Нерешенные проблемы современной науки. Величайшая нерешённая задача современной физики: почему гравитация такая слабая

За последние 200 лет наука смогла ответить на огромное количество вопросов, касающихся природы и законов, которым подчиняется человечество. Сегодня люди исследуют галактики и атомы, создают машины, решающие проблемы, которые человек не может решить своими силами. Однако есть еще довольно много вопросов, на которые ученые пока не могут дать ответов. Эти нерешенные проблемы современной науки заставляют ученых озадаченно чесать головы и прикладывать еще более колоссальные усилия к тому, чтобы как можно скорее найти ответы на волнующие их вопросы.

Всем известно открытие Ньютона о гравитации. После этого открытия мир существенно изменился. Исследования Альберта Эйнштейна, великого ученого-физика , позволили заново и более глубоко взглянуть на это явление. Благодаря теории гравитации Эйнштейна человечеству удалось понять даже явления, связанные с искривлением света. Однако ученым до сих пор не удалось понять работу субатомных частиц, принцип действия которых основан на законах квантовой механики.

Сегодня существует несколько теорий о квантовой гравитации, но до сих пор ни одну из них не удалось доказать экспериментально. Конечно, разгадка этой задачи вряд ли окажет значительное влияние на повседневную жизнь человека, но, возможно, она поможет разгадать тайны, связанные с черными дырами и путешествием во времени.

Расширение Вселенной

Несмотря на то, что в настоящее время ученым уже известно довольно много об общем устройстве Вселенной, существует еще огромное количество вопросов, связанных с её развитием, например, из чего создана Вселенная .

Сравнительно недавно ученые обнаружили, что наша Вселенная постоянно расширяется, причем скорость её расширения возрастает. Это натолкнуло их на мысль, что, возможно, расширение Вселенной будет бесконечным. В связи с этим возникает вопрос: что вызывает расширение Вселенной и почему скорость её расширения увеличивается?

Видео об одной из нерешенных проблем науки - расширении Вселенной

Турбулентность в жидкой среде

Наверное, каждый человек знает, что турбулентность - это внезапная тряска во время полёта. Однако в механике жидкостей это слово имеет совсем другое значение. Возникновение летной турбулентности объясняется встречей двух воздушных тел, которые движутся на различных скоростях. Но физикам пока довольно сложно объяснить явление турбулентности в жидкой среде. Математики также весьма озадачены этой проблемой.

Турбулентность в жидкой среде окружает человека повсюду. В качестве классического примера такой турбулентности можно привести пример вытекающей из крана воды, полностью распадающейся на хаотичные жидкие частицы, которые отличаются от общего потока. В природе турбулентность является очень распространённым явлением, она встречается в разных океанических и геофизических потоках.

Несмотря на огромное количество проведённых экспериментов, в результате которых были получены некоторые эмпирические данные, убедительная теория о том, чем же именно вызывается турбулентность в жидкостях, как она контролируется и каким образом возможно упорядочить этот хаос, пока не создана.

Под процессом старения понимается постепенное нарушение и потеря организмом важных функций, в том числе, и способности к регенерации и размножению. Когда организм стареет, он уже не может так хорошо приспосабливаться к условиям окружающей среды, он значительно хуже противостоит травмам и болезням.

  • Наука, изучающая вопросы, связанные со старением организма, называется геронтологией.
  • Использование термина «старение» возможно при описании процесса разрушения какой-либо неживой системы, к примеру, металла, а также при описании процесса старения человеческого организма. Также учеными до сих пор не найдены ответы на вопросы, почему стареют растения и какие именно факторы инициируют программу старения.

Первая попытка научного объяснения такого процесса как старение была сделана во второй половине 19 века Вейсманом. Он предположил, что старение - это свойство, возникшее в результате эволюции. Вейсман считал, что организмы, которые не стареют, не только не полезны, но и вредны. Их отмирание необходимо для того, чтобы освободить место для молодых.

В настоящее время многими учеными было выдвинуто достаточно много гипотез о том, что же вызывает старение организмов, однако, все теории пока пользуются ограниченным успехом.

Как выживают тихоходки?

Тихоходки представляют собой микроорганизмы, довольно распространённые в природе. Они заселяют все климатические зоны и все континенты, могут жить на любой высоте и в любых условиях. Их чрезвычайные способности к выживанию не дают покоя многим ученым. Любопытно, что этим первым живым организмам удаётся выживать даже в опасном космическом вакууме. Так, несколько тихоходок были взяты на орбиту, где их подвергали воздействию различным видам космической радиации, однако к концу эксперимента практически все они остались невредимыми.

Этим организмам не страшна температура кипения воды, они выживают при температуре, несколько выше абсолютного ноля. Тихоходки нормально чувствуют себя на глубине 11 километров, в Марианской впадине, спокойно перенося её давление.

Тихоходки отличаются невероятными способностями к ангидробиозу, то есть, высушиванию. В этом состоянии наблюдается чрезвычайное замедление их метаболической активности. После высушивания это существо практически останавливает свою метаболическую активность, а после получения доступа к воде происходит восстановление его исходного состояния, и тихоходка продолжает жить, как ни в чем не бывало.

Изучение этого существа обещает получить интересные результаты. В случае воплощения крионики в жизнь, их применения станут невероятными. Так, ученые утверждают, что, разгадав тайну живучести тихоходки, они смогут создать скафандр, в котором можно будет осваивать другие планеты, а хранение лекарств и таблеток станет возможным при комнатной температуре.

Астрономия, физика, биология, геология - это те направления, в которых ведут работу многие ученые. Благодаря их открытиям появляются новые невероятные теории, которые еще несколько десятилетий назад казались фантастикой и, которые, возможно позволят очень скоро разгадать некоторые нерешенные до настоящего времени проблемы науки.

Какие из нерешенных проблем науки интересны Вам больше всего? Расскажите об этом в

Ниже приведён список нерешённых проблем современной физики . Некоторые из этих проблем носят теоретический характер. Это означает, что существующие теории оказываются неспособными объяснить определённые наблюдаемые явления или экспериментальные результаты. Другие проблемы являются экспериментальными, а это означает, что имеются трудности в создании эксперимента по проверке предлагаемой теории или по более подробному исследованию какого-либо явления. Следующие проблемы являются либо фундаментальными теоретическими проблемами, либо теоретическими идеями, для которых отсутствуют экспериментальные данные. Некоторые из этих проблем тесно взаимосвязаны. Например, дополнительные измерения или суперсимметрия могут решить проблему иерархии. Считается, что полная теория квантовой гравитации способна ответить на бомльшую часть из перечисленных вопросов (кроме проблемы острова стабильности).

  • 1. Квантовая гравитация. Можно ли квантовую механику и общую теорию относительности объединить в единую самосогласованную теорию (возможно, это квантовая теория поля)? Является ли пространство-время непрерывным или оно дискретно? Будет ли самосогласованная теория использовать гипотетический гравитон или она будет полностью продуктом дискретной структуры пространства-времени (как в петлевой квантовой гравитации)? Существуют ли отклонения от предсказаний ОТО для очень малых или очень больших масштабов или в других чрезвычайных обстоятельствах, которые вытекают из теории квантовой гравитации?
  • 2. Чёрные дыры, исчезновение информации в чёрной дыре, излучение Хокинга. Производят ли чёрные дыры тепловое излучение, как это предсказывает теория? Содержит ли это излучение информацию об их внутренней структуре, как это предполагает дуальность тяготение-калибровочная инвариантность, или нет, как следует из оригинального расчета Хокинга? Если нет и чёрные дыры могут непрерывно испаряться, то что происходит с информацией, хранящейся в них (квантовая механика не предусматривает уничтожение информации)? Или излучение в какой-то момент остановится, когда от чёрной дыры мало что останется? Есть ли какой-либо другой способ исследования их внутренней структуры, если такая структура вообще существует? Выполняется ли закон сохранения барионного заряда внутри чёрной дыры? Неизвестно доказательство принципа космической цензуры, а также точная формулировка условий, при которых он выполняется. Отсутствует полная и законченная теория магнитосферы черных дыр. Неизвестна точная формула для вычисления числа различных состояний системы, коллапс которой приводит к возникновению черной дыры с заданными массой, моментом количества движения и зарядом. Неизвестно доказательство в общем случае "теоремы об отсутствии волос" у чёрной дыры.
  • 3. Размерность пространства-времени. Существуют ли в природе дополнительные измерения пространства-времени, кроме известных нам четырёх? Если да, то каково их количество? Является ли размерность «3+1» (или более высокая) априорным свойством Вселенной или она является результатом других физических процессов, как предполагает, например, теория причинной динамической триангуляции? Можем ли мы экспериментально «наблюдать» высшие пространственные измерения? Справедлив ли голографический принцип, по которому физика нашего «3+1»-мерного пространства-времени эквивалентна физике на гиперповерхности с размерностью «2+1»?
  • 4. Инфляционная модель Вселенной. Верна ли теория космической инфляции, и если да, то каковы подробные детали этой стадии? Что представляет собой гипотетическое инфлатонное поле, ответственное за рост инфляции? Если инфляция произошла в одной точке, является ли это началом самоподдерживающегося процесса за счёт инфляции квантово-механических колебаний, который будет продолжаться в совершенно другом, удалённом от этой точки месте?
  • 5. Мультивселенная. Существуют ли физические причины существования других вселенных, которые принципиально ненаблюдаемы? Например: существуют ли квантово-механические «альтернативные истории» или «множество миров»? Существуют ли «другие» вселенные с физическими законами, являющимися результатом альтернативных способов нарушения очевидной симметрии физических сил при высоких энергиях, расположенные, возможно, невероятно далеко из-за космической инфляции? Могли ли другие вселенные влиять на нашу, вызвав, например, аномалии в распределении температуры реликтового излучения? Является ли оправданным использование антропного принципа для решения глобальных космологических дилемм?
  • 6. Принцип космической цензуры и гипотеза защиты хронологии. Могут ли сингулярности, не скрывающиеся за горизонтом событий и известные как «голые сингулярности», возникать из реалистичных начальных условий, или же можно доказать какую-то версию «гипотезы космической цензуры» Роджера Пенроуза, в которой предполагается, что это невозможно? В последнее время появились факты в пользу несостоятельности гипотезы космической цензуры, а значит голые сингулярности должны встречаться гораздо чаще, чем только лишь как экстремальные решения уравнений Керра -- Ньюмена, тем не менее неоспоримых доказательств этому представлено ещё не было. Аналогично, будут лизамкнутые времениподобные кривые, которые возникают в некоторых решениях уравнений общей теории относительности (и которые предполагают возможность путешествия во времени в обратном направлении) исключены теорией квантовой гравитации, которая объединяет общую теорию относительности с квантовой механикой, как предполагает «гипотеза защиты хронологии» Стивена Хокинга?
  • 7. Ось времени. Что могут сказать нам о природе времени явления, которые отличаются друг от друга хождением по времени вперёд и назад? Чем время отличается от пространства? Почему нарушения CP-инвариантности наблюдаются только в некоторых слабых взаимодействиях и более нигде? Являются ли нарушения CP-инвариантности следствием второго закона термодинамики или же они являются отдельной осью времени? Есть ли исключения из принципа причинности? Является ли прошлое единственно возможным? Является ли настоящий момент физически отличным от прошлого и будущего или это просто результат особенностей сознания? Как люди научились договариваться о том, что является настоящим моментом? (См. также ниже Энтропия (ось времени)).
  • 8. Локальность. Существуют ли нелокальные явления в квантовой физике? Если существуют, не имеют ли они ограничения в передаче информации, или: может ли энергия и материя также двигаться по нелокальному пути? При каких условиях наблюдаются нелокальные явления? Что влечёт наличие или отсутствие нелокальных явлений для фундаментальной структуры пространства-времени? Как это связано с квантовой сцепленностью? Как это истолковать с позиций правильной интерпретации фундаментальной природы квантовой физики?
  • 9. Будущее Вселенной. Движется ли Вселенная по направлению к Большому замерзанию, Большому разрыву, Большому сжатию или Большому отскоку? Является ли наша Вселенная частью бесконечно повторяющейся циклической модели?
  • 10. Проблема иерархии. Почему гравитация является такой слабой силой? Она становится большой только в планковском масштабе, для частиц с энергией порядка 10 19 ГэВ, что гораздо выше электрослабого масштаба (в физике низких энергий доминирующей является энергия в 100 ГэВ). Почему эти масштабы так сильно отличаются друг от друга? Что мешает величинам электрослабого масштаба, таким как масса бозона Хиггса, получать квантовые поправки на масштабах порядка планковских? Являются ли решением этой проблемы суперсимметрия, дополнительные измерения или просто антропная тонкая настройка?
  • 11. Магнитный монополь. Существовали ли частицы -- носители «магнитного заряда» в какие-либо прошлые эпохи с более высокими энергиями? Если да, то есть ли какие-либо на сегодняшний день? (Поль Дирак показал, что наличие некоторых типов магнитных монополей могло бы объяснить квантование заряда.)
  • 12. Распад протона и Великое объединение. Как можно объединить три различных квантово-механических фундаментальных взаимодействия квантовой теории поля? Почему легчайший барион, являющийся протоном, абсолютно стабилен? Если же протон нестабилен, то каков его период полураспада?
  • 13. Суперсимметрия. Реализована ли суперсимметрия пространства в природе? Если да, то каков механизм нарушения суперсимметрии? Стабилизирует ли суперсимметрия электрослабый масштаб, предотвращая высокие квантовые поправки? Состоит ли тёмная материя из лёгких суперсимметричных частиц?
  • 14. Поколения материи. Существует ли более трёх поколений кварков и лептонов? Связано ли число поколений с размерностью пространства? Почему вообще существуют поколения? Существует ли теория, которая могла бы объяснить наличие массы у некоторых кварков и лептонов в отдельных поколениях на основании первых принципов (теория взаимодействия Юкавы)?
  • 15. Фундаментальная симметрия и нейтрино. Какова природа нейтрино, какова их масса и как они формировали эволюцию Вселенной? Почему сейчас во Вселенной обнаруживается вещества больше, чем антивещества? Какие невидимые силы присутствовали на заре Вселенной, но исчезли из поля зрения в процессе развития Вселенной?
  • 16. Квантовая теория поля. Совместимы ли принципы релятивистской локальной квантовой теории поля с существованием нетривиальной матрицы рассеяния?
  • 17. Безмассовые частицы. Почему безмассовые частицы без спина не существуют в природе?
  • 18. Квантовая хромодинамика. Каковы фазовые состояния сильно взаимодействующей материи и какую роль они играют в космосе? Каково внутреннее устройство нуклонов? Какие свойства сильно взаимодействующей материи предсказывает КХД? Что управляет переходом кварков и глюонов в пи-мезоны и нуклоны? Какова роль глюонов и глюонного взаимодействия в нуклонах и ядрах? Что определяет ключевые особенности КХД и каково их отношение к природе гравитации и пространства-времени?
  • 19. Атомное ядро и ядерная астрофизика. Какова природа ядерных сил, которая связывает протоны и нейтроны в стабильные ядра и редкие изотопы? Какова причина соединения простых частиц в сложные ядра? Какова природа нейтронных звёзд и плотной ядерной материи? Каково происхождение элементов в космосе? Что такое ядерные реакции, которые движут звёзды и приводят к их взрывам?
  • 20. Остров стабильности. Какое самое тяжёлое из стабильных или метастабильных ядер может существовать?
  • 21. Квантовая механика и принцип соответствия (иногда называемый квантовым хаосом). Есть ли предпочтительные интерпретации квантовой механики? Как квантовое описание реальности, которое включает в себя такие элементы, как квантовая суперпозиция состояний и коллапс волновой функции или квантовая декогеренция, приводят к реальности, которую мы видим? Сформулировать то же самое можно с помощью проблемы измерения: что представляет собой «измерение», которое заставляет волновую функцию сваливаться в определённое состояние?
  • 22. Физическая информация. Существуют ли физические феномены, такие как чёрные дыры или коллапс волновой функции, которые безвозвратно уничтожают информацию о своих предшествующих состояниях?
  • 23. Теория всего («Теории Великого объединения»). Существует ли теория, которая объясняет значения всех фундаментальных физических констант? Существует ли теория, которая объясняет, почему калибровочная инвариантность стандартной модели такая, как она есть, почему наблюдаемое пространство-время имеет 3 + 1 измерения, и поэтому законы физики таковы, как они есть? Меняются ли с течением времени «фундаментальные физические константы»? Являются ли какие-нибудь частицы в стандартной модели физики элементарных частиц на самом деле состоящими из других частиц, связанных настолько сильно, что их невозможно наблюдать при современных экспериментальных энергиях? Существуют ли фундаментальные частицы, которые ещё не наблюдались, и если да, то какие они и каковы их свойства? Существуют ли ненаблюдаемые фундаментальные силы, которые предполагает теория, объясняющие другие нерешённые проблемы физики?
  • 24. Калибровочная инвариантность. Существуют ли реально неабелевы калибровочные теории со щелью в спектре масс?
  • 25. CP-симметрия. Почему не сохраняется CP-симметрия? Почему она сохраняется в большинстве наблюдаемых процессов?
  • 26. Физика полупроводников. Квантовая теория полупроводников не может точно вычислить ни одной постоянной полупроводника.
  • 27. Квантовая физика. Неизвестно точное решение уравнения Шредингера для многоэлектронных атомов.
  • 28. При решении задачи о рассеянии двух пучков на одном препятствии сечение рассеяния получается бесконечно большим.
  • 29. Фейнманиум: Что будет происходить с химическим элементом, атомный номер которого окажется выше 137, вследствие чего 1s 1 -электрону придётся двигаться со скоростью, превышающей скорость света (согласно модели атома Бора)? Является ли «Фейнманиум» последним химическим элементом, способным существовать физически? Проблема может проявиться приблизительно на 137 элементе, где расширение дистрибуции заряда ядра достигает финальной точки. Смотрите статью Расширенная периодическая таблица элементов и секцию Relativistic effects.
  • 30. Статистическая физика. Отсутствует систематическая теория необратимых процессов, дающая возможность проводить количественные расчёты для любого заданного физического процесса.
  • 31. Квантовая электродинамика. Существуют ли гравитационные эффекты, вызываемые нулевыми колебаниями электромагнитного поля? Неизвестно, как при вычислениях квантовой электродинамики в области высоких частот одновременно выполнить условия конечности результата, релятивистской инвариантности и суммы всех альтернативных вероятностей, равной единице.
  • 32. Биофизика. Отсутствует количественная теория для кинетики конформационной релаксации белковых макромолекул и их комплексов. Отсутствует законченная теория электронного переноса в биологических структурах.
  • 33. Сверхпроводимость. Невозможно теоретически предсказать, зная структуру и состав вещества, перейдёт ли оно в сверхпроводящее состояние с понижением температуры.

Разве наука и техника не одно и то же? Нет, они различны.

Хотя техника, определяющая современную культуру, развивается благодаря постижению наукой Вселенной, техника и наука руководствуются разными побуждениями. Рассмотрим основные различия между наукой и техникой. Если занятия наукой вызваны желанием человека познать и понять Вселенную, то технические новшества - стремлением людей изменить условия своего существования, чтобы добыть себе пропитание, помочь другим, а нередко и совершить насилие ради личной выгоды.

Люди зачастую одновременно занимаются «чистой» и прикладной наукой, но в науке можно вести фундаментальные исследования без оглядки на конечный результат. Британский премьер - министр Уильям Гладстон заметил как-то Майклу Фарадею по поводу его основополагающих открытий, связавших воедино электричество и магнетизм: «Все это весьма занятно, но каков в этом прок?» Фарадей ответил: «Сэр, я не знаю, но однажды вы от этого выгадаете». Почти половину нынешнего богатства развитым странам принесла связь электричества с магнетизмом.


Прежде чем научные достижения станут достоянием техники, требуется принять во внимание дополнительные соображения: разработка какого устройства возможна, что допустимо построить (вопрос, по сути, относящийся к области этики). Этика же принадлежит к совершенно иной области умственной деятельности человека: гуманитарным наукам. Основное различие между естествознанием и гуманитарными науками состоит в объективности. Естествознание стремится изучать поведение Вселенной по возможности объективно, тогда как перед гуманитарными науками такой цели или требования нет. Перефразируя слова ирландской писательницы XIX века Маргарет Волф Хангерфорд, можно сказать: «Красота [и истина, и справедливость, и благородство, и…] видится всеми по-разному».

Наука далеко не монолитна. Естественные науки заняты изучением как окружающей среды, так и самих людей, поскольку они функционально подобны иным формам жизни. А гуманитарные науки исследуют рациональное (эмоциональное) поведение людей и их установки, которые необходимы им для социального, политического и экономического взаимодействия. На рис. 1. 1 графически представлены эти взаимосвязи.

Как бы ни способствовало такое стройное изложение пониманию существующих связей, действительность всегда оказывается значительно сложнее. Этика помогает определить, что исследовать, какие исследовательские методы, приемы использовать и какие эксперименты недопустимы ввиду таящейся в них угрозы благополучию людей. Политэкономия и политология также играют огромную роль, поскольку наука может изучать лишь то, что культура склонна поощрять как орудия производства, рабочую силу или что - то, политически приемлемое.


Рис. 1.1. Сферы умственной деятельности

Механизм работы науки

Успех науки в изучении Вселенной складывается из наблюдений и выдвижения идей. Такого рода взаимообмен именуют научным методом (рис. 1.2).


Рис. 1.2. Научный метод

В ходе наблюдения то или иное явление воспринимается органами чувств при помощи приборов или без них. Если в естествознании наблюдения ведутся за множеством подобных предметов (например, атомов углерода), то науки о человеке имеют дело с меньшим числом различных субъектов (например, людей, пусть даже однояйцевых близнецов).

После сбора данных наш ум, стремясь их упорядочить, начинает строить образы или объяснения. В этом и заключается работа человеческой мысли. Данный этап именуют этапом выдвижения гипотезы. Построение общей гипотезы на основе полученных наблюдений ведется посредством индуктивного умозаключения, которое содержит обобщение и поэтому считается самым ненадежным видом умозаключения. И как бы ни пытались искусственно строить выводы, в рамках научного метода подобного рода деятельность ограничена, поскольку на последующих этапах гипотеза сталкивается с действительностью.

Зачастую гипотеза целиком или отчасти формулируется на языке, отличающемся от обиходной речи, языке математики. Для приобретения математических навыков требуется приложить большие усилия, иначе несведущим в математике людям при объяснении научных гипотез понадобится перевод математических понятий на повседневный язык. К сожалению, при этом смысл гипотезы может существенно пострадать.

После построения гипотезу можно использовать для предсказания некоторых событий, которые должны произойти, если гипотеза верна. Такое предсказание выводится из гипотезы посредством дедуктивного умозаключения. Например, второй закон Ньютона гласит, что F = mа. Если m равно 3 единицам массы, а а - 5 единицам ускорения, то F должна равняться 15 единицам силы. Выполнение математических расчетов на данном этапе могут взять на себя вычислительные машины, работающие на основе дедуктивного метода.

Следующий этап - проведение опыта, чтобы выяснить, подтверждается ли предсказание, сделанное на предыдущем этапе. Некоторые опыты провести довольно просто, но чаще - крайне затруднительно. Даже изготовив сложное и дорогостоящее научное оборудование для получения весьма ценных данных, нередко бывает нелегко найти деньги, а затем запастись терпением, необходимым для обработки и осмысления огромного массива этих данных. Естествознание обладает преимуществом: здесь можно обособить изучаемый предмет, тогда как наукам о человеке и обществе приходится иметь дело с многочисленными переменными, зависящими от различных взглядов (пристрастий) многих людей.

После завершения опытов их результаты сверяются с предсказанием. Поскольку гипотеза носит общий, а экспериментальные данные - частный характер, то результат, когда опыт согласуется с предсказанием, не доказывает гипотезу, а лишь подтверждает ее. Однако если исход опыта не согласуется с предсказанием, определенная сторона гипотезы оказывается ложной. Эта черта научного метода, именуемая фальсифицируемостью (опровергаемостью), накладывает на гипотезы определенное жесткое требование. Как выразился Альберт Эйнштейн, «никаким количеством экспериментов нельзя доказать теорию; но достаточно одного эксперимента, чтобы ее опровергнуть».

Оказавшуюся ложной гипотезу необходимо каким - то образом пересмотреть, т. е. слегка изменить, основательно переработать или же вовсе отбросить. Крайне трудно бывает решить, какие изменения здесь уместны. Пересмотренным гипотезам предстоит снова проделать тот же путь, и либо они устоят, либо от них откажутся в ходе дальнейших сопоставлений предсказания с опытом.

Другая сторона научного метода, не позволяющая сбиться с пути, - воспроизведение. Любой наблюдатель с соответствующей выучкой и подобающим оснащением должен суметь повторить опыты или предсказания и получить сравнимые результаты. Иначе говоря, науке свойственны постоянные перепроверки. Например, коллектив ученых из Национальной лаборатории им. Лоуренса Калифорнийского университета в Беркли пытался получить новый химический элемент, обстреливая свинцовую мишень мощным лучом ионов криптона и затем изучая полученные вещества. В 1999 году ученые объявили о синтезе элемента с порядковым номером 118.

Синтез нового элемента - это всегда важное событие. В данном случае его синтез мог подтвердить бытовавшие представления о стабильности тяжелых элементов. Однако ученые других лабораторий Общества по изучению тяжелых ионов (Дармштадт, Германия), Большого государственного ускорителя тяжелых ионов Кайенского университета (Франция) и Лаборатория атомной физики Физико - химического института Рикэн (Япония) - не смогли повторить синтез элемента 118. Расширенный коллектив лаборатории в Беркли повторил опыт, но ему также не удалось воспроизвести полученные ранее результаты. В Беркли перепроверили исходные экспериментальные данные посредством программы с видоизмененным кодом и не сумели подтвердить наличия элемента 118. Пришлось отзывать свою заявку. Данный случай свидетельствует, что научный поиск бесконечен.

Порой наряду с опытами перепроверяются и гипотезы. В феврале 2001 года Брукхэйвенская национальная лаборатория в Нью-Йорке сообщила об опыте, в котором магнитный момент мюона (подобно электрону отрицательно заряженной частицы, но значительно более тяжелой) слегка превышает величину, предопределенную стандартной моделью физики элементарных частиц (подробнее об этой модели см. гл. 2). А поскольку предположения стандартной модели о многих иных свойствах частиц очень хорошо согласовывались с опытными данными, такое расхождение по поводу величины магнитного момента мюона разрушало основу стандартной модели.

Предсказание магнитного момента у мюона стало следствием сложных и долгих расчетов, независимо проведенных учеными в Японии и Нью-Йорке в 1995 году. В ноябре 2001 года эти расчеты повторили французские физики, которые обнаружили ошибочный отрицательный знак у одного из членов уравнения и разместили свои результаты в Интернете. В итоге Брукхэйвенская группа перепроверила собственные вычисления, признала ошибку и опубликовала исправленные результаты. В итоге удалось сократить расхождение между предсказанием и опытными данными. Стандартной модели вновь предстоит выдержать испытания, которые ей готовит непрекращающийся научный поиск.

Научный метод в действии

Рассмотрим шаг за шагом классический пример работы научного метода.

Наблюдение

Наблюдение. Дж. Дж. Томсон, руководитель Кавендишской лаборатории (1884–1919) в Англии, изучал поведение светового луча в электронно-лучевой трубке (прообразе современной приемной телевизионной ЭЛТ). Поскольку луч: 1) отклонялся в сторону положительно заряженных электрических пластин и 2) при ударе о них вызывал вспышки света, выходило, что он состоял из отрицательно заряженных частиц - электронов, как назвал их ирландский физик XIX века Джордж Фицджеральд в своих замечаниях по поводу опыта Томсона. (Название электрон в качестве единицы электрического заряда предложил другой ирландский физик, Джордж Стони.)

Гипотеза

Гипотеза. Поскольку атомы не обладают зарядом (нейтральны), а Томсон открыл внутри них отрицательно заряженные частицы, он заключил, что атом должен иметь и положительный заряд. В 1903 году Томсон создал теорию, согласно которой положительный заряд «размазан» по всему атому, а отрицательно заряженные электроны в виде вкраплений находятся посреди положительно заряженного вещества. Такая картина напоминала традиционное британское блюдо, поэтому получила название «томсоновская модель атома в виде пудинга с изюмом».

Предсказание

Предсказание. Эрнст Резерфорд был специалистом по положительно заряженным частицам, именуемым α-частицами. В начале XX века он предсказал, что обстрел этими частицами атомов, состоящих из редкого и «размазанного» положительного заряда, согласно томсоновской модели «пудинга с изюмом» будет напоминать броски бильярдными шарами в туман. Большая часть шаров пройдет напрямую, и лишь их толика отклонится на крайне малую величину.

Опыт

Опыт. В 1909 году Ганс Гейгер и Эрнест Марсден стали обстреливать α-частицами тонкую золотую фольгу. Результаты оказались совершенно отличными от ожидаемых. Некоторые α-частицы отклонялись на большие величины, а отдельные даже отскакивали обратно. Резерфорд заметил, что это «столь же неправдоподобно, как если бы вы выстрелили пятнадцатифунтовым снарядом в папиросную бумагу, а снаряд отскочил бы обратно и убил вас самих».

Повтор

Повтор. На смену томсоновской модели атома пришла резерфордовская модель по образцу Солнечной системы, где положительный заряд был сосредоточен в сравнительно крошечном ядре посредине атома, а электроны (подобно планетам) обращались по круговым орбитам вокруг ядра (подобного Солнцу). В XX веке, после очередных предсказаний и опытов резерфордовскую модель атома в виде Солнечной системы сменили иные модели. Когда опытные данные не согласовывались с предсказаниями существовавшей гипотезы, приходилось пересматривать гипотезу.

Так толкование открытых Исааком Ньютоном законов механики и классических гипотез Джеймса Клерка Максвелла о природе электричества и магнетизма привело к заманчивому предположению об абсолютном характере пространства и времени. Теория относительности Эйнштейна заменила эти удобные абсолютные величины противоречащими интуиции и философски неблагонадежными относительными величинами. Основная причина, вынудившая признать существование относительности, заключалась в соответствии предсказаний данной теории опытным данным.

Несмотря на распространенность того или иного представления, известность сторонников какой-либо теории, непривлекательность новой теории, политические взгляды авторов идей или трудность их понимания, незыблемым остается одно: верховенство данных опыта.

Сложности

Представленный здесь научный метод - рациональная реконструкция функционирования науки в действительности. Подобная идеализация, естественно, отличается от происходящего на самом деле, например, при большом числе участников, когда этапы разделяются длительными промежутками времени. И все же у нас есть возможность многое увидеть.

Здесь необходимо учитывать ряд сложностей. Прежде всего, наука выдвигает несколько философских предположений, с которыми не согласны некоторые философы. Наука допускает существование объективной реальности, не зависящей от наблюдателя. Иначе без такой объективности одни и те же наблюдения и опыты, повторенные в различных лабораториях, могли бы разниться, и тогда исследователям невозможно было бы прийти к согласию. Далее, наука полагает, что Вселенной управляют некие незыблемые законы, и человек в состоянии постичь эти законы. Если управляющие Вселенной законы лишены определенности или мы не в состоянии постичь их, все усилия науки по выдвижению любых гипотез окажутся тщетными. Но поскольку наше понимание этих законов, похоже, углубляется, а основанные на них предсказания находят подтверждения в опытах, такие предположения выглядят вполне разумными.

Научные гипотезы строятся в связи с событиями, происходящими на протяжении длительного промежутка времени, в том числе с минувшими, которые нельзя проверить опытом. Обычно такую трудность обходят, выдвигая перекрестные гипотезы из различных отраслей знаний в поисках взаимного согласия. Например, оцениваемый в более чем 4 млрд. лет возраст Земли подтверждается астрономическими вычислениями содержания гелия в недрах Солнца, геологическими измерениями тектоники плит и биологическими наблюдениями за ростом коралловых отложений.

При объяснении определенного события - особенно при отсутствии опытных данных для некоторых явлений (например, о далеком прошлом, у которого не было летописцев, или о недоступных уголках Вселенной) - может выдвигаться сразу несколько гипотез. Щекотливое положение, когда много гипотез невозможно экспериментально подтвердить, разрешается на основе принципа научной бережливости [лат. principium parsimoniae], именуемого бритвой Оккама.


Английский философ Уильям из Оккама [местечка в английском графстве Сэррей] (1285–1349) был францисканским монахом и часто в своих философских сочинениях пользовался средневековым правилом: «Сущностей не следует умножать без необходимости». Военные дали этому правилу более простое и непосредственное выражение - KISS: Keep It Simple, Stupid («He усложняй, болван»), или Keep It Short and Sweet («Будь краток и мил»). В любом случае оно служит руководством при отсутствии опытных данных. Если есть несколько гипотез и невозможно провести опыты, которые бы позволили выбрать между ними, останавливаются на самой простой.

Опыт доказывает правильность такого подхода. Например, в 1971 году космический зонд Uhur по измерению рентгеновского излучения неожиданно выявил мощный поток рентгеновских лучей со стороны созвездия Лебедя, обозначенный Лебедь X -1. Видимого источника этого излучения, которое исходило как бы из пустоты близ звезды-сверхгиганта HDE 226868, удаленной от Земли на 8 тыс. световых лет, не наблюдалось. (Разъяснение обозначения HDE см.: Список идей, 14. Составление звездных каталогов.) Согласно одной гипотезе, всему виной был невидимый спутник звезды HDE 226868. Этот призрак притягивал массу, которую исторгала из себя HDE 226868. При втягивании этого вещества невидимым спутником его температура повышалась до такой степени, что спутник начинал излучать радиоволны. Другая гипотеза требовала по меньшей мере двух невидимых тел, взаимодействующих с HDE 226868, - невидимую из-за своей блеклости обычную звезду и вращающуюся нейтронную звезду (ядро звезды, которая после завершения отпущенного ей срока сжимается в состоящий из нейтронов шар), именуемую пульсаром. Эти три тела, расположенные определенным образом, и могли быть источниками наблюдавшегося радиоизлучения.

Удаленность Лебедя X -1 не позволяет проводить непосредственную проверку, тем более что само это излучение происходило 8 тыс. лет назад. Тогда какая же из соперничающих гипотез справедлива? Согласно экспериментальным данным - обе. Но, пользуясь бритвой Оккама, мы видим, что лучше всего здесь подходит более простое объяснение, ограничивающееся одним небесным телом. Таким образом, Лебедь X-1 стал первым зарегистрированным примером невидимого спутника, известного как черная дыра. Впоследствии при схожих обстоятельствах удалось обнаружить более 30 таких объектов.

Принцип «Бритва Оккама» вступает в действие лишь при отсутствии опытного подтверждения. Его задача - помочь выбрать простейшую гипотезу, согласующуюся с наблюдениями. Однако она не может исключить прочие гипотезы, подтверждаемые даже более сложными данными. Ведь она не способна заменить получаемое в опыте подтверждение. Естественно, бритва Оккама уступает обстоятельным опытным данным, но порой это единственное, что у нас есть.

Нерешенные проблемы

Теперь, уяснив, как наука вписывается в умственную деятельность человека и как она функционирует, можно видеть, что ее открытость позволяет различными путями идти к более полному постижению Вселенной. Возникают новые явления, по поводу которых гипотезы хранят молчание, и, чтобы нарушить его, выдвигаются новые гипотезы, полные свежих идей. На их основе уточняются предсказания. Создается новое экспериментальное оборудование. Вся эта деятельность приводит к появлению гипотез, более точно отражающих поведение Вселенной. И все это ради одной цели - понять Вселенную во всем ее многообразии.

Научные гипотезы можно рассматривать как ответы на вопросы об устройстве Вселенной. Наша же задача состоит в исследовании пяти крупнейших проблем, не решенных до настоящего времени. Под словом «крупнейшие» подразумеваются проблемы, имеющие далеко идущие последствия, самые важные для нашего дальнейшего понимания, или обладающие наиболее весомым прикладным значением. Мы ограничимся одной крупнейшей нерешенной проблемой, взятой из кажсдой пяти отраслей естествознания, и попытаемся описать, каким образом можно ускорить их решение. Конечно, науки о человеке и обществе, гуманитарные и прикладные, имеют свои нерешенные проблемы (например, природа сознания), но данный вопрос выходит за рамки этой книги.

Вот отобранные нами в каждой из пяти отраслей естествознания крупнейшие нерешенные проблемы и то, чем мы руководствовались в своем выборе.

Физика. Связанные с движением свойства массы тела (скорость, ускорение и момент наряду с кинетической и потенциальной энергией) нам хорошо известны. А природа самой массы, присущей многим, но не всем элементарным частицам Вселенной, нам не понятна. Крупнейшая нерешенная задача физики такова: почему одни частицы обладают массой [покоя], а другие - нет?

Химия. Изучение химических реакций живых и неживых тел ведется широко и весьма успешно. Крупнейшая нерешенная задача химии такова: какого рода химические реакции подтолкнули атомы к образованию первых живых существ?

Биология. Недавно удалось получить геном, или молекулярный чертеж, многих живых организмов. Геномы несут информацию об общих белках, или протеоме, живых организмов. Крупнейшая нерешенная задача биологии такова: каково строение и предназначение протеома?

Геология. Модель тектоники плит удовлетворительно описывает последствия взаимодействия верхних оболочек Земли. Но атмосферные явления, особенно тип погоды, похоже, не поддаются попыткам создать модели, ведущие к получению надежных прогнозов. Крупнейшая нерешенная задача геологии такова: возможен ли точный долговременный прогноз погоды?

Астрономия. Хотя многие стороны общего устройства Вселенной хорошо известны, в ее развитии еще много неясного. Недавнее открытие, что скорость расширения Вселенной возрастает, приводит к мысли, что она будет расширяться бесконечно. Крупнейшая нерешенная задача астрономии такова: почему Вселенная расширяется со все большей скоростью?

Многие иные занимательные вопросы, связанные с этими задачами, будут возникать попутно, и некоторые из них сами могут в будущем стать крупнейшими. Об этом идет речь в заключительном разделе книги: «Список идей».

Уильям Гарвей, английский врач XVII века, определивший природу кровообращения, сказал: «Все, что мы знаем, бесконечно мало по сравнению с тем, что нам пока неведомо» [ «Анатомическое исследование о движении сердца и крови у животных», 1628]. И это верно, поскольку вопросы множатся быстрее, чем на них успевают ответить. По мере расширения освещаемого наукой пространства увеличивается и обступающий его мрак.

Примечания:

Старейшая национальная лаборатория им. Лоуренса в Беркли, основанная изобретателем циклотрона Эрнстом Орландо Лоуренсом в 1931 году. Находится в ведении Министерства энергетики США

Оккама бритва - принцип, согласно которому всему следует искать наиболее простое истолкование; чаще всего этот принцип формулируется так: «Без необходимости не следует утверждать многое» (pluralitas non est ponenda sine necessitate) или: «То, что можно объяснить посредством меньшего, не следует выражать посредством большего» (frustra fit per plura quod potest fieri per pauciora). Обычно приводимая историками формулировка «Сущностей не следует умножать без необходимости» (entia non sunt multiplicandasine necessitate) - в сочинениях Оккама не встречается (это слова Дюрана из Сен-Пурсена, ок. 1270–1334 - французского богослова и доминиканского монаха; очень схожее выражение впервые встречается у французского монаха-францисканца Одо Риго, ок. 1205–1275).

Ниже мы приведем список нерешенных проблем современной физики.

Некоторые из этих проблем носят теоретический характер. Это означает, что существующие теории оказываются неспособными объяснить определённые наблюдаемые явления или экспериментальные результаты.

Другие проблемы являются экспериментальными, а это означает, что имеются трудности в создании эксперимента по проверке предлагаемой теории или по более подробному исследованию какого-либо явления.

Некоторые из этих проблем тесно взаимосвязаны. Например, дополнительные измерения или суперсимметрия могут решить проблему иерархии. Считается, что полная теория квантовой гравитации способна ответить на бо́льшую часть из перечисленных вопросов.

Каким будет конец Вселенной?

Разгадка во многом зависит от тёмной энергии, которая остаётся неизвестным членом уравнения.

Тёмная энергия ответственна за ускоряющееся расширение Вселенной, но ее происхождение - тайна, покрытая мраком. Если тёмная энергия постоянна в течение долгого времени, нас, вероятно, ждёт «большое замораживание»: Вселенная продолжит расширяться всё быстрее, и в конечном счёте галактики настолько удалятся друг от друга, что нынешняя пустота космоса покажется детской забавой.

Если тёмная энергия возрастает, расширение станет настолько быстрым, что увеличится пространство не только между галактиками, но и между звёздами, то есть сами галактики будут разорваны; этот вариант называется «большим разрывом».

Ещё один сценарий состоит в том, что тёмная энергия уменьшится и уже не сможет противодействовать силе тяжести, что заставит Вселенную свернуться («большое сжатие»).

Ну а суть в том, что, как бы ни разворачивались события, мы обречены. До этого ещё, впрочем, миллиарды или даже триллионы лет - достаточно, чтобы разобраться в том, как же всё-таки погибнет Вселенная.

Квантовая гравитация

Несмотря на активные исследования, теория квантовой гравитации пока не построена. Основная трудность в её построении заключается в том, что две физические теории, которые она пытается связать воедино, - квантовая механика и общая теория относительности (ОТО) - опираются на разные наборы принципов.

Так, квантовая механика формулируется как теория, описывающая временну́ю эволюцию физических систем (например атомов или элементарных частиц) на фоне внешнего пространства-времени .

В ОТО внешнего пространства-времени нет - оно само является динамической переменной теории, зависящей от характеристик находящихся в нём классических систем.

При переходе к квантовой гравитации, как минимум, нужно заменить системы на квантовые (то есть произвести квантование). Возникающая связь требует какого-то квантования геометрии самого пространства-времени, причём физический смысл такого квантования абсолютно неясен и сколь-либо успешная непротиворечивая попытка его проведения отсутствует.

Даже попытка провести квантование линеаризованной классической теории гравитации (ОТО) наталкивается на многочисленные технические трудности - квантовая гравитация оказывается неперенормируемой теорией вследствие того, что гравитационная постоянная является размерной величиной.

Ситуация усугубляется тем, что прямые эксперименты в области квантовой гравитации, из-за слабости самих гравитационных взаимодействий, недоступны современным технологиям. В связи с этим в поиске правильной формулировки квантовой гравитации приходится пока опираться только на теоретические выкладки.

Бозон Хиггса не имеет абсолютно никакого смысла. Почему же он существует?

Бозон Хиггса объясняет, как все остальные частицы приобретают массу, но в то же время поднимает множество новых вопросов. Например, почему бозон Хиггса взаимодействует со всеми частицами по-разному? Так, t-кварк взаимодействует с ним сильнее, чем электрон, из-за чего масса первого намного выше, чем у второго.

Кроме того, бозон Хиггса - первая элементарная частица с нулевым спином.

«Перед нами совершенно новая область физики элементарных частиц, - говорит учёный Ричард Руис  - Мы понятия не имеем, какова её природа».

Излучение Хокинга

Производят ли чёрные дыры тепловое излучение, как это предсказывает теория? Содержит ли это излучение информацию об их внутренней структуре или нет, как следует из оригинального расчета Хокинга?

Почему случилось так, что Вселенная состоит из материи, а не антиматерии?

Антиматерия - та же материя: она обладает точно такими же свойствами, как вещество, из которого состоят планеты, звёзды, галактики.

Отличие только одно - заряд. Согласно современным представлениям, в новорождённой Вселенной того и другого было поровну. Вскоре после Большого взрыва материя и антиматерия аннигилировали (прореагировали с взаимным уничтожением и возникновением других частиц друг друга).

Спрашивается, как так вышло, что некоторое количество материи всё-таки осталось? Почему именно материя добилась успеха, а антивещество проиграло «перетягивание каната»?

Чтобы объяснить это неравенство, учёные усердно ищут примеры нарушения CP-инвариантности, то есть процессов, при которых частицы предпочитают распадаться с образованием материи, но не антиматерии.

«Прежде всего хотелось бы понять, различаются ли нейтринные осцилляции (превращение нейтрино в антинейтрино) между нейтрино и антинейтрино, - говорит поделившаяся вопросом Алисия Мэрино из Колорадского университета. - Ничего подобного до сих пор не наблюдалось, но мы надеемся на следующее поколение экспериментов».

Теория всего

Существует ли теория, которая объясняет значения всех фундаментальных физических констант? Существует ли теория, которая объясняет, почему законы физики таковы, как они есть?

Для обозначения теории, которая бы объединила все четыре фундаментальные взаимодействия в природе.

В течение двадцатого века было предложено множество «теорий всего», но ни одна из них не смогла пройти экспериментальную проверку, или существуют значительные затруднения в организации экспериментальной проверки для некоторых из кандидатов.

Бонус: Шаровая молния

Какова природа этого явления? Является ли шаровая молния самостоятельным объектом или подпитывается энергией извне? Все ли шаровые молнии имеют одну и ту же природу или существуют разные их типы?

Шаровая молния - светящийся плавающий в воздухе огненный шар, уникально редкое природное явление.

Единой физической теории возникновения и протекания этого явления к настоящему времени не представлено, также существуют научные теории, которые сводят феномен к галлюцинациям.

Существуют около 400 теорий, объясняющих явление, но ни одна из них не получила абсолютного признания в академической среде. В лабораторных условиях похожие, но кратковременные явления удалось получить несколькими разными способами, так что вопрос о природе шаровой молнии остаётся открытым. По состоянию на конец XX века не было создано ни одного опытного стенда, на котором это природное явление искусственно воспроизводилось бы в соответствии с описаниями очевидцев шаровой молнии.

Широко распространено мнение, что шаровая молния - явление электрического происхождения, естественной природы, то есть представляет собой особого вида молнию, существующую продолжительное время и имеющую форму шара, способного перемещаться по непредсказуемой, иногда удивительной для очевидцев траектории.

Традиционно достоверность многих свидетельств очевидцев шаровой молнии остаётся под сомнением, в том числе:

  • сам факт наблюдения хоть какого-то явления;
  • факт наблюдения именно шаровой молнии, а не какого-то другого явления;
  • отдельные подробности явления, приводимые в свидетельстве очевидца.

Сомнения в достоверности многих свидетельств осложняют изучение явления, а также создают почву для появления разных спекулятивно-сенсационных материалов, якобы связанных с этим явлением.

По материалам: несколько десятков статей из

10 нерешённых проблем современной физики
Ниже мы приведем список нерешенных проблем современной физики.

Некоторые из этих проблем носят теоретический характер. Это означает, что существующие теории оказываются неспособными объяснить определённые наблюдаемые явления или экспериментальные результаты.

Другие проблемы являются экспериментальными, а это означает, что имеются трудности в создании эксперимента по проверке предлагаемой теории или по более подробному исследованию какого-либо явления.

Некоторые из этих проблем тесно взаимосвязаны. Например, дополнительные измерения или суперсимметрия могут решить проблему иерархии. Считается, что полная теорияквантовой гравитации способна ответить на бо́льшую часть из перечисленных вопросов.

Каким будет конец Вселенной?

Разгадка во многом зависит от тёмной энергии, которая остаётся неизвестным членом уравнения.

Тёмная энергия ответственна за ускоряющееся расширение Вселенной, но ее происхождение — тайна, покрытая мраком. Если тёмная энергия постоянна в течение долгого времени, нас, вероятно, ждёт «большое замораживание»: Вселенная продолжит расширяться всё быстрее, и в конечном счёте галактики настолько удалятся друг от друга, что нынешняя пустота космоса покажется детской забавой.


Если тёмная энергия возрастает, расширение станет настолько быстрым, что увеличится пространство не только между галактиками, но и между звёздами, то есть сами галактики будут разорваны; этот вариант называется «большим разрывом».

Ещё один сценарий состоит в том, что тёмная энергия уменьшится и уже не сможет противодействовать силе тяжести, что заставит Вселенную свернуться («большое сжатие»).

Ну а суть в том, что, как бы ни разворачивались события, мы обречены. До этого ещё, впрочем, миллиарды или даже триллионы лет — достаточно, чтобы разобраться в том, как же всё-таки погибнет Вселенная.

Квантовая гравитация

Несмотря на активные исследования, теория квантовой гравитации пока не построена. Основная трудность в её построении заключается в том, что две физические теории, которые она пытается связать воедино, — квантовая механика и общая теория относительности (ОТО) — опираются на разные наборы принципов.

Так, квантовая механика формулируется как теория, описывающая временну́ю эволюцию физических систем (например атомов или элементарных частиц) на фоне внешнегопространства-времени .

В ОТО внешнего пространства-времени нет — оно само является динамической переменной теории, зависящей от характеристик находящихся в нём классических систем.

При переходе к квантовой гравитации, как минимум, нужно заменить системы на квантовые (то есть произвести квантование). Возникающая связь требует какого-то квантования геометрии самого пространства-времени, причём физический смысл такого квантования абсолютно неясен и сколь-либо успешная непротиворечивая попытка его проведения отсутствует.

Даже попытка провести квантование линеаризованной классической теории гравитации (ОТО) наталкивается на многочисленные технические трудности — квантовая гравитация оказывается неперенормируемой теорией вследствие того, что гравитационная постоянная является размерной величиной.

Ситуация усугубляется тем, что прямые эксперименты в области квантовой гравитации, из-за слабости самих гравитационных взаимодействий, недоступны современным технологиям. В связи с этим в поиске правильной формулировки квантовой гравитации приходится пока опираться только на теоретические выкладки.

Бозон Хиггса не имеет абсолютно никакого смысла. Почему же он существует?

Бозон Хиггса объясняет, как все остальные частицы приобретают массу, но в то же время поднимает множество новых вопросов. Например, почему бозон Хиггса взаимодействует со всеми частицами по-разному? Так, t-кварк взаимодействует с ним сильнее, чем электрон, из-за чего масса первого намного выше, чем у второго.

Кроме того, бозон Хиггса — первая элементарная частица с нулевым спином.

«Перед нами совершенно новая область физики элементарных частиц, — говорит учёный Ричард Руис  — Мы понятия не имеем, какова её природа».

Излучение Хокинга

Производят ли чёрные дыры тепловое излучение, как это предсказывает теория? Содержит ли это излучение информацию об их внутренней структуре или нет, как следует из оригинального расчета Хокинга?


Почему случилось так, что Вселенная состоит из материи, а не антиматерии?

Антиматерия — та же материя: она обладает точно такими же свойствами, как вещество, из которого состоят планеты, звёзды, галактики.

Отличие только одно — заряд. Согласно современным представлениям, в новорождённой Вселенной того и другого было поровну. Вскоре после Большого взрыва материя и антиматерия аннигилировали (прореагировали с взаимным уничтожением и возникновением других частиц друг друга).

Спрашивается, как так вышло, что некоторое количество материи всё-таки осталось? Почему именно материя добилась успеха, а антивещество проиграло «перетягивание каната»?

Чтобы объяснить это неравенство, учёные усердно ищут примеры нарушения CP-инвариантности, то есть процессов, при которых частицы предпочитают распадаться с образованием материи, но не антиматерии.

«Прежде всего хотелось бы понять, различаются ли нейтринные осцилляции (превращение нейтрино в антинейтрино) между нейтрино и антинейтрино, — говорит поделившаяся вопросом Алисия Мэрино из Колорадского университета. — Ничего подобного до сих пор не наблюдалось, но мы надеемся на следующее поколение экспериментов».

Теория всего

Существует ли теория, которая объясняет значения всех фундаментальных физических констант? Существует ли теория, которая объясняет, почему законы физики таковы, как они есть?


Теория всего— гипотетическая объединённая физико-математическая теория, описывающая все известные фундаментальные взаимодействия.

Первоначально данный термин использовался в ироническом ключе для обозначения разнообразных обобщённых теорий. Со временем термин закрепился в популяризацияхквантовой физики для обозначения теории, которая бы объединила все четыре фундаментальные взаимодействия в природе.

В течение двадцатого века было предложено множество «теорий всего», но ни одна из них не смогла пройти экспериментальную проверку, или существуют значительные затруднения в организации экспериментальной проверки для некоторых из кандидатов.

Бонус: Шаровая молния

Какова природа этого явления? Является ли шаровая молния самостоятельным объектом или подпитывается энергией извне? Все ли шаровые молнии имеют одну и ту же природу или существуют разные их типы?


Шаровая молния — светящийся плавающий в воздухе огненный шар, уникально редкое природное явление.

Единой физической теории возникновения и протекания этого явления к настоящему времени не представлено, также существуют научные теории, которые сводят феномен к галлюцинациям.

Существуют около 400 теорий, объясняющих явление, но ни одна из них не получила абсолютного признания в академической среде. В лабораторных условиях похожие, но кратковременные явления удалось получить несколькими разными способами, так что вопрос о природе шаровой молнии остаётся открытым. По состоянию на конец XX века не было создано ни одного опытного стенда, на котором это природное явление искусственно воспроизводилось бы в соответствии с описаниями очевидцев шаровой молнии.

Широко распространено мнение, что шаровая молния — явление электрического происхождения, естественной природы, то есть представляет собой особого вида молнию, существующую продолжительное время и имеющую форму шара, способного перемещаться по непредсказуемой, иногда удивительной для очевидцев траектории.

Традиционно достоверность многих свидетельств очевидцев шаровой молнии остаётся под сомнением, в том числе:

  • сам факт наблюдения хоть какого-то явления;
  • факт наблюдения именно шаровой молнии, а не какого-то другого явления;
  • отдельные подробности явления, приводимые в свидетельстве очевидца.

Сомнения в достоверности многих свидетельств осложняют изучение явления, а также создают почву для появления разных спекулятивно-сенсационных материалов, якобы связанных с этим явлением.

По материалам: несколько десятков статей из