Оценка запылённости воздуха учебного заведения и его территории. Пыль в воздухе

Уважаемые читатели, в этой статье мы поговорим о том, как определяется категория помещения с пылью.

Несмотря на то, что математический аппарат СП 12.13130.2009, который предназначен для определения категории пожарной опасности помещения с пылью, достаточно прост, определение ряда параметров вызывает определенные трудности.

Давайте рассмотрим все по порядку. Для начала следует отметить, что помещения с пылью могут относиться к категории Б по взрывопожарной или к по взрывопожарной опасности.

Прежде чем переходить к расчету на принадлежность помещения к одной из категорий В по пожарной опасности, необходимо расчетным путем обосновать, относится ли помещение, где возможно образование аэровзвеси, к категории Б по взрывопожарной опасности.

Основные расчетные формулы содержатся в разделе А.3 Приложения А СП 12.13130.2009.

В соответствии с формулой А.17 свода правил расчетную массу пыли, взвешенной в помещении в результате аварийной ситуации, следует брать минимальной из двух величин:

— суммы масс взвихрившейся пыли и пыли, вышедшей из аппаратов в результате аварии;

— массы пыли, содержащейся в пылевоздушном облаке, способной при появлении источника зажигания сгореть.

Здесь следует отметить, что не вся пыль способна гореть, т.е. коэффициент участия горючей пыли во взрыве, ≤0,5, что подтверждается формулой А.16 свода правил.

Коэффициент участия взвешенной пыли в горении зависит от фракционного состава пыли, а именно параметром, который называется критический размер частиц.

Для большинства органических пылей (древесная пыль, пластмассы, мука и др.) значение критического размера составляет порядка 200-250 мкм.

Пыль, состоящая из частиц более крупного размера, в горении участвовать не будет, за исключением случаев, когда она сжигается в специальных очагах (топках). Когда определяется категория помещения с пылью, как правило имеем дело либо с полностью мелкодисперсной пылью, размер частиц которой менее критического (например, сахарная пудра), либо с пылью, в состав которой входят частицы различного размера, как больше так и меньше критического. К такой пыли относится древесная пыль, зерновая пыль и др.

Фракционный состав пыли определяется экспериментально путем просеивания через системы специальных сит, которые носят название «фракционатор». В такие данные найти вряд ли возможно, хотя для ряда промышленных пылей (порошков) данные о фракционном составе можно запросить у производителя.

При отсутствии данных принимается, что все частицы пыли имеют размер менее критического, т.е. способны распространять горение. Масса пыли, которая способна выйти из аппарата в результате аварийной ситуации, определяется особенностями технологического процесса.

Масса взвихрившейся пыли – та часть отложившейся пыли, которая может перейти во взвешенное состояние в результате аварийной ситуации.

При отсутствии экспериментальных данных принимается, что 90% массы отложившейся (накопленной) пыли способно перейти в аэровзвесь. Пыль, которая выделяется в небольших количествах в производственном помещении в нормальном режиме работы, оседает на ограждающих конструкциях (стены, пол, потолок), на поверхности оборудования (корпуса технологических аппаратов, транспортные линии и др.), на полу под оборудованием.

На проектируемом производстве определяется периодичность пылеуборок: текущих и генеральных. По СП 12 принимается, что вся пыль, которая оседает на труднодоступных для уборки местах, накапливается там в период между генеральными пылеуборками. Пыль, которая оседает на доступных для уборки местах, накапливается там в период между текущими пылеуборками. Оценка доли пыли, оседающей на той или иной поверхности (доступной или труднодоступной), возможна лишь экспериментальным путем или методами моделирования.

Оценка эффективности пылеулавливания проектируемых производств, как правило, также невозможна, поэтому условно принимается, что вся пыль, выделяющаяся от оборудования в помещение, оседает внутри помещения.

Различным является и количество пыли, оседающей на различных участках поверхности, расположенных в помещении. Пыль, которая выделяется в нормальном режиме, витает в воздухе и за счет силы тяжести постепенно оседает на различных поверхностях.

При этом, ожидается, что наибольшее количество пыли оседает на более низких уровнях помещения, при условии, что источник пыли (оборудование) также расположено на нижнем уровне. Очевидно, что горизонтальные поверхности могут накапливать пыль практически в неограниченных количествах, на вертикальных поверхностях оседает ограниченное количество пыли, зависящее от вида поверхности.

Для , количество пыли, которое оседает на стенах следующее: окрашенные металлические перегородки – 7-10 г/м 2 , кирпичные стены – 40 г/м 2 , бетонные стены – 30 г/м 2 . Скорее всего, приведенные данные можно использовать и для других производств.

Теперь обратимся к формуле для вычисления количества пыли в зависимости от объема пылевоздушного облака. Следует отметить, что какие-либо аналитические выражения, по которым можно вычислить объем пылевоздушного облака, в отечественной литературе отсутствуют.

В зарубежной пожарно-технической литературе такие данные пока тоже не удалось найти, наверное, потому что в США и в Европе такой подход не применяется (имеется ввиду расчет категорий). Поэтому на практике приходится объем облака пыли каким-либо образом оценивать.

Например, можно условно принять за характерную форму облака конус с высотой от пола до источника пыли и основанием с радиусом, превышающим данную высоту в несколько раз. Хотя, не уверен, насколько данное допущение верно, поскольку экспериментальные данные в распоряжении отсутствуют.

Помимо критического размера, определяющим параметром является также стехиометрическая концентрация пыли.

Стехиометрическая концентрация пыли – такая концентрация пыли, при которой происходит ее полное сгорание с учетом количества кислорода, находящегося в единице объема воздуха.

Стехиометрическая концентрация пыли расчетным путем может быть определена лишь для веществ и материалов, для которых известен химический состав. К ним можно отнести большинство полимерных материалов (полиэтилен, полипропилен, полистирол и др.), различные лекарственные препараты, порошки металлов и сплавов.

Для других материалов, например для растительных (древесная и зерновая пыль, чай и др.) и пищевых материалов (мука, сухое молоко, какао и др.), стехиометрическую концентрацию нужно определять либо экспериментально, либо искать химический состав соответствующего материала, из которого состоит пыль.

Определение стехиометрической концентрации сводится к решению следующих последовательных задач:

1. Находится химический состав пыли.

2. Записывается химическое уравнение реакции полного сгорания пыли.

3. Определяется масса кислорода, необходимого для полного сгорания 1 кг пыли.

4. Определяется масса кислорода, содержащаяся в 1 м 3 воздуха, с учетом расчетной температуры.

5. Определяется масса пыли, которая может полностью сгореть в массе кислорода, содержащейся в 1 м 3 воздуха. Полученное значение и есть стехиометрическая концентрация пыли в пылевоздушном облаке.

Определение категории помещения с пылью не учитывает такой показатель пожарной опасности, как нижний концентрационный предел распространения пламени (НКПР). Как правило, концентрация пыли в пылевоздушном облаке при аварийных ситуациях превышает НКПР.

Ну и напоследок пара очень интересных видео о взрывах на производствах с пылью. Даже без знания английского и так все доходчиво и интересно показано. Рекомендую к просмотру!

Жду вас снова на о пожарной безопасности!


Производственной пыльюназываются находящиеся во взве­шенном состоянии в воздухе рабочей зоны твердые частицы раз­мером от нескольких десятков до долей микрона. Пыль принято также называть аэрозолем, имея в виду, что воздух является дис­персной средой, а твердые частицы - дисперсной фазой. Произ­водственную пыль классифицируют по способу образования, происхождения и размерам частиц. .

В соответствии со способом образования различают пьщй (аэ­розоли) дезинтеграции и кяиденсации. Первые; являются следст­

вием производственных операций, связанных с разрушением или измельчением твердых материалов и транспортировкой сыпучих веществ. Второй путь образования пыли - возникновение твер­дых частиц в воздухе вследствие охлаждения или конденсации паров металлов или неметаллов, выделяющихся при высокотем­пературных процессах.

По происхождению различают пыль органическую, неоргани­ческую и смешанную. Характер и выраженность вредного дейст­вия зависят, прежде всего, от химического состава пыли, который главным образом определяется ее происхождением. Вдыхание пыли может вызвать поражение органов дакания - бронхит, пневмокониоз или развитие общих реакций (интоксикация, ал­лергия). Некоторые пыли обладают канцерогенными свойствами. Действие Пыли проявляется в заболеваниях верхних дыхательных путей, слизистой оболочки глаз, кожных покровов. Вдыхание пыли может способствовать возникновению пневмоний, туберку­лёза, рака легких. Пневмокониозы относятся к числу наиболее распространенных профессиональных заболеваний. Исключи­тельно высокое значение имеет классификация пыли по размеру ПЫлевЫх частиц (дисперсности): видимая пыль (размер свыше 10 мкм)6ыстро оседает из воздуха, при вдыхании она задерживается в верхних дыхательных путях И удаляется При кашле, чихании, с мокротой; микроскопическая пыль (0,25 -10 мкм) более устойчи­ва в воздухе, при вдыхании попадает в альвеолы легких и дейст­вует на легочную ткань; ультрамикроскопическая пыль (менее 0,25 мкм), в легких ее задерживается до 60-70%, но роль ее в раз­витии пылевых поражений не является решающей, так как неве­лика ее общая масса.

Вредное действие пыли определяется также и другими ее свойствами: растворимостью, формой частиц, их твердостью, структурой, адсорбционными свойствами, электрозаряженнстью. Например, электрозаряженность пыли влияет на устойчивость аэрозоля; частицы, несущие электрический заряд, в 2-3 раза больше задерживаются в дыхательном тракте. "

Основным способом борьбы с пылью является предупреждение ее; образования и выделения в воздух, где наиболее эффективными являются мероприятия технологического и организационного ха­рактера: внедрение непрерывной технологии, механизации работ;

герметизация оборудования, пневнотранспортирование, дистанци­онное управление; замена пылящих материалов влажными, пасто­образными, гранулирование; аспирация и др.

Большое значение имеет применение систем искусственной вентиляции, дополняющее основные технологические мероприя­тия по борьбе с пылью. Для борьбы с вторичным пылеобразовд- нием, т.е. поступлением в воздух уже осевшей пыли, используют влажные методы уборки, ионизацшг воздуха и др.

В случаях, когда не удается снизить запыленность воздуха в рабочей зоне более радикальными мероприятиями технологиче­ского и другого характера, применяются индивидуальныезащит- ные средства различного типа: респираторы, специальные шлемы и скафандры с подачей в них чистого воздуха. ,

Необходимость строгого собшодения ПДК требует система­тического контроля за фактическим содержанием пыли в воздухе рабочей зоны производственного помещения.

К автоматическим приборам определения концентрации пыли относятся серийно выпускаемые промышленностью ИЗВ-1, ИЗВ-3 (измеритель запыленности воздуха), ПРИЗ-1 (переносной радио­изотопный измеритель запыленности), ИКП-1 (измеритель кон­центрации пыли) и др.

    Вентиляция производственных помещений

Вентиляция- это комплекс взаимосвязанных процессов, предназначенных для создания организованного воздухообмена, т.е. удаления из производственного помещения загрязненного или перегретого (охлажденного) воздуха и подачи вместо; него чистого и охлажденного (нагретого) воздуха, что позволяет соз­дать в рабочей зоне благоприятные условия воздушной среды.

Системы промышленной вентиляции делятся на механиче­скую(см. рис.6.5) иестественную.Возможно сочетание этих двух видов вентиляции (смешанная вентиляция) в различных ва­риантах. " " " V

В первом случае воздухообмен осуществляется с помощью специальных побудителей движения - вентиляторов, во втором -

за счет разности удельных весов воздуха снаружи и внутри про­изводственного помещения, а также за счет ветрового подпора (давления от ветровых нагрузок). По месту действия различают обшеобменнуюсистему вентиляции, осуществляющую воздухо­обмен в масштабах всего производственного помещения, и мест­ную, при которой воздухообмен организуется в масштабах лишь рабочей зоны. Специфической характеристикой общеобменных систем вентиляции является кратность воздухообмена:

к=у/у пом,

где V - объем вентиляционного воздуха, м 3 /час;V n 0 M - объем по­мещения, м 3 .

Общеобменные системы могут быть приточными (организу­ется только приток, а вытяжка происходит естественным путем из-за повышения давления в помещении), вытяжными (организу­ется только вытяжка, а приток происходит путем подсоса воздуха извне из-за его разряженности в помещении) и приточно­вытяжными (организуется как приток, так и вытяжка). Приточно­вытяжная естественная вентиляция называется аэрацией. Мест­ные системы могут быть вытяжными и приточными.

Основные требования к системам вентиляции:

    соответствие количества приточнбго воздуха количеству удаляемого. Следует иметь в виду, что в случае расположе- ййя рядом двух участков, на одном из которых есть вредные выделения, на этом участке создают небольшое разрежение, для чего удаляют воздуха больше, чем подают, а на участке, где нет вредных выделений, - наоборот. Повышение давле­ния на «чистом» участке по отношению к смежному исклю­чает проникновение в него вредных паров, газов и пылей;

    приточные и вытяжные системы вентиляции должны быть правильно размещены. Удаление воздуха производится из зо­ны с наибольшим загрязнением, подача - в зоны с наимень­шим загрязнением. Высота расположения воздухоприемных и воздухораспределительных устройств определяется соотно­шением плотности воздуха в помещении и плотности вещест­ва, его загрязняющего. При тяжелых загрязнениях воздух уда­ляется из нижней части помещения, при легких - из верхней.

Системы вентиляции должны обеспечить требуемую чистоту воздуха и микроклимат в рабочей зоне, быть электро-, пожаро- и взрывобезопасны, просты по устройству, надежны в эксплуата­ции и эффективны, а также не должны являться источником шу- май вибрации. .

Рис. 6.5. Механическая вентиляция: а - приточная; б - вытяжная; в - приточно-вытяжная с рециркуляцией

Установки приточной систем!# вентиляции (рис. 6.5а) состоят из воздухозаборного устройства (1), воздуховодов (2), фильтров

    для очистки забираемого воздуха от примесей, калорифера

    Центробежного вентилятора (5) и приточных устройств (6) (отверстия в воздуховодах, приточные насадки и т.п.).

Установки вытяжной системы вентиляции (рис. 6.56) состоят из вытяжцых устройств (7) (отверстия в воздуховодах, вытяжные на­садки), вентилятора (5Х воздуховодов (2), устройства для очистки воздуха от пыли и газов (8) и устройств для выброса воздуха (9).

Установки приточно-вытяжной системы вентиляции (рис. 6.5в) представляют собой замкнутые системы воздухообмена. Воздух, отсасываемый из помещения (10) вытяжной вентиляци­ей, частично или полностью вторично подается в это помещение через приточную систему, соединенную с вытяжной системой воздуховодом (11). При изменении качественного состава воздух в замкнутой системе подается или выбрасывается с помощью

клапанов (12).

В производственных цехах промышленных предприятий наи­более распространены общеобменные системы приточно­вытяжной вентиляции, предназначенные для удаления из поме-

щений вредных паров, газов, пыли, избыточной влажности или доведена концентраций указанных вредных веществ до пре-; дельно допустимых норм. . ,

В производственные помещения могут поступать одновре­менно несколько вредных веществ. В этом случае воздухообмен; рассчитывают по каждому из них. Если выделяющиеся вещества действуют на организм человека однонаправлено, то рассчитан­ные объемы воздуха суммируют. .

" г Рассчитанный объем воздуха следует подавать подогретым в рабочую зону помещения, а загрязненный воздух - удалять от мест выделения вредностей из верхней зоны помещения.

Объем воздуха (м 3 /ч), который требуется для удаления из по­мещения углекислоты, определяют по формуле:

L=G/(x 2 -х,)у

где G - количество углекислоты, выделяющейся в помещении, г/ч или л/ч;х i - концентрация углекислоты в наружном воздухе;х 2 - концентрация углекислоты в воздухе рабочей зоны, г/ м 3 или л/ м 3 . Объем воздуха (м^ч), который требуется для удаления из помеще­ния вредных паров, газов и пыли, определяют по формуле; :

^1=с/(с^-с^; : ■- 1 " ■" ■ ;

где G - количество газов, паров и пыли, выделяющихся в поме­щении, м 3 /ч;с 2 - предельно допустимая концентрация газа, паров или ныли в воздухе рабочей зоны, мг/м 3 ;c t - концентрация ука­занных вредностей в наружном {приточном) воздухе, мг/м 3 . ;

< Объем воздуха (м 3 /ч), который требуется для удаления из? но- Мещения вдагодабытков^ определяют по формуле: : ;

* 1 = С/р.(

где G - количество влаги, испаряющейся в помещении, г/ч; р - плотность воздуха в помещении, кг/м 3 ;d 2 - влагосодержание воз­духа, удаляемого из помещения, г/кг сухого воздуха;d t - влаго­содержание приточного воздуха г/кг сухого воздуха.

Объем воздуха (м 3 /ч), который требуется для удаления из по­мещения избыточной теплоты, определяют по формуле:

L ~ Оизб IСp(t ebt m~t n pum) > "

где Qms - количество избыточной теплоты, поступающей в по­мещение, Вт;С - удельная теплоемкость воздуха, Дж/(кгК);р - плотность воздуха в помещении, кг/ м 3 ;t eam - температура возду­ха в вытяжной системе,°С; t npum - температура приточного возду­ха, *С. ■■■■ -■ . - ■ ■ ■

Практическое применение приведенных в соответствии со СНиП 2-04.05-86 расчетов проиллюстрируем на ксТнкретных при­мерах.

Пример!.В помещении для кратковременного пребывания людей Собралось Н - 50 человек. Объем помещения V = 1000 м. Определить, через какое время после начала собрания необхо­димо включить приточно-вытяжную вентиляцию, если выде­ляемое одним человеком количество С0 2 q=23 л/ч в наружном воздухех = 0,6 л/м 3 .

, У(х 2 -х,)

■■■■- ■■G’ ■ ^

. . .% ....

где G количество С0 2 , выделяемое людьми,

G=JVд = 50-23 = 1150л/ч,1000(2- 0, 6)

“ Т=-- --- = 1,21ч=73л<ин

1150 ... . ...... ... . ;.

Пример 2. Определить необходимый воздухообмен по из*

быткам тепла в сборочном цехе для теплого периода года. Общая мощность оборудования в цехе Н 0 б 0р = 120 кВт. Коли­чество работающих - 40 человек. Объем помещения 2000 м 3 . Температура приточного воздухаt npHT = +22,3 °С, влажностьj= 84%. Тепло солнечной раДиацйи составляет 9 кВт. (Q cp). Удельная теплоёмкость сухого воздуха" С = 0,237 Вт/кгК; плотность приточного воздуха р = 1,13 Кг/м 3 ; температура вы­тяжного воздухаt BKT = 25,3”С. Принять количество тёпла, вы­деляемого одним человеком, 0,11<Г кВТ; от оборудования 0,2 на 1 кВт мощности

^ QuafiJ^Р^выт- ^прит)

, ,. р „ «<&л^ +&**":+fi^v^(u.-w

    Количество тепла от людей, кВт,

^^“=0,116x40 = 4,64

    Количество тепла от оборудования, кВт,

Qu 36 ° 6 ° P = 120х 0,2= 24

    Необходимый воздухообмен, м 3 /ч,

£= (4,63+ 24+9)-100 _ 44280

0,237-1,13(25,3-22,3)

    Кондиционирование воздуха

С помощью кондиционирования воздуха в закрытых по­мещениях и сооружениях можно поддерживать необходимую температуру, влажность, газовый и ионный состав, наличие запахов воздушной среды, а также скорость движения возду­ха. Обычно в общественных и производственных зданиях требуется поддерживать лишь часть указанных параметров воздушной среды. Система кондиционирования воздуха включает в себя комплекс технических средств, осуществ­ляющих требуемую обработку воздуха (фильтрацию, подог­рев, охлаждение, осушку и увлажнение), транспортирование ёго и распределение в обслуживаемых помещениях, устрой­ства для глушения шума, вызываемого работой оборудова- нйя, источники тепло- и хладоснабжения, средства автомати­ческого регулирования, контроля и управления, а также вспомогательное оборудование. Устройство, в котором осу­ществляется требуемая тепловлажностная обработка воздуха й его очистка, называется установкой кондиционирования воздуха, или кондиционером.

Кондиционирование воздуха обеспечивает в помещении не­обходимый микроклимат для нормального протекания техноло­гического процесса или создания условий комфорта. ■

    Отопление

Отопление предусматривает поддержание во всех производ­ственных зданиях и сооружениях (включая кабины крановщиков, помещения пультов управления и другие изолированные поме­щения, постоянные рабочие места и рабочую зону во время про­ведения основных и ремонтно-вспомогательных работ) темпера­туры, соответствующей установленным нормам.

Система отопления должна компенсировать потери тепла че­рез строительные ограждения, а также обеспечивать нагрев про­никающего -в помещение холодного воздуха при ввозе и вывозе, сырья, материалов и заготовок, а также самих этих материалов.

Отопление устраивается в тех случаях, когда потери тёпла превышают тепловыделения в помещении. В зависимости от теп­лоносителя системы отопления разделяются на водяные, паро­вые, воздушные и комбинированные.

Системы водяного отоплениянаиболее приемлемы в санитар­но-гигиеническом отношении и подразделяются на системы с на­гревом воды до 100°С и вышеiOO°C(перегретая вода).

Вода в систему отопления подается либо от собственной ко­тельной предприятия, либо от районной или городской котельной или ТЭЦ.

Система парового отопленияцелесообразна на предприятиях, где пар используется для технологического процесса. Нагрева­тельные приборы парового отопления имеют высокую темпера­туру, которая вызывает подгорание пьщи. В качестве нагрева­тельных приборов применяют радиаторы, ребристые трубы и регистры из гладких труб,

В производственных помещениях со значительным выделени­ем тепла устанавливаются приборы с гдадкимц поверхностями, допускающими их легкую очистку. Ребристые батареи в, таких помещениях не применяют, так как осевшая пыль вследствие на­грева будет пригорать* издавая запах гари. Пыль при высоком на­греве может быть опасна из-за возможности воспламенения. Температура теплоносителя при отоплении местньщи иагрева- тельными приборами не должна превышать: для горячей воды - 150°С, водяного пара - 130 0 С. *: » ; . :

Воздушная система отопления,характерна тем, что подавае­мый в помещение воздух предварительно нагревается в калори­ферах (водяных, паровых или электрокалориферах).

В зависимости от расположения и устройства системы воз­душного отопления бывают центральными и местными. В цен­тральныхсистемах, которые часто совмещаются с приточными вентиляционными системами, нагретый воздух подается по сис­теме воздуховодов.

Местная системавоздушного отопления представляет собой устройство, в котором воздухонагреватель и вентилятор совме­щены в одном агрегате, устанавливаемом в отапливаемом поме­щении.

Теплоноситель может быть получен от системы центрального водяного или парового отопления. Возможно применение элек­трического автономного нагрева. .

В административно-бытовых помещениях часто применяется панельное отопление, которое работает в результате отдачи тепла от строительных конструкций, в которых проложены трубы с циркулирующим в них теплоносителем.

Федеральное агенство морского и речного транспорта

Федеральное государственное бюджетное образовательное учреждение

Высшего профессионального образования

«ГОСУДАРСТВЕННЫЙ МОРСКОЙ УНИВЕРСИТЕТ ИМЕНИ АДМИРАЛА Ф.Ф. УШАКОВА»

Кафедра «Безопасность жизнедеятельности»

Практическая работа № 3

на тему:

«Определение класса условий труда по фактору

«ОЦЕНКА ВРЕДНОГО ВОЗДЕЙСТВИЯ ПЫЛЕЙ»»

Курсанта группы 1922

Сомхишвили Ирмы

Проверил: ст.преподаватель

Писаренко Г.П.

Вариант 22

I. ЦЕЛЬ РАБОТЫ

Изучить общие свойства промышленной пыли и требования санитарных норм; ознакомление с устройством и работой аспиратора; определить содержание пыли в воздухе весовым методом и дать санитарную оценку запыленности.

II. ОБЩИЕ СВЕДЕНИЯ О ПРОМЫШЛЕННОЙ ПЫЛИ

Промышленной пылью называют твердые частицы, взвешенные в воздухе, т.е. это дисперсные системы, а именно, аэрозоли, где дисперсной фазой являются частицы размером от 10 -2 до 100 мкм,а дисперсной средой – воздух.

Образование промышленная пыль происходит при перезагрузке и транспортировке сыпучих грузов, механическом измельчении твердых веществ.

К промышленной пыли можно отнести также сажу, образующуюся в результате неполного сгорания топлива в судовых дизелях и парогенераторах.

Промышленную пыль можно количественно охарактеризовать средним размером частиц, кривой распределения по размерам, удельной поверхностью, т.е отношением суммарной поверхности частиц пыли к их массе или объему. Важнейшей характеристикой является концентрация пыли в воздухе.

Пыль проникает в организм человека через органы дыхания, желудочно-кишечный тракт, глаза и кожу. Для человека наибольшую опасность представляют частицы пыли размером менее 10 мкм, что видно из данных, приведенных в Табл.1

Таблица 1

Особую опасность для организма человека представляет пыль, состоящая из частиц токсичного вещества, или пыль, имеющая на поверхности сорбированные токсичные вещества. Например, к токсичным относится пыль каменно - угольного песка, карбида кальция, извести, свинца и др. Особенностью является наличие на поверхности частиц адсорбированных канцерогенных веществ, а именно 3,4-бензпирена – это конденсированный ароматический углеводород, обладающий канцерогенными свойствами, т.е способен вызывать рак при нанесении на кожу или при нанесении под кожу животных.

Вредное действие на организм человека пыли определяется ее содержанием в воздухе рабочих помещений, т.е концентрацией пыли, которая обычно может изменяться от 10 -8 до 10 5 мг/м 3 . Повышенные концентрации пыли вызывают интенсивное вредное действие на организм человека.

По степени воздействия на организм человека вредные вещества (в том числе и аэрозоли) подразделяют на 4 класса опасности:

1-й – вещества чрезвычайно опасные;

2-й – вещества высокоопасные;

3-й – вещества умеренно опасные;

4-й – вещества малоопасные.

Класс опасности вредных веществ устанавливают в зависимости от норм и показателей.

Отнесение вредного вещества к классу опасности производят по показателю, значение которого соответствует наиболее высокому классу опасности. Необходимо также иметь в виду, что некоторые промышленные пыли являются взрывоопасными.

Одной из опасных пылей для организма человека на морском транспорте является зерновая пыль, которая состоит из органических компонентов

(бактерии, споры и т.п) и неорганических (частицы песка, глины, почвы). Содержание двуокиси кремния в зерновой пыли достигает 10%.

Длительный контакт с зерновой пылью может привести к развитию пневмокониоза. При кратковременном воздействии на слизистую оболочку глаз, верхних дыхательных путей вызывается раздражение и развитие воспалительных процессов. При механическом воздействии на кожу возникают пузырьковые высыпания («зерновая чесотка»), возможно, также бактериологическое поражение с сильной головной болью, ознобом, сердцебиением, головокружением и тошнотой («зерновая лихорадка»).

Для предотвращения вредного воздействия промышленных пылей

на организм человека применяют комплекс мероприятий:

Разрабатываются и устанавливаются предельно допустимые концентрации (ПДК) различных пылей в воздухе рабочей зоны;

Проектируются и устанавливаются вентиляционные установки и системы аспирации;

Разрабатываются и применяются индивидуальные средства защиты;

III. ОСНОВНЫЕ ОПЕРАЦИИ И ВЫЧИСЛЕНИЯ ПО АНАЛИЗУ ЗАПЫЛЕННОСТИ РАБОЧЕГО ПОМЕЩЕНИЯ

а) Протокол исследования запыленности

б) Оценка запыленности рабочего места/помещения

1. Для количественной оценки запыленного рабочего помещения необходимо знать массу пыли в единице объема. Определить концентрацию пыли можно различными методами, наиболее простой и надежный – весовой. Сущность метода заключается во взвешивании специального фильтра до и после протягивания через него известного объема запыленного воздуха.

где: С – концентрация пыли в воздухе, мг/м 3 ;

Р 1 – масса фильтра до отбора пыли, мг;

Р 2 – масса фильтра после отбора пыли, мг;

V 0 – объем воздуха в месте пробы, о С.

V o =

где: V – объем воздуха, протянутого через фильтр в условия опыта (при t (o C) и давлении В (гПа);

Существует множество отраслевых документов описывающее пылевую обстановку в помещении. Это СНИПы, ГОСТЫ и рассматривают они ее со своих, профессиональных точек зрения. Но нигде в них нет цифр ограничивающих содержание пыли в бытовых и офисных помещениях. Это вызвано в первую очередь тем, что в отделке помещениях этих категорий используются самые разные материалы. А именно от применяемых отделочных материалов, материалов применяемых в оборудовании помещений и конструкции помещений (вентиляции и кондиционирования). А установив нормативы по пыли для бытовых и офисных помещений проектировщики рискуют не уложиться в них.

В 2004 году введен в действие наиболее широкий документ определяющий нормативы по содержанию в воздухе пыли. Это "Межгосударственный стандарт ГОСТ ИСО 14644 -1-2002, Чистые помещения и связанные с ними контролируемые среды, Часть 1, Классификация чистоты воздуха".

Вот такое длинное и незамысловатое название. Для нас, в данном случае интересна табл. 1. из раздела 3.

Ранее существовал ГОСТ Р 50776-95, который отличается нормированием содержание микроорганизмов (см. табл.1 выделенный розовым цветом столбец), а значения количества пыли не округлены.

Учитывая, что нам нужны ориентиры по концентрации пыли, данные этих двух ГОСТ" ов сведены в одну таблицу.

Таблица 1, классы чистоты по взвешенным в воздухе частицам для чистых помещений и чистых зон

Класс N ИСО

(N - классификационное число)

Максимально допустимая концентрация частиц, частиц/м 3 , с размерами равными или большими следующих значений, мкм МК
0,1 0,2 0,3 0,5 1,0 5,0
Класс 1 ИСО 10 2 нд нд нд нд нд
Класс 2 ИСО 100 24 10 4 нд нд нд
Класс 3 ИСО 1000 237 102 35 8 нд нд
Класс 4 ИСО 10000 2370 1020 352 83 нд нд
Класс 5 ИСО 100000 23700 10200 3520 832 29 5
Класс 6 ИСО 1000000 237000 102000 35200 8320 293 50
Класс 7 ИСО нк нк нк 352000 83200 2930 100
Класс 8 ИСО нк нк нк 3520000 832000 29300 500
Класс 9 ИСО нк нк нк 35200000 8320000 293000 нк
Из-за неопределенностей, возникающих при счете частиц, при классификации следует использовать значения концентрации, имеющие не более трех значащих цифр

нк - счетная концентрация частиц данного размера для данного класса не контролируется,

нд - частиц данного и большего размера в воздухе не должно быть,

МК - предельно допустимое число микроорганизмов, шт/м 3

Я пока не нашел данных относящихся к категории по чистоте воздуха в бытовых и офисных помещении. Хотя мне попадались нормативы для чистых помещений лечебных учреждений.

И зная о жестком нормировании содержания пыли в воздухе чистых производственных помещений имеющих категорию, можно сделать вывод, что классы (категории) 7, 8, 9 наиболее близки к офисным (7, 8) и бытовым (9) помещениям.

Заключение

Хотя ГОСТ определяет категорию "для чистых помещений и чистых зон" нас интересует класс ИСО 9, как (на мой взгляд) наиболее близкий к бытовым помещениям и Класс ИСО 7 и 8 для офисных помещений оборудованных кондиционированием и фильтрацией воздуха соответственно.

Приведенные цифры могут использоваться только как ориентиры при проведении оценочных расчетов по воздушным фильтрам электронной и вычислительной техники и ее эксплуатационных регламентов.

Для точных расчетов следует применять значения уровней запыленности указанные в паспортах помещений, где расположена аппаратура.

К сведению

Количество пыли в атмосферном воздухе может быть весьма различным. В местности со сплошным зеленым массивом, над озерами и реками количество пыли в воздухе составляет менее 1 мг/м 3 , в промышленных городах - 3-10 мг/м 3 , в городах с неблагоустроенными улицами - до 20 мг/м 3 . Размеры частиц колеблются от 0,02 до 100 мкм.

Санитарные нормы СССР-(СН 245-71) ограничивают среднесуточную предельно допустимую концентрацию нетоксичной пыли ей атмосферном воздухе населенных мест 0,15 мг/м 3 , однако в действительности концентрация пыли часто бывает больше, поэтому лучше исходить из опытных данных о степени загрязнения воздуха в конкретном районе.

Концентрация взвешенных веществ в атмосферном воздухе Новосибирска превышает Предельно Допустимые Концентрации. Если ПДК – 0,15 мг/м³,

то в 2004 году было 0,26 мг/м³,

в 2005 г. – 0,21 мг/м³,

а в 2006г. – 0,24 мг/м³.

В центре столицы Эстонии Таллине, зарегистрирована концентрация тонкой пыли до 0,07 мг/м 3 .

В Англии воздуху городов, в которых жилые кварталы с каминным отоплением сочетаются с крупными промышленными предприятиями, свойственно пылесодержание до 0,5 мг/м 3 ,

В США концентрация пыли в воздухе достигла 1,044 мг/м 3 ,

В ФРГ наибольшая концентрация пыли отмечалась в городах Рура - до 0,7 мг/м 3 .

Основную опасность для человеческого организма представляют именно частицы размером от десятых долей микрометра до 10 и в особенности до 5 мкм.

Структура пыли бытовых помещений и офисов отличается от атмосферной пыли и пыли производственных помещений и существенно зависит от их отделки и оборудования и мебели размещенных в помещении.

Подготовил А.Сорокин,

производится аспирационным весовым (гравиметрическим) методом с помощью электроаспиратора (рис. 2).

Рис. 2. Электроаспиратор для отбора разовых проб пыли

Пыль − это дисперсная система, где раздробленное ве-щество (дисперсная фаза) находится в непрерывной дис-персной среде, т.е. это взвешенные в воздухе, медленно осе-дающие твердые частицы размером от 0,001 до 100 мкм или аэрозоль.

Принцип действия электроаспиратора заключается в протягивании определенного объема воздуха через аспира-


тор с осаждением пылевых частиц на бумажном фильтре. Метод основан на улавливании пыли из просасываемого че-рез фильтр воздуха при стандартной скорости аспирации 10-20 л/мин. с последующим пересчетом на 1 м 3 воздуха (1 м 3 = 1000 л). Анализ воздуха может производиться как в пробах, отобранных однократно (продолжительность отбора проб 15-20 мин.), так и многократно не менее 10 раз в сутки через равные интервалы времени с усреднением полученных дан-ных (кратность отбора проб в течение суток определяет вы-бор для оценки вида ПДК – среднесуточной или максималь-ной разовой). Отбор проб воздуха производят в зоне дыха-ния. Для отбора пробы фильтр укрепляют в аллонже (патро-не) электроаспиратора, пропускают через него воздух со ско-ростью 20 л/мин. (V ) в течение 10 мин. (Т ). Объем отобран-ной пробы воздуха рассчитывают по формуле:

υ=Т V,

где T – время отбора пробы, мин., V – скорость отбора про-бы, л/мин. Негигроскопичный аэрозольной фильтр, пред-ставляющий собой ультратонкие волокна полимера, зафик-сированный в бумажном кольце, взвешивают на аналитиче-ских весах с точностью до 0,1 мг до (А 1 ) и после (А 2 ) отбора пробы воздуха. Содержание пыли Х в 1 м 3 воздуха рассчиты-вают по формуле:

Х = [(А 2 − А 1) 1000]/ υ,

где Х – содержание пыли в воздухе, мг /м 3 ; А 1 и А 2 − вес фильтра до и после отбора пробы, мг; υ − объем воздуха, л.

Для гигиенической оценки загрязнения воздуха пылью установленное содержание пыли сравнивают с максимальной или среднесуточной ПДК нетоксичной пыли в атмосферном воздухе; характеризуют дисперсный и химический состав, морфологическое строение, электрическое состояние, приро-ду (органическая, неорганическая, смешанная) и механизм образования (аэрозоль дезинтеграции или конденсации).


Гигиенические нормативы пыли для атмосферного воз-

− максимальная разовая ПДК мр 2 = 0,5 мг/м 3 ,

− среднесуточная ПДК с/с 3 = 0,15 мг/м 3 .

В помещениях ЛПУ требования к содержанию пыли в воздухе определяются классификацией помещений по чисто-те и ограничиваются размером частиц 0,5 мкм и 5,0 мкм.



В производственных помещениях: ПДК нетоксичной пыли = 10 мг/м 3 , ПДК пыли, содержащей свободный диоксид кремния, = 1-2 мг/м 3 .

3. Определение микробного загрязнения воздуха осу-

ществляется аспирационным методом в модификации Кро-това. Аппарат Кротова представляет собой аспиратор со съемной крышкой. Исследуемый воздух всасывается со ско-ростью 20-25 л/мин. через клиновидную щель в крышке при-бора. При переносе аппарата Кротова из одного помещения в другое его поверхность обрабатывают дезинфицирующим раствором. Пробу воздуха отбирают 10 мин. (Т ) со скоро-стью 20 л/мин (V ). Объем отобранной пробы воздуха рассчи-тывают по формуле.