимать Зs-, 3р- и Зd-подуровни (табл. 3).

Таблица 3 Строение электронных оболочек атомов элементов третьего периода

У атома магния достраивается Зs-электронная орбиталь. Nа и Mg- s-элементы.

В атоме аргона на внешнем слое (третьем электронном слое) 8 электронов. Как внешний слой, он завершен, но всего в третьем электронном слое, как вы уже знаете, может быть 18 электронов, а это значит, что у элементов третьего периода остаются незаполненными Зd-орбитали.

Все элементы от Аl до Аг - р-элементы. s- и р-элементы образуют главные подгруппы в Периодической системе.

У атомов калия и кальция появляется четвертый электронный слой, заполняется 4s-подуровень (табл. 4), так как он имеет меньшую энергию, чем Зй-подуровень. Для упрощения графических электронных формул атомов элементов четвертого периода: 1) обозначим условно графическую электронную формулу аргона так:
Аr;

2) не будем изображать подуровни, которые у этих атомов не заполняются.

Таблица 4 Строение электронных оболочек атомов элементов четвертого периода


К, Са - s-элементы, входящие в главные подгруппы. У атомов от Sс до Zn заполняется электронами Зй-подуровень. Это Зй-элементы. Они входят в побочные подгруппы, у них заполняется предвнешний электронный слой, их относят к переходным элементам.

Обратите внимание на строение электронных оболочек атомов хрома и меди. В них происходит «провал» одного электрона с 4я- на Зй-подуровень, что объясняется большей энергетической устойчивостью образующихся при этом электронных конфигураций Зd 5 и Зd 10:

В атоме цинка третий электронный слой завершен - в нем заполнены все подуровни 3s, Зр и Зd, всего на них 18 электронов.

У следующих за цинком элементов продолжает заполняться четвертый электронный слой, 4р-подуровень: Элементы от Gа до Кr - р-элементы.

У атома криптона внешний слой (четвертый) завершен, имеет 8 электронов. Но всего в четвертом электронном слое, как вы знаете, может быть 32 электрона; у атома криптона пока остаются незаполненными 4d- и 4f- подуровни.

У элементов пятого периода идет заполнение подуровней в следующем порядке: 5s-> 4d -> 5р. И также встречаются исключения, связанные с «провалом» электронов, у 41 Nb, 42 MO и т.д.

В шестом и седьмом периодах появляются элементы, то есть элементы, у которых идет заполнение соответственно 4f- и 5f-подуровней третьего снаружи электронного слоя.

4f-Элементы называют лантаноидами.

5f-Элементы называют актиноидами.

Порядок заполнения электронных подуровней в атомах элементов шестого периода: 55 Сs и 56 Ва - 6s-элементы;

57 Lа... 6s 2 5d 1 - 5d-элемент; 58 Се - 71 Lu - 4f-элементы; 72 Hf - 80 Нg - 5d-элементы; 81 Тl- 86 Rn - 6р-элементы. Но и здесь встречаются элементы, у которых «нарушается» порядок заполнения электронных орбиталей, что, например, связано с большей энергетической устойчивостью наполовину и полностью заполненных f подуровней, то есть nf 7 и nf 14 .

В зависимости от того, какой подуровень атома заполняется электронами последним, все элементы, как вы уже поняли, делят на четыре электронных семейства или блока (рис. 7).

1) s-Элементы; заполняется электронами в-подуровень внешнего уровня атома; к s-элементам относятся водород, гелий и элементы главных подгрупп I и II групп;

2) р-элементы; заполняется электронами р-подуровень внешнего уровня атома; к р элементам относятся элементы главных подгрупп III-VIII групп;

3) d-элементы; заполняется электронами d-подуровень предвнешнего уровня атома; к d-элементам относятся элементы побочных подгрупп I-VIII групп, то есть элементы вставных декад больших периодов, расположенные между s- и р-элементами. Их также называют переходными элементами;

4) f-элементы, заполняется электронами f-подуровень третьего снаружи уровня атома; к ним относятся лантаноиды и актиноиды.

1. Что было бы, если бы принцип Паули не соблюдался?

2. Что было бы, если бы правило Хунда не соблюдалось?

3. Составьте схемы электронного строения, электронные формулы и графические электронные формулы атомов следующих химических элементов: Са, Fе, Zr, Sn, Nb, Hf, Ра.

4. Напишите электронную формулу элемента № 110, используя символ соответствующего благородного газа.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки