Какая скорость орбитальной станции. Международная космическая станция

12 апреля грядет день космонавтики. И конечно же, было-бы неправильно обойти этот праздник стороной. Тем более, что в этом году дата будет особенной, 50 лет со дня первого полёта человека в космос. Именно 12 апреля 1961 года Юрий Гагарин совершил свой исторический подвиг.

Ну а без грандиозных суперсооружений человеку в космосе не обойтись. Именно таковым и является Международная космическая станция (англ. International Space Station).

Габариты МКС - невелики; длина - 51 метр, ширина вместе с фермами - 109 метров, высота - 20 метров, вес - 417,3 тонны. Но думаю всем понятно, что уникальность этого суперсооружения не в его размерах, а в технологиях используемых для фукционирования станции в открытом космосе. Высота орбиты МКС составляет 337-351 км над землей. Скорость движения по орбите - 27700 км/ч. Это позволяет станции совершать полный оборот вокруг нашей планеты за 92 минуты. То есть, каждые сутки космонавты, находящиеся на МКС встречают 16 рассветов и закатов, 16 раз ночь сменяет день. Сейчас экипаж МКС состоит из 6 человек, а вообще за все время функционирования станция приняла 297 посетителей (196 разных людей). Началом эксплуатации Международной космической станции считается 20 ноября 1998 года. И на данный момент (9.04.2011) станция находится на орбите уже 4523 суток. За это время она достаточно сильно эволюционировала. Предлагаю убедиться Вам в этом, просмотрев фото.

МКС, 1999 год.

МКС, 2000 год.

МКС, 2002 год.

МКС, 2005 год.

МКС, 2006 год.

МКС, 2009 год.

МКС, март 2011 года.

Ниже приведу схему станции, из которой можно узнать названия модулей а также увидеть места стыковки МКС с другими космическими кораблями.

МКС является международным проектом. В нём участвуют 23 государства: Австрия, Бельгия, Бразилия, Великобритания, Германия, Греция, Дания, Ирландия, Испания, Италия, Канада, Люксембург(!!!), Нидерланды, Норвегия, Португалия, Россия, США, Финляндия, Франция, Чехия, Швейцария, Швеция, Япония. Ведь осилить в финансовом плане строительство и поддержания функциональности Международной космической станции в одиночку не под силу ни одному государству. Подсчитать точные или даже приблизительные затраты на строительство и эксплуатацию МКС не представляется возможным. Официальная цифра уже перевалила за 100 млрд долларов США, а если прибавить сюда все побочные затраты, то получится около 150 млрд долларов США. Это уже сейчас делает Международную космическую станцию самым дорогостоящим проектом за всю историю человечества. А исходя из последних договоренностей России, США и Японии (Европа, Бразилия и Канада пока в раздумьях) о том, что срок эксплуатации МКС продлен минимум до 2020 года (а возможно и дальнейшее продление), то суммарные затраты на содержание станции возрастут еще больше.

Но предлагаю отвлечься от цифр. Ведь помимо научной ценности есть у МКС и другие достоинства. А именно, возможность оценить первозданную красоту нашей планеты с высоты орбиты. И совсем необязательно для это выходить в открытый космос.

Потому как, есть на станции своя смотровая площадка, застеклённый модуль "Купол".

С какой скоростью летит ракета в космос.?

  1. абстрактная наука-пораждает иллюзии у зрителя
  2. Если на околоземную орбиту то 8 км в сек.
    Если за пределы то 11 км в сек. Примерно так.
  3. 33000 км/ч
  4. Точный - со скоростью 7,9 км/секунд выходя она (ракета) будет врашатся вокруг земли, если со скоростью 11 км/ секунд то это уже парабола, т. е. она чуть дальше поедить, есть вероятность что может и не верннутся
  5. 3-5км/с, учитывайте скорость вращения земли вокруг солнца
  6. Рекорд скорости космического аппарата (240 тыс. км/ч) был установлен американо-германским солнечным зондом Гелиос-Б, запущенным 15 января 1976 г.

    Самая высокая скорость, с которой когда либо передвигался человек (39897 км/ч), была развита основным модулем Аполлона 10 на высоте 121,9 км от поверхности Земли при возвращении экспедиции 26 мая 1969 г. На борту космического корабля были командир экипажа полковник ВВС США (ныне бригадный генерал) Томас Паттен Стаффорд (род. в Уэтерфорде, штат Оклахома, США, 17 сентября 1930 г.), капитан 3-го ранга ВМФ США Юджин Эндрю Сернан (род. в Чикаго, штат Иллинойс, США, 14 марта 1934 г.) и капитан 3-го ранга ВМС США (ныне капитан 1-го ранга в отставке) Джон Уотте Янг (род. в Сан Франциско, штат Калифорния, США, 24 сентября 1930 г.).

    Из женщин наивысшей скорости (28115 км/ч) достигла младший лейтенант ВВС СССР (ныне подполковник-инженер, летчик-космонавт СССР) Валентина Владимировна Терешкова (род. 6 марта 1937 г.) на советском космическом корабле Восток 6 16 июня 1963 г.

  7. 8 км/сек, чтобы преодолеть притяжение Земли
  8. в чрной дыре можно разагнатся до субсветовой скоросте
  9. Чушь, бездумно усвоеная со школы.
    8 или точнее 7,9 км/с - это первая космическая скорость - скорость горизонтального движения тела непосредственно над поверхностью Земли, при которой тело не падает, а остается спутником Земли с круговой орбитой на этой самой высоте, т. е. над поверхностью Земли (и это без учета сопротивления воздуха) . Таким образом ПКС - это абстрактная величина, связывающая между собой параметры космического тела: радиус и ускорение свободного падения на поверхности тела, и не имеющая никакого практического значения. На высоте 1000 км скорость кругового орбитального движения будет уже другой.

    Ракета наращивает скорость постепенно. Например Ракета-носитель Союз имеет через 117.6 с после старта на высоте 47.0 км имеет скорость 1.8 км/с, на 286.4 с полета на высоте 171.4 км, 3.9 км/с. Примерно через 8.8 мин. после старта на высоте 198.8 км скорость КА составляет 7.8 км/с.
    А вывод орбитального корабля на околоземную орбиту из верхней точки полета ракеты-носителя осуществляется уже активным маневрированием самого ОК. И скорость его зависит от параметров орбиты.

  10. Вс это бред. Важную роль играет не скорость, а сила тяги ракеты. При высоте в 35км начинается полноценный разгон до ПКС (первая космическая скорость) до 450км высоты, постепенно придавая курс направлению вращения Земли. Таким образом сохраняется высота и сила тяги во время преодоления плотных слов атмосферы. В двух словах - не нужно расгонять одновременно горизонтальную и вертикальную скорости, значительное отклонение в горизонтальном направлении происходит на 70% нужной высоты.
  11. на какой
    высоте летит космический корабль.

Правообладатель иллюстрации Thinkstock

Нынешний рекорд скорости в космосе держится уже 46 лет. Корреспондент задался вопросом, когда же он будет побит.

Мы, люди, одержимы скоростью. Так, только за последние несколько месяцев стало известно о том, что студенты в Германии поставили рекорд скорости для электромобиля, а ВВС США планируют так усовершенствовать гиперзвуковые самолеты, чтобы те развивали скорость в пять раз превышающую скорость звука, т.е. свыше 6100 км/ч.

У таких самолетов не будет экипажа, но не потому, что люди не могут передвигаться с такой высокой скоростью. На самом деле люди уже перемещались со скоростью, которая в несколько раз выше скорости звука.

Однако существует ли предел, преодолев который наши стремительно несущиеся тела уже не смогут выдерживать перегрузки?

Нынешний рекорд скорости поровну принадлежит трем астронавтам, которые участвовали в космической миссии "Аполлон 10", - Тому Стаффорду, Джону Янгу и Юджину Сернану.

В 1969 году, когда астронавты облетели вокруг Луны и возвращались обратно, капсула в которой они находились, развила скорость, которая на Земле равнялась бы 39,897 км/час.

"Я думаю, что сто лет назад мы вряд ли могли себе представить, что человек сможет перемещаться в космосе со скоростью почти в 40 тысяч километров в час", - говорит Джим Брей из аэрокосмического концерна Lockheed Martin.

Брей - директор проекта обитаемого модуля для перспективного корабля "Орион" (Orion), который разрабатывается Космическим агентством США НАСА.

По замыслу разработчиков, космический корабль "Орион" – многоцелевой и частично многоразовый - должен выводить астронавтов на низкую орбиту Земли. Очень может быть, что с его помощью удастся побить рекорд скорости, установленный для человека 46 лет назад.

Новая сверхтяжелая ракета, входящая в Систему космических пусков (Space Launch System), должна, согласно плану, совершить свой первый пилотируемый полет в 2021 году. Это будет облет астероида, находящегося на окололунной орбите.

Среднестатистический человек может вынести перегрузку примерно в пять G, прежде чем потеряет сознание

Затем должны последовать многомесячные экспедиции к Марсу. Сейчас, по мысли конструкторов, обычная максимальная скорость "Ориона" должна составлять примерно 32 тысяч км/час. Однако скорость, которую развил "Аполлон 10", можно будет превзойти даже при сохранении базовой конфигурации корабля "Орион".

"Orion предназначен для полетов к различным целям в течение всего своего срока эксплуатации, - говорит Брей. – Его скорость может оказаться значительно выше той, что мы сейчас планируем".

Но даже "Орион" не будет представлять пик скоростного потенциала человека. "По сути дела, не существует другого предела скорости, с какой мы можем перемещаться, кроме скорости света", - говорит Брей.

Скорость света один миллиард км/час. Есть ли надежда, что нам удастся преодолеть разрыв между 40 тысячами км/час и этими величинами?

Удивительным образом скорость как векторная величина, обозначающая быстроту перемещения и направление движения, не является для людей проблемой в физическом смысле, пока она относительно постоянна и направлена в одну сторону.

Следовательно, люди – теоретически – могут перемещаться в пространстве лишь чуть медленнее "скоростного предела вселенной", т.е. скорости света.

Правообладатель иллюстрации NASA Image caption Как будет ощущать себя человек в корабле, летящем с околосветовой скоростью?

Но даже если допустить, что мы преодолеем значительные технологические препятствия, связанные с созданием скоростных космических кораблей, наши хрупкие, состоящие в основном из воды тела столкнутся с новыми опасностями, сопряженными с эффектами высокой скорости.

Могут возникнуть и пока только воображаемые опасности, если люди смогут передвигаться быстрее скорости света благодаря использованию лазеек в современной физике или с помощью открытий, разрывающих шаблон.

Как выдержать перегрузки

Впрочем, если мы намерены передвигаться со скоростью свыше 40 тысяч км/час, нам придется достигать ее, а затем замедляться, не спеша и сохраняя терпение.

Быстрое ускорение и столь же быстрое замедление таят в себе смертельную опасность для организма человека. Об этом свидетельствует тяжесть телесных травм, возникающих в результате автомобильных катастроф, при которых скорость падает с нескольких десятков километров в час до нуля.

В чем причина этого? В том свойстве Вселенной, которое носит название инерции или способности физического тела, обладающего массой, противостоять изменению его состояния покоя или движения при отсутствии или компенсации внешних воздействий.

Эта идея сформулирована в первом законе Ньютона, который гласит: "Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного и прямолинейного движения, пока и поскольку оно не понуждается приложенными силами изменять это состояние".

Мы, люди, в состоянии переносить огромные перегрузки без тяжких травм, правда, только в течение нескольких мгновений

"Состояние покоя и движение с постоянной скоростью - это нормально для человеческого организма, - объясняет Брей. - Нам скорее следует беспокоиться о состоянии человека в момент ускорения".

Около века назад создание прочных самолетов, которые могли маневрировать на скорости, привело к тому, что пилоты стали говорить о странных симптомах, вызываемых изменениями скорости и направления полета. Эти симптомы включали в себя временную потерю зрения и ощущение либо тяжести, либо невесомости.

Причина заключается в перегрузках, измеряемых в единицах G, которые представляют собой отношение линейного ускорения к ускорению свободного падения на поверхности Земли под воздействием притяжения или гравитации. Эти единицы отражают воздействие ускорения свободного падения на массу, например, человеческого тела.

Перегрузка в 1 G равна весу тела, которое находится в поле тяжести Земли и притягивается к центру планеты со скоростью 9,8 м/сек (на уровне моря).

Перегрузки, которые человек испытывает вертикально с головы до пят или наоборот, являются поистине плохой новостью для пилотов и пассажиров.

При отрицательных перегрузках, т.е. замедлении, кровь приливает от пальцев на ногах к голове, возникает чувство перенасыщения, как при стойке на руках.

Правообладатель иллюстрации SPL Image caption Для того чтобы понять, сколько G смогут выдержать астронавты, их тренируют в центрифуге

"Красная пелена" (чувство, которое испытывает человек, когда кровь приливает к голове) наступает, когда распухшие от крови, полупрозрачные нижние веки поднимаются и закрывают зрачки глаз.

И, наоборот, при ускорении или положительных перегрузках кровь отливает от головы к ногам, глаза и мозг начинают испытывать недостаток кислорода, поскольку кровь скапливается в нижних конечностях.

Сначала зрение туманится, т.е. происходит потеря цветного зрения и накатывает, что называется, "серая пелена", потом наступает полная потеря зрения или "черная пелена", но человек остается в сознании.

Чрезмерные перегрузки ведут к полной потере сознания. Это состояние называют обмороком, вызванным перегрузкой. Многие пилоты погибли из-за того, что на их глаза опускалась "черная пелена" - и они разбивались.

Среднестатистический человек может вынести перегрузку примерно в пять G, прежде чем потеряет сознание.

Пилоты, одетые в специальные противоперегрузочные комбинезоны и обученные особым образом напрягать и расслаблять мышцы торса для того, чтобы кровь не отливала от головы, способны управлять самолетом при перегрузках примерно в девять G.

По достижении стабильной крейсерской скорости в 26 000 км/ч на орбите астронавты ощущают скорость не больше, чем пассажиры коммерческих авиарейсов

"На протяжении коротких периодов времени человеческое тело может переносить гораздо более сильные перегрузки, чем девять G, - говорит Джефф Свентек, исполнительный директор Ассоциации аэрокосмической медицины, расположенной в городе Александрия, штат Вирджиния. - Но выдерживать высокие перегрузки на протяжении длительного периода времени способны очень немногие".

Мы, люди, в состоянии переносить огромные перегрузки без тяжких травм, правда, только в течение нескольких мгновений.

Рекорд кратковременной выносливости поставил капитан ВВС США Эли Бидинг-младший на авиабазе Холломэн в штате Нью-Мексико. В 1958 году он при торможении на специальных санях с ракетным двигателем после разгона до 55 км/ч за 0.1 секунду испытал перегрузку в 82.3 G.

Этот результат зафиксировал акселерометр, закрепленный у него на груди. На глаза Бидинга также упала "черная пелена", но он отделался только синяками во время этой выдающейся демонстрации выносливости человеческого организма. Правда, после заезда он провел три дня в госпитале.

А теперь в космос

Астронавты, в зависимости от средства передвижения, также испытывали довольно высокие перегрузки - от трех до пяти G - во время взлетов и при возвращении в плотные слои атмосферы соответственно.

Эти перегрузки переносятся сравнительно легко, благодаря разумной идее пристегивать космических путешественников к креслам в положении лежа лицом по направлению полета.

По достижении стабильной крейсерской скорости в 26 000 км/ч на орбите астронавты ощущают скорость не больше, чем пассажиры коммерческих авиарейсов.

Если перегрузки не будут представлять собой проблему для длительных экспедиций на кораблях "Орион", то с мелкими космическими камнями – микрометеоритами – все сложнее.

Правообладатель иллюстрации NASA Image caption Для защиты от микрометеоритов "Ориону" понадобится своего рода космическая броня

Эти частицы размером с рисовое зернышко могут развивать впечатляющие и при этом разрушительные скорости до 300 тысяч км/час. Для обеспечения целостности корабля и безопасности его экипажа "Орион" оснащен внешним защитным слоем, толщина которого варьируется от 18 до 30 см.

Кроме того, предусмотрены дополнительные экранирующие щиты, а также используется хитроумное размещение оборудования внутри корабля.

"Чтобы не лишиться полетных систем, жизненно важных для всего космического корабля, мы должны точно рассчитывать углы подлета микрометеоритов", - говорит Джим Брей.

Будьте уверены: микрометеориты – не единственная помеха для космических экспедиций, во время которых высокие скорости полета человека в безвоздушном пространстве будут играть все более важную роль.

В ходе экспедиции к Марсу придется решать и другие практические задачи, например, по снабжению экипажа продовольствием и противодействию повышенной опасности раковых заболеваний из-за воздействия на человеческий организм космической радиации.

Сокращение времени в пути снизит остроту таких проблем, поэтому быстрота перемещения будет становиться все более желаемой.

Космические полеты следующего поколения

Эта потребность в скорости воздвигнет новые препятствия на пути космических путешественников.

Новые корабли НАСА, которые угрожают побить рекорд скорости "Аполлона 10", по-прежнему будут полагаться на испытанные временем химические системы ракетных двигателей, используемые со времен первых космических полетов. Но эти системы обладают жесткими ограничениями скорости по причине высвобождения малых величин энергии на единицу топлива.

Наиболее предпочтительный, хотя и труднодостижимый источник энергии для быстрого космического корабля - это антиматерия, двойник и антипод обычной материи

Поэтому, чтобы существенно увеличить скорость полета для людей, отправляющихся на Марс и далее, необходимы, как признают ученые, совершенно новые подходы.

"Те системы, которыми мы располагаем сегодня, вполне в состоянии доставить нас туда, - говорит Брей, - однако все мы хотели бы стать свидетелями революции в двигателях".

Эрик Дэвис, ведущий физик-исследователь в Институте перспективных исследований в Остине, штат Техас, и участник программы НАСА по прорывным разработкам в физике движения, шестилетнего исследовательского проекта, завершившегося в 2002 году, выделил три наиболее перспективных средства, с точки зрения традиционной физики, способных помочь человечеству достичь скоростей, разумно достаточных для межпланетных путешествий.

Если коротко, речь идет о явлениях выделения энергии при расщеплении вещества, термоядерном синтезе и аннигиляции антиматерии.

Первый метод заключается в делении атомов и применяется в коммерческих ядерных реакторах.

Второй, термоядерный синтез, заключается в создании более тяжелых атомов из простых атомов – такого рода реакции питают энергией Солнце. Это технология, которая завораживает, но не дается в руки; до ее обретения "всегда остается еще 50 лет" - и так будет всегда, как гласит старый девиз этой отрасли.

"Это весьма передовые технологии, - говорит Дэвис, - но они основаны на традиционной физике и прочно утвердились еще на заре Атомного века". По оптимистическим оценкам, двигательные системы, основанные на концепциях деления атомов и термоядерном синтезе, в теории, способны разогнать корабль до 10% скорости света, т.е. до весьма достойных 100 миллионов км/час.

Правообладатель иллюстрации US Air Force Image caption Летать со сверхзвуковой скоростью - уже не проблема для человека. Другое дело - скорость света, или хотя бы близко к ней...

Наиболее предпочтительный, хотя и труднодостижимый источник энергии для быстрого космического корабля - это антиматерия, двойник и антипод обычной материи.

Когда два вида материи приходят в соприкосновение, они уничтожают друг друга, в результате чего выделяется чистая энергия.

Технологии, позволяющие вырабатывать и хранить – пока крайне незначительные – количества антиматерии, существуют уже сегодня.

В то же время производство антивещества в полезных количествах потребует новых специальных мощностей следующего поколения, а инженерной мысли придется вступить в конкурентную гонку по созданию соответствующего космического корабля.

Но, как говорит Дэвис, немало отличных идей уже прорабатывается на чертежных досках.

Космические корабли, приводимые в движение энергией антиматерии, смогут перемещаться с ускорением в течение нескольких месяцев и даже лет и достигать более существенных процентов от скорости света.

При этом перегрузки на борту будут оставаться приемлемыми для обитателей кораблей.

Вместе с тем, такие фантастические новые скорости будут таить в себе и иные опасности для организма человека.

Энергетический град

На скорости в несколько сот миллионов километров в час любая пылинка в космосе, от распыленных атомов водорода до микрометеоритов, неизбежно становится пулей, обладающей высокой энергией и способной прошить корпус корабля насквозь.

"Когда вы передвигаетесь с очень высокой скоростью, это означает, что частицы, летящие вам навстречу, движутся с теми же скоростями", - говорит Артур Эдельстайн.

Вместе с покойным отцом, Уильямом Эдельстайном, профессором радиологии в Медицинской школе Университета имени Джона Хопкинса, он работал над научным трудом, в котором рассматривались последствия воздействия атомов космического водорода (на людей и технику) во время сверхбыстрых космических путешествий в космосе.

Водород начнет разлагаться на субатомные частицы, которые будут проникать внутрь корабля и подвергать воздействию радиации как экипаж, так и оборудование.

Двигатель Алькубьерре понесет вас, как серфингиста, несущегося на доске по гребню волны Эрик Дэвис, физик-исследователь

На скорости, равной 95% скорости света, воздействие такой радиации будет означать почти мгновенную смерть.

Звездолет нагреется до температур плавления, перед которыми не устоит ни один мыслимый материал, а вода, содержащаяся в организме членов экипажа, немедленно закипит.

"Это все крайне неприятные проблемы", - замечает Эдельстайн с мрачным юмором.

Он и его отец приблизительно подсчитали, что для создания некоей гипотетической системы магнитной защиты, способной оградить корабль и находящихся в нем людей от смертоносного водородного дождя, звездолет может перемещаться со скоростью, не превышающей половины скорости света. Тогда люди на борту имеют шанс выжить.

Марк Миллис, физик, занимающийся проблемами поступательного движения, и бывший руководитель программы НАСА по прорывным разработкам в физике движения, предупреждает, что этот потенциальный предел скорости для полетов в космосе остается пока проблемой отдаленного будущего.

"На основании физических знаний, накопленных к настоящему времени, можно сказать, что развить скорость свыше 10% от скорости света будет крайне трудно, - говорит Миллис. – Опасность нам пока не угрожает. Простая аналогия: зачем переживать, что мы можем утонуть, если мы еще даже не вошли в воду".

Быстрее света?

Если допустить, что мы, так сказать, научились плавать, сможем ли мы тогда освоить скольжение по космическому времени - если развивать дальше эту аналогию - и летать со сверхсветовой скоростью?

Гипотеза о врожденной способности к выживанию в сверхсветовой среде хотя и сомнительна, но не лишена определенных проблесков образованной просвещенности в кромешной тьме.

Один из таких интригующих способов перемещения основан на технологиях, подобных тем, что применяются в "варп-двигателе" или "двигателе искривления" из сериала "Звездный путь".

Принцип действия этой силовой установки, известной еще как "двигатель Алькубьерре"* (названного по фамилии мексиканского физика-теоретика Мигеля Алькубьерре), состоит в том, что он позволяет кораблю сжимать перед собой нормальное пространство-время, описанное Альбертом Эйнштейном, и расширять его позади себя.

Правообладатель иллюстрации NASA Image caption Нынешний рекорд скорости принадлежит трем астронавтам "Аполлона 10" - Тому Стаффорду, Джону Янгу и Юджину Сернану

По существу, корабль перемещается в некоем объеме пространства-времени, своеобразном "пузыре искривления", который движется быстрее скорости света.

Таким образом, корабль остается неподвижным в нормальном пространстве-времени в этом "пузыре", не подвергаясь деформациям и избегая нарушений универсального предела скорости света.

"Вместо того чтобы плыть в толще воды нормального пространства-времени, - говорит Дэвис, - двигатель Алькубьерре понесет вас, как серфингиста, несущегося на доске по гребню волны".

Есть тут и определенный подвох. Для реализации этой затеи необходима экзотическая форма материи, обладающая отрицательной массой, чтобы сжимать и расширять пространство-время.

"Физика не содержит никаких противопоказаний относительно отрицательной массы, - говорит Дэвис, - но никаких ее примеров нет, и мы никогда не встречали ее в природе".

Существует и другой подвох. В опубликованной в 2012 году работе исследователи из Университета Сиднея предположили, что "пузырь искривления" будет накапливать заряженные высокой энергией космические частицы, поскольку неизбежно начнет взаимодействовать с содержимым Вселенной.

Некоторые частицы будут проникать внутрь самого пузыря и накачивать корабль радиацией.

Застрявшие в досветовых скоростях?

Неужели мы так и обречены застрять на этапе досветовых скоростей по причине нашей деликатной биологии?!

Речь ведь не столько о том, чтобы установить новый мировой (галактический?) рекорд скорости для человека, сколько о перспективе превращения человечества в межзвездное общество.

Со скоростью в половину скорости света - а это тот предел, который, согласно данным изысканий Эдельстайна, способен выдержать наш организм - путешествие к ближайшей звезде в оба конца займет более 16 лет.

(Эффекты расширения времени, под воздействием которых для экипажа звездолета в его системе координат пройдет меньше времени, чем для людей, оставшихся на Земле в своей системе координат, не приведут к драматическим последствиям на скорости, составляющей половину скорости света).

Марк Миллис полон надежд. Принимая во внимание, что человечество изобрело противоперегрузочные костюмы и защиту от микрометеоритов, позволяющие людям безопасно путешествовать в великой голубой дали и усеянной звездами черноте космоса, он уверен, что мы сможем найти способы выживания, на какие бы скоростные рубежи не вышли в будущем.

"Те же самые технологии, которые смогут помочь нам достигать невероятных новых скоростей перемещения, - размышляет Миллис, - обеспечат нас новыми, пока неведомыми возможностями для защиты экипажей".

Примечания переводчика:

*Мигель Алькубьерре выдвинул идею своего "пузыря" в 1994 году. А в 1995 году российский физик-теоретик Сергей Красников предложил концепцию устройства для космических путешествий быстрее скорости света. Идея получила название "трубы Красникова".

Это искусственное искривление пространства времени по принципу так называемой кротовой норы. Гипотетически корабль будет двигаться по прямой от Земли к заданной звезде сквозь искривленное пространство-время, проходя через другие измерения.

Согласно теории Красникова, космический путешественник вернется обратно в то же самое время, когда он отправился в путь.

Была запущена в космическое пространство в 1998 году. На текущий момент вот уже почти семь тысяч суток денно и нощно лучшие умы человечества трудятся над решением сложнейших загадок в условиях невесомости.

Космическое пространство

Каждый человек, хотя бы раз увидевший этот уникальный объект, задавался логичным вопросом: какая высота орбиты международной космической станции? Вот только ответить на него односложно нельзя. Высота орбиты международной космической станции МКС зависит от многих факторов. Рассмотрим их подробнее.

Орбита МКС вокруг Земли снижается из-за воздействия разреженной атмосферы. Скорость уменьшается, соответственно, уменьшается и высота. Как снова устремиться вверх? Высота орбиты может меняться при помощи двигателей кораблей, которые пристыковываются к ней.

Различные высоты

За весь срок космической миссии было зарегистрировано несколько основных значений. Еще в феврале 2011 году высота орбиты МКС составляла 353 км. Все расчеты производятся по отношению к уровню моря. Высота орбиты МКС в июне того же года увеличилась до трехсот семидесяти пяти километров. Но и это был далеко не предел. Всего через две недели работники НАСА с удовольствием отвечали журналистам на вопрос «Какая высота орбиты МКС на текущий момент?» - триста восемьдесят пять километров!

И это не предел

Высота орбиты МКС все равно была недостаточна для сопротивления природному трению. Инженеры пошли на ответственный и очень рискованный шаг. Высота орбиты МКС должна была быть повышена до четырехсот километров. Но это событие случилось несколько позже. Проблема состояла в том, что только корабли поднимали МКС. Высота орбиты была ограничена для шаттлов. Лишь со временем ограничение было упразднено для экипажа и МКС. Высота орбиты с 2014 года превышала 400 километров над уровнем моря. Максимальное среднее значение было зафиксировано в июле и составило 417 км. В целом корректировки высоты проводятся постоянно для фиксации самого оптимального маршрута.

История создания

Еще в далеком 1984 г. правительство США вынашивало планы о необходимости запуска в ближайшем космосе масштабного научного проекта. В одиночку осуществить такое грандиозное строительство даже американцам было достаточно затруднительно и к разработке были подключены Канада и Япония.

В 1992 г. в кампанию была включена Россия. В начале девяностых в Москве планировали масштабный проект «Мир-2». Но экономические проблемы не дали осуществиться грандиозным планам. Постепенно количество стран-участников выросло до четырнадцати.

Бюрократические проволочки заняли более трех лет. Лишь в 1995 г. был принят эскиз станции, а еще через год - конфигурация.

Двадцатое ноября 1998 года стало выдающимся днем в истории всемирной космонавтики - первый блок был успешно доставлен на орбиту нашей планеты.

Сборка

МКС гениальна по своей простоте и функциональности. Станция состоит из независимых блоков, которые соединяются между собой как большой конструктор. Невозможно посчитать и точную стоимость объекта. Каждый новый блок изготавливается в отдельной стране и, конечно же, различается по цене. Всего таких частей можно присоединить огромное количество, таким образом, станция может постоянно обновляться.

Срок действия

В связи с тем, что блоки станции и их наполнение могут быть изменены и модернизированы неограниченное количество раз, МКС может долго бороздить просторы околоземной орбиты.

Первый тревожный звоночек прозвенел в 2011 году, когда из-за своей дороговизны была свернута программа «космический челнок».

Но страшного ничего не произошло. Грузы исправно доставлялись в космос другими кораблями. В 2012 к МКС даже успешно пристыковался частный челнок коммерческого назначения. Впоследствии аналогичное событие происходило неоднократно.

Угрозы для станции могут быть лишь политическими. Периодически официальные лица разных стран грозятся прекратить поддержку МКС. Сначала планы поддержния были расписаны до 2015 г., потом до 2020-го. На сегодняшний день ориентировочно существует договоренность поддерживать станцию до 2027 года.

А пока политики спорят между собой, МКС в 2016 году сделала стотысячный виток вокруг планеты, который оригинально назвали «Юбилейный».

Электричество

Сидеть в темноте, конечно, интересно, но иногда надоедает. На МКС каждая минута на вес золота, поэтому инженеры были крепко озадачены необходимостью обеспечения экипажа бесперебойной электрикой.

Было предложено множество различных идей, и в конце концов сошлись на том, что лучше солнечных батарей в космосе ничего быть не может.

При реализации проекта российская и американская сторона пошли разными путями. Так, генерация электроэнергии первой страны производится для системы в 28 вольт. Напряжение в американском блоке - 124 В.

За день МКС делает множество витков вокруг Земли. Один оборот - примерно полтора часа, сорок пять минут из которых проходят в тени. Конечно же, в это время генерация от солнечных панелей невозможна. Станцию питают никель-водородные аккумуляторные батареи. Срок работы такого устройства около семи лет. Последний раз их меняли в далеком 2009-м, так что очень скоро инженерами будет осуществлена долгожданная замена.

Устройство

Как ранее было написано, МКС представляет собой огромный конструктор, части которого легко соединяются между собой.

По состоянию на март 2017 года станция имеет четырнадцать элементов. Россия поставила пять блоков, названных «Заря», «Поиск», «Звезда», «Рассвет» и «Пирс». Американцы своим семи частям дали такие имена: «Юнити», «Дестини», «Транквилити», «Квест», «Леонардо», «Купола» и «Гармония». Страны Европейского Союза и Япония пока имеют в своем активе по одному блоку: «Коламбус» и «Кибо».

Части постоянно меняются в зависимости от поставленных перед экипажем задач. На подходе еще несколько блоков, которые значительно усилят исследовательские возможности членов экипажа. Наиболее интересны, конечно же, лабораторные модули. Часть из них имеют полную герметичность. Таким образом, в них можно исследовать абсолютно все, вплоть до инопланетных живых существ, без риска заражения для экипажа.

Другие блоки предназначены для генерации необходимых сред для нормальной жизнедеятельности человека. Третьи позволяют беспрепятственно выходить в космос и совершать исследования, наблюдения или ремонты.

Часть блоков не несут исследовательской нагрузки и используются в качестве хранилищ.

Проводимые исследования

Многочисленные исследования - собственно то, ради чего в далеких девяностых политики решили отправить в космос конструктор, стоимость которого на сегодняшний день оценивается более чем в двести миллиардов долларов. За эти деньги можно купить десяток стран и получить небольшое море в подарок.

Так вот, МКС имеет такие уникальные возможности, которых нет ни у одной земной лаборатории. Первое - наличие безграничного вакуума. Второе - фактическое отсутствие гравитации. Третье - опаснейшие не испорченные преломлением в земной атмосфере.

Исследователей хлебом не корми, а дай что-то поизучать! Они с радостью выполняют возложенные не них обязанности, даже невзирая на смертельный риск.

Больше всего ученых интересует биология. В эту сферу входит биотехнологии и медицинские исследования.

Другие ученые частенько забывают про сон, исследуя физические силы внеземного пространства. Материалы, квантовая физика - лишь часть исследований. Любимое занятие по откровениям многих - тестировать различные жидкости в условиях невесомости.

Опыты с вакуумом, вообще, могут проводиться вне блоков, прямо в открытом космосе. Земные ученые могут лишь по-хорошему завидовать, наблюдая за экспериментами по видеосвязи.

Любой человек на Земле отдал бы все за один выход в космос. Для работников станции это практически рутинное занятие.

Выводы

Несмотря на недовольные возгласы многих скептиков о бесперспективности проекта, ученые МКС сделали множество интереснейших открытий, которые позволили иначе посмотреть и на космос в целом, и на нашу планету.

Ежедневно эти смелые люди получают огромную дозу радиации, и все ради научных исследований, которые дадут человечеству невиданные ранее возможности. Можно лишь восхищаться их работоспособностью, смелостью и целеустремленностью.

МКС достаточно крупный объект, который можно увидеть и с поверхности Земли. Существует даже целый сайт, на котором можно ввести координаты своего города и система точно подскажет, в какое время можно будет попробовать лицезреть станцию, находясь в шезлонге прямо на своем балконе.

Конечно, у космической станции множество противников, но поклонников гораздо больше. А это значит, что МКС будет уверенно держаться на своей орбите в четыреста километров над уровнем моря и еще не раз покажет заядлым скептикам, как они ошибались в своих прогнозах и предсказаниях.

Корзников приводит расчеты, что при скорости более 0,1 С космический корабль не успеет изменить траекторию полёта и избежать столкновения. Он считает, что при субсветовой скорости космический корабль разрушится до достижения цели. По его мнению межзвёздное путешествие возможно только при существенно меньших скоростях (до 0,01 С). С 1950-60 гг. в США разрабатывался космический корабль с ядерно-импульсным ракетным двигателем для исследования межпланетного пространства «Орион».

Межзвёздный полёт - путешествие между звёздами пилотируемых аппаратов или автоматических станций. По словам директора Исследовательского центра Эймса (НАСА) Симона П. Уордена, проект двигателя для полётов в дальний космос может быть разработан в течение 15-20 лет.

Пусть полёт туда и полёт обратно состоят из трёх фаз: равноускоренного разгона, полёта с постоянной скоростью и равноускоренного торможения. Пусть половину пути космический корабль двигается с единичным ускорением, а вторую половину - с таким же ускорением тормозит (). Затем корабль разворачивается и повторяет этапы разгона и торможения.

Для межзвездного полета пригодны не все типы двигателей. Расчёты показывают, что с помощью космической системы, рассмотренной в данной работе, можно достичь звезды Альфа Центавра… примерно за 10 лет». В качестве одного из вариантов решения проблемы предлагается использование в качестве рабочего вещества ракеты элементарные частицы, движущиеся со световой или околосветовой скоростью.

Какова скорость современных космических кораблей?

Выхлопная скорость частиц от 15 до 35 километров в секунду. Поэтому появились идеи снабжать межзвездные корабли энергией из внешнего источника. На данный момент этот проект неосуществим: двигатель обязан иметь скорость истечения 0.073 с (удельный импульс 2 миллиона секунд), при этом его тяга должна достигать 1570 Н (то-есть 350 фунтов).

Столкновение с межзвёздной пылью будет происходить на околосветовых скоростях и по физическому воздействию напоминать микровзрывы. В научно-фантастических произведениях нередко упоминаются методы межзвёздных перелётов, основанные на перемещении быстрее скорости света в вакууме. Самый большой экипаж состоял из 8 космонавтов (в его составе была 1 женщина), стартовавших 30 октября 1985 г. на корабле многоразового использования «Челленджер».

Расстояние до ближайшей звезды (Проксимы Центавра) составляет около 4,243 световых лет, то есть примерно в 268 тысяч раз больше расстояния от Земли до Солнца. Полёты на звездолётах занимают существенное место в научной фантастике.

В этой ситуации время полёта в земной системе отсчёта составит примерно 12 лет, тогда как по часам на корабле пройдёт 7,3 года. Пригодность различных типов двигателей для межзвёздных полётов в частности была рассмотрена на заседании Британского межпланетного общества в 1973 г. доктором Тони Мартином (Tony Martin).

В ходе работ были предложены проекты большого и малого звездолётов («кораблей поколений»), способных добраться до звезды Альфа Центавра за 1800 и 130 лет соответственно. В 1971 году в докладе Г. Маркса на симпозиуме в Бюракане было предложено использовать для межзвёздных перелётов лазеры рентгеновского диапазона. В 1985 году Р. Форвардом была предложена конструкция межзвёздного зонда, разгоняемого энергией микроволнового излучения.

Космический предел скорости

Основная составляющая массы современных ракет - это масса топлива, требуемого ракете для разгона. Если удастся каким-нибудь образом использовать в качестве рабочего тела и топлива окружающую ракету среду, можно значительно уменьшить массу ракеты и достичь за счёт этого больших скоростей движения.

В 1960-е годы Бюссаром (англ.) была предложена конструкция межзвёздного прямоточного реактивного двигателя (МПРД). Межзвёздная среда состоит в основном из водорода. В 1994 году Джеффри Лэндис (англ.) предложил проект межзвёздного ионного зонда, которых получал-бы энергию от лазерного луча на станции.

Ракетный корабль по проекту «Дедал» оказался таким громадным, что строить его пришлось бы в открытом космосе. Одним из недостатков межзвездных кораблей является необходимость нести с собой энергосистему, что увеличивает массу и соответственно снижает скорость. Так электрический ракетный двигатель имеет характеристическую скорость в размере 100 км/с, что слишком медленно для полета к далеким звездам за приемлемый срок.