Производители промышленных роботов.

Промышленные роботы - манипуляторы консольного типа, предназначенные для обслуживания термопластавтоматов и станков с ЧПУ.

Под обслуживанием станков понимается загрузка-выгрузка заготовок, деталей и их межстаночное транспортирование. Также, пока станки выполняют свои основные функции, робот может производить вторичные операции: маркировка, обрезка, продувка и т.п.

Роботы используются для обслуживания фрезерных, токарных и шлифовальных станков с ЧПУ, литейного оборудования, штамповочных и ковочных прессов, обрабатывающих центров и т.д. Роботы производятся серийно, либо по индивидуальному техническому заданию заказчика. Они могу иметь разные размеры, обладать разным классом точности, разной скоростью передвижения, разной грузоподъёмностью и иметь, например, 3,4 или 5 осей перемещения. Всё зависит от поставленных перед роботом задач.

Роботы-манипуляторы GRINIK (GRINIK ROBOTICS) разработаны и производятся Российской компанией АвангардПЛАСТ в г. Новосибирске


Видео работы промышленного робота GRINIK на производстве у клиента г. Новосибирск:


Видео работы промышленного робота GRINIK на производстве у клиента в г. Рязань:


Видео работы промышленного робота GRINIK на производстве у клиента в г. Ростов-на-Дону:


Видео работы промышленного робота GRINIK на производстве у клиента в г. Москва:


Видео работы промышленного робота GRINIK на производстве у клиента в г. Новосибирск:


Видео работы промышленного робота GRINIK на производстве у клиента в г. Новосибирске:


Компания АвангардПЛАСТ автоматизировала производство у клиента в г. Новосибирске (Сверлильный станок с ЧПУ - двухкоординатный (Российское производство):


Видео работы промышленного робота GRINIK на выставке:


Видео работы промышленного робота GRINIK при литье тонконкостенных изделий на высокоскоростном термопластавтомате:


Преимущества роботов на производстве:

  • Экономия на кадрах. Экономия на фонде заработной платы: применение роботов позволяет значительно сократить количество сотрудников на производстве;
  • Достижение предельной производительности станков;
  • Увеличение производительности труда;
  • Экономическая эффективность – стоимость изготовления продукции уменьшается;
  • Стабильность производственных циклов;
  • Исключение человеческого фактора;
  • Высокий коэффициент использования станка. Отсутствие человеческих слабостей: работа без перерывов в круглосуточном режиме, со стабильным результатом;
  • Отсутствие несчастных случаев на производстве;
  • Экономия производственной площади.

Робот-манипулятор является универсальным устройством и может использоваться в различных производственных линиях.

В зависимости от технического задания робот может быть оборудован различными исполнительными механизмами:

  • механические, магнитные или вакуумные захваты;
  • фреза;
  • ножницы;
  • сварочная головка;
  • лазерный сканер;
  • система заливки силиконового уплотнителя или клея;
  • и много другое.

Сравнение роботов-манипуляторов с роботами антропоморфного типа

В сравнении с антропоморфными роботами-манипуляторами наш робот обладает рядом преимуществ:

  1. Малая стоимость, приводящая к быстрой окупаемости их внедрения на предприятиях.
    Меньшая стоимость роботов достигается не только благодаря низкому курсу рубля к основным мировым валютам, но и благодаря простой архитектуре робота, позволяющей использовать недорогие компоненты и существенно экономить на сборочных процессах в производстве наших роботов, благодаря простоте монтажа.
  2. Масштабируемость.
    Универсальность и простота конструктива робота позволяет выпускать его в различных модификациях, не подвергая каким-либо сложным конструктивным изменениям, и как результат низкая стоимость всех типоразмеров робота. Благодаря масштабируемости по заданию заказчика робот выпускается в кратчайшие сроки, требуемого размера, с требуемой грузоподъёмностью. Это может быть маленький лёгкий робот или большой тяжёлый, но при этом основная архитектура робота остаётся неизменной.
  3. Простота.
    Простота конструкции робота приводит к его универсальности в плане использования компонентов для его сборки. В производстве роботов мы стараемся по максимуму использовать российские комплектующие, однако, по желанию заказчика, можем собрать робота на дорогих европейских или японских компонентах, можем использовать корейские, китайские или тайваньские комплектующие.

Промышленный робота GRINIK на выставке Технопром-2018 играет в баскетбол

самые перспективные компании и проекты.

3.Крупнейшие и наиболее известные производители роботов в мире:

6.Перспективные компании и проекты в робототехнике на 2015г. и далее:

7.Роботы / робототехника - виды роботов, лучшие роботы:

Перечень существующих и используемых роботов в мире.

Человекообразные роботы.

Биороботы.

Промышленные роботы.

Подводные роботы.

Бытовые роботы.

Военные, боевые роботы.

Торговые роботы в трейдинге.

1.Мировой рынок робототехники:

Объем рынка от 15 до 30 млрд. долл. (разница в оценках от того, что различные эксперты считают робототехникой) с учетом основных сегментов - промышленной и сервисной робототехники (военные роботы, бытовые, для образовательных целей, для помощи инвалидам и роботы игрушки (объем мирового рынка сервисной робототехники оценивается в 5,3 млрд. долл.)).

Продажи промышленных роботов с 2013 по 2014гг. выросли со 160 тыс. шт. до 178 тыс. шт., продажи сервисных роботов с 2013 по 2016гг. по предположнию экспертов должны выйти на уровень - 15,5 млн. шт. бытовых роботов, 3,5 млн. шт. роботизированных игрушек, 3 млн. шт. для образовательных целей, и 6,4 тыс. шт. для помощи инвалидам.

Основные покупатели промышленных роботов - Япония, Южная Корея, Китай, США, Германия , страны основные производители роботов - Япония и Германия (более 50% и около 22% соответственно, мирового производства промышленных роботов).

Самый большой спрос и рост производства ожидается в производстве - персональных, образовательных, бытовых роботов помощников, производственных (сборочных, сварочных, покрасочных, и т.п.), реабилитационных, различных видов мобильных, медицинских, хирургических, сельскохозяйственных, строительных и военных роботов.

Boston Consulting Group прогнозирует увеличение инвестиций в промышленную робототехнику до 2025 года (далее более подробно) среди 25 крупнейших экономик мира - до 10% в год, по сравнению с 2 - 3 % в настоящее время. Инвестиции будут окупаться за счет снижения стоимости и повышения эффективности. Роботы становятся дешевле. Стоимость робота для точечной сварки, например, упала со $ 182 000 в 2005г. до $ 133 000 в прошлом году и снизится до $ 103 000 к 2025г. Ускоренная автоматизация, позволит пересмотреть критерии выбора мест для открытия и расширения производств, вследствие чего, наличие дешевой рабочей силы может стать менее значимым фактором, это позволит вернуть часть производств обратно в США и ЕС из стран с более низкой заработной платой.

В октябре 2014г. Оксфордский университет опубликовал исследование о перспективах использования робототехники, в котором допускается, что в течение последующих двух десятилетий до 47% сегодняшних рабочих мест в США могут быть заменены роботами.

Президент китайской ассоциации робототехники (CRIA) Song Xiaogang сообщил, что количество роботов, проданных в Китае в 2014 году, достигнет 50000 шт., по сравнению с 36860 шт. в 2013 году. «…Робототехническая промышленность будет поддерживать ежегодный темп роста в 40% в течение длительного периода времени», сказал он. «Китай уже обогнал Японию, став крупнейшим в мире потребителем роботов, покупая более одной пятой из всех производимых в мире роботов».

2.Российский рынок робототехники:

Доля России на современном рынке робототехники составляет всего порядка 0,17%. По данным компании Нейроботикс объем отечественного рынка готовых роботов и компонентов в ближайшие год - два должен составить порядка 30 тыс. штук или примерно 3 млрд. рублей.

Средняя стоимость антропоморфного робота (обладающего сходством с человеком) сейчас составляет 450 тыс. долл. По словам главного робототехника Фонда Сколково Альберта Ефимова, сейчас в России в год продается около 300 роботов: Это в 500 раз меньше, чем в развитых странах. Кроме крупных зарубежных автомобильных брендов внедрением робототехнологий у нас почти никто не занимается.

В России на 10 тыс. работников предприятий в обрабатывающей промышленности приходится около 2-х роботов, в Китае и ЮАР - около 24-х, в Бразилии 5-ть, в Индии примерно, так же как и в России.

К особенностям рынка робототехники относятся длительные, трудоемкие и капиталоемкие этапы проведения научно-исследовательских и опытно-конструкторских работ, а также при создании опытных образцов разработанной продукции, поэтому в этой сфере большое значение играет участие и помощь со стороны государства.

Российский рынок робототехники представлен в основном космическими и специальными роботами — саперами, разведчиками. Производятся эти устройства в рамках оборонного заказа, и детали госконтрактов не разглашаются. К тому же часто роботами занимаются центры при институтах, не предполагающие коммерческой деятельности. Поэтому трудно судить о объемах производства предприятий робототехники в РФ.

Поэтому, каким образом была получена цифра 0,17% в 2013 году (доля России на рынке промышленных роботов) - большой вопрос.

Тем не менее, в при всей возможной условности оценок робототехники в России разрыв между высоко развитыми странами в мире и РФ в области робототехники безусловно существует.

Удачные модели роботов, применимые для промышленности, остаются единичными экземплярами, произведенными в научно-прикладных целях, и не идут в массовый выпуск. Бытовые роботы крайне мало интересуют российских робототехников. На 2014 год, по данным Международной федерации робототехники , общее количество работающих в нашей стране роботов составило примерно 4 тысячи.

При этом даже пока единственно развитая в России отрасль робототехники — военная , имеет колоссальные перспективы развития. Несмотря на заметное отставание и в этой области, боевые и специальные роботы российских ученых пока получают признание на международных выставках вооружения и получают специальные премии.

1:04 Современные роботы: беспилотники, разведчики, саперы.

3.Крупнейшие и наиболее известные

производители роботов в мире:

Лидирующие позиции в разработке, производстве и продвижении промышленной робототехники занимают крупнейшие международные корпорации, холдинги и компании, такие как:

iRobot Corporation (США). Специализируется на военных роботах - саперах, спасателях, разведчиках, а так же бытовых - пылесосах и моющих роботах. К 2013г. компания продала более 10 млн. домашних роботов. За 10 лет с 2004 по 2014г. компания увеличила объем продаж с 95 до 505 млн. долл. и прибыль с почти нулевого уровня до 25 млн. долл. в год. Наиболее известные и популярные роботы компании:

бытовые роботы:

  • AVA с бортовым компьютером;
  • Verro , созданный для очистки бассейнов;
  • Roomba и Create , выполняющие функции пылесоса;

военные и охранные роботы:

  • боевая система SUGV , выполняющая функции эвакуации и передачи данных в военных условиях;
  • Warrior , созданный для обезвреживания взрывных механизмов, перемещения раненых и тушения пожаров;
  • подводный аппарат Seaglider ;
  • Ranger , осуществляющий водное патрулирование;
  • мини-аппарат LANdroids для поддержки связи, принимающий сигнал устройств Apple.

ABB (Швеция — Швейцария). Один из лидеров рынка робототехники, компания образована в результате слияния ASEA и Brown, Boveri & Cie. Специализируется на промышленных роботах разных уровней сложности. Компания строит завод в России, первая очередь будет сдана в середине 2015 года.

FANUC Robotics (Япония). Производит большей частью промышленных роботов: для сварки и паллетизации , покрасочных , портальных , дельта-роботов . Создали самого сильного робота с грузоподъемностью 1350 кг. способного поднимать грузы на высоту до 6 м.


KUKA (Германия). В 1973 году создала первого в мире промышленного робота. Роботы этой фирмы широко используются в области автомобилестроения. Так же производит робот Robocoaster , который используется, как развлекательный аттракцион. Произвела более 100 тысяч роботов.

Kawasaki Robotics (Япония). Производит промышленных роботов — для работы в агрессивных средах, во взрывоопасных помещения, роботов для университетов, роботов-пауков. По всему миру установлено более 120 тысяч роботов их производства.

Мitsubishi (Япония). Занимается созданием промышленных роботов , используемых:

  • на производстве мобильных устройств;
  • при совершении погрузочно-разгрузочных работ;
  • в автомобилестроении;
  • в установке небольших деталей на лабораторное и медицинское оборудование.

LG Electonics (Южная Корея). Входит в состав LG Group, один из крупнейших производителей бытовой техники, производит роботов для дома , например роботы-пылесосы.

Kaman Corporation (США) Специализируется на производстве боевых, военных и промышленных роботов .

Sony (Япония). Самой известной разработкой фирмы пожалуй является двуногий робот QRIO . Этот интеллектуальный андроид имеет емкую операционную память, способен брать и перемещать вещи, передвигаться, спускаться по лестнице и танцевать, производит другие игровы е робот ы , например, роботы-собаки . Первый экземпляр появился еще в 1999 году.

Honda (Япония). Создали робота-гуманоида Асимо , умеющего разговаривать, распознавать лица и ходить.

Panasonic (Япония). Один из крупнейших производителей бытовой техники, выпускает промышленных роботов , таких как робот-парикмахер , моющий людям головы, обучающиеся индустриальные роботы , роботы-бегуны и роботы пылесосы .

LEGO Group (Дания) Производит роботизированные наборы — конструкторы для создания программируемого робота .

Yujin Robot (Южная Корея). Компания известна благодаря созданию доступных роботов-игрушек и бытовых устройств. Одним из самых востребованных проектов компании является робот-пылесос Iclebo , способный выполнять влажную уборку помещений.

Intuitive Surgical (США). Основным продуктом компании стала хирургическая система Da Vinci, прототип которой был спроектирован более 30 лет назад. Этот аппарат, оснащенный 4-мя руками, способен выполнять хирургические операции.

Consis. Занимается разработкой аптечных роботов - манипляторов, которые оказывают помощь фармацевтам. Эти устройства устанавливаются в местах хранения медикаментов, где они оптимизируют процессы хранения и поиска лекарств. Система позволяет сократить время обслуживания клиентов, увеличить товарооборот и рационально использовать места хранения лекарственных средств.


Gostai (Франция). Создает роботов серии Jazz . Аппараты действуют в режиме телеприсутствия и снабжены основными компьютерными приложениями. Управление роботом, подключенным к Wi-Fi, осуществляется с помощью браузера. Jazz осуществляет навигацию и ночное патрулирование.

AIST. Производит робот-гуманоид HRP-4C , с внешностью молодой девушки. Разработчики смогли максимально точно скопировать черты и лица тела человека. Аппарат способен петь, распознавать речь и окружающие звуки.

Aldebaran Robotics (Франция). Создали человекоподобный робот NAO , который отличается способностью использовать жесты, идентифицировать голоса и реагировать на команды. Робот может интерпретировать происходящие события, принимать решения согласно текущей обстановке и обучаться.

Takara Tomy. Интерактивный щенок i-SODOG компании Takara Tomy обладает способностью к запоминанию и обучению. Искусственный интеллект собаки-робота позволяет ей правильно реагировать на 50 голосовых команд. Робот может танцевать под музыку, распознавать голоса и запахи.

Сubic Robotics. Компания создала домашнего помощника Сubic , способного - включать и выключать электроприборы, распознавать человеческую речь, говорить с хозяином.

Engineering Arts. Робот-актер Robo Thespian созданный компанией наделен системой лицевых и скелетных мышц. Аппарат способен воспроизводить сцены из фильмов, создавать собственные сценарии.

Innovation First (США). Микророботы серии Hexbug созданы в виде насекомых. Это роботы-игрушки , которые могут ползать, находить выход из сложных лабиринтов и служить приманкой для домашних животных.

Другие крупные и известные компании на рынке робототехники:

Yaskawa Electric, Comau, Reiss, Stäubli, Kaman Corporation , Nachi-Fujikoshi, Thyssen, Adept Technology, American Robot, Omron, RoboGroup TEK, Rockwell Automation, ST Robotics, Yamaha Robotics, Kawasaki, Durr, Toshiba, General Motors (GM) …и многие другие.

В общей сложности на мировом рынке работает порядка 400 компаний занимающихся производством робототехники.

4.Производители роботов и роботы в РФ:

Государственный научный центр Российской Федерации Федеральное государственное автономное научное учреждение "Центральный научно-исследовательский и опытно-конструкторский институт робототехники и технической кибернетики" - создан в 1968 г. в Санкт-Петербурге. Основные направления — мехатроника , мобильные робототехнические комплексы , кибернетика космического, морского, воздушного и наземного базирования, роботы и манипуляторы для работы в экстремальных условиях .

ЗАО «Центр высоких технологий в машиностроении при МГТУ им. Н.Э. Баумана» Москва - продукция: роботы-саперы, разведчики, сухопутные боевые роботы, шагающие роботы . Чистая прибыль за 2012 год увеличилась с 1,95 млн. руб. до 5,35 млн. руб.

ОАО «НИКИМТ-Атомстрой» - головная материаловедческая организация «Росатома», находится в Москве, производит мобильные роботы и системы управления ими . Чистый убыток ОАО «НИКИМТ - Атомстрой» за 2012 год снизился в 2,4 раза до 311,83 млн. руб. с 749,30 млн. руб. за аналогичный период прошлого года.

НИИ системных исследований РАН Москва - выпускает транспортные роботы, роботизированное оборудование для производства ЭВМ, программное обеспечение.

НПО «Андроидная техника» - относительно молодая компания, образованная в 2005 году, с головным офисом в Москве. Занимается производством роботов-андроидов, боевых роботов-аватаров , в этом году робот-аватар выйдет на испытания. Использует робототехническую систему SAR-400 для участия в космических исследованиях. Робот может выполнять сервисные и аварийные работы в условиях, опасных для жизнедеятельности человека. Годовой оборот и выручка компании не афишируются.

ФГУП ЦНИИмаш г. Королев, учредитель «Роскосмос» . Команда института создала космического антропоморфного робота SAR-400 . В 2015 году запланирован проект «Обмен» , в результате которого будут созданы технологии обмена информацией и управления роботами на поверхности Луны и других планет. Выручка ОАО НПО "ЦНИИМАШ" по итогам 2013 года выросла до 1,7 миллиарда рублей.

ОАО «ЦНИИТОЧМАШ» Госкорпорации Ростех, Московская область, Климовск. Основано в 1944 г. Одна из многообещающих разработок совместно с Фондом перспективных исследований - антропоморфный боевой робот под управлением оператора. Робот при помощи руки-манипулятора стреляет из пистолета по мишени и ездит на квадроцикле. Предприятие производит самые массовые виды вооружения и военной техники для различных родов войск, в том числе роботизированные обзорно-прицельные приборы для воздушных и наземных носителей вооружения и военной техники .

1:25 Робот "Аватар".

СПКБ ПА расположено в г. Ковров, разработало конструкцию мобильного робота-вездехода «Варан» для серийного производства, роботы сверхлегкого класса — разведчики и саперы. «СКБ ПА» за 2012 год получило прибыль от продаж в 82,19 млн. руб.

МИРЭА (Московский государственный технический университет радиотехники, электроники и автоматики) — разработал дистанционную систему управления манипуляционным мини-роботом через Интернет, интеллектуальную бортовую систему управления для роботов воздушного, наземного и подводного базирования, интеллектуальный пылесос .

«Научно Исследовательский Технологический Институт (НИТИ) Прогресс» в Ижевске, ему принадлежит разработка новейшего роботизированного комплекса «Платформа-М» для армии России. Это бронированный робот с дистанционным управлением, гранатометом и пулеметом, ведет бой без контакта с противником, используется для разведки и охраны. Способен уничтожить стационарную и подвижную цель. Первые серийные образцы уже поступили в Вооруженные Силы России.

1:44 Испытания боевого робота с пулеметом и гранатометом.

Ижевский радиозавод — специализируется на роботехнических комплексах, например, мобильный робототехнический комплекс МРК-002-БГ-57 , уничтожает стационарные и подвижные цели, обеспечивает огневую поддержку и разведку, роботизированный комплекс-сапер, МРК-ВТ-1 — комплекс на гусеничном ходу, управляемый по радиоканалу на расстоянии до 1 км.

Институт проблем механики им.А.Ю. Ишлинского АН Москва - занимается мобильными роботами: несколько типов — шагающие, на колесах или на присосках - для перемещения по поверхностям произвольного наклона, роботы, двигающиеся внутри труб, миниатюрные мобильные промышленные роботы.

НИИ стали Москва - создали уникальный многофункциональный роботизированный мини-погрузчик МКСМ 800А-СДУ с дистанционным управлением, спасатель и сапер для работы в агрессивных средах. Проводит ядерную, биологическую и химическую разведку.

Компания СМП Роботикс - Зеленоград, создала и выпустила в производство роботов-патрульных - «Трал Патруль 3.1» . Охраняет большие территории и выявляет на ней движущиеся объекты.

Другие роботы присутствия и роботы универсалы (российской разработки):

Робот-универсал - может быть роботом теле присутствия, промоутером и даже барменом, разработан компанией ЗАО «РБОТ» робот теле присутствия R.Bot. Цена от 379 000 руб.

Мобильная автономная система - робот удалённого присутствияWebot от компании Wicron позволяет производить действия в месте нахождения робота, используя компьютер и Интернет. Робот позволяет удаленно наблюдать за происходящим и разговаривать с людьми, видеть окружающий вас мир и спокойно передвигаться по нему со скоростью идущего человека. Цена от 300 000 руб.

Робот видеонаблюдения и телеприсутствия - разработчик НИЛ АП (Научно - исcледовательская лаборатория автоматизации проектирования). Скайп на колесах или вебкамера с микрофоном и громкоговорителем - ездит и поворачивается в нужную сторону. Управление можно осуществлять из любой точки мира через интернет с любого компьютера или смартфона, без установки специального программного обеспечения - достаточно войти на сайт BotEyes.ru под своим логином и паролем. Цена от 1 390 ам. долл.

Робот телеприсутствия - Synergy Swan от компании «РБОТ» , с использованием технологии для роботов со сменным интеллектом , обеспечивающей оптимальное соотношение цена / качество по сравнению с функциональными аналогами на рынке. Цена от 59 900 руб.

Робот телеприсутствия - удаленного управления и проведения телеконференцийот компании PadBot , позволяет перемещаться и проводить видеоконференции в онлайн режиме через компьютер или телефон. PadBot приложение доступно как для iPhone, iPad, Android телефонов и планшетов, в ближайшем будущем станет доступно управление через веб-интерфейс. Цена от 35 000 руб.

Дин-Софт. Робот-официант , программное обеспечение которого создавалось в компании «Дин-Софт» , может - следить за гостями, раздавать меню, разносить блюда, принимать оплату, собирать посуду.

5.Робототехника - глобальные перспективы:

Бостонская исследовательская компания (BSG) в рамках глобального исследования рынка робототехники прогнозирует до 2025г. среднегодовые темпы его роста в 10,4% . В том числе и в первую очередь:

  • Порядка 15,8% годового роста в сегменте персональных роботов - роботы для обучения и образования, развлечений, безопасности, уборки помещений и других бытовых целей. Объем продаж вырастет до 9 млрд. долл. к 2025г. с 1 млрд. долл. в 2010г.
  • Порядка 11,8% годового роста продаж роботов для медицинских, хирургических целей, в сельском хозяйстве и строительстве. Объем продаж вырастет до 17 млрд. долл. к 2025г. с 3,2 млрд. долл. в 2010г.
  • Порядка 10,1% годового роста продаж роботов в производстве - для сварочных, сборочных, покрасочных, погрузочно - разгрузочных и других видов работ. Объем продаж вырастет до 24,4 млрд. долл. к 2025г. с 5,8 млрд. долл. в 2010г. Таким образом, данный сегмент робототехники, не смотря на меньшие темпы роста, сохранит за собой большую долю рынка робототехники.
  • Порядка 8,1% годового роста продаж роботов для военных целей - в первую очередь беспилотных летательных аппаратов, военных экзоскелетов, подводных аппаратов и наземных транспортных средств. Объем продаж вырастет до 16,5 млрд. долл. к 2025г.

Все это будет происходить на фоне падения цен роботов и комплектующих с повышением их производительности и сложности, выполняемых ими работ, что в свою очередь будет вести к расширению спектра их использования.

6.Перспективные компании и проекты

в робототехнике на 2015г. и далее:

ЕС финансирует 17 новых робототехнических проектов. Проекты под общим названием Horizon 2020 , каждый из которых акцентирован на развитии значимых роботизированных технологий для промышленного и сервисного использования. Акцент делается на быструю передачу технологий с последующей коммерциализацией, поэтому в каждом проекте есть, по меньшей мере, один корпоративный партнер.

1.AEROARMS - роботизированные системы с несколькими манипуляторами и усовершенствованными возможностями для аэрокосмической промышленности.

2.AEROWORKS - летающие роботы для автономного осмотра и технического обслуживания городской инфраструктуры.

3.COMANOID - роботизированные решения для сложных или утомительных для человека операций по сборке самолетов Airbus .

4.CENTAURO - симбиоз человека-робота , в котором оператор управляет манипуляторами робота.

5.CogIMon - гуманоидный робот для взаимодействия с людьми и роботами.

6.FLOBOT - робот уборщик полов в промышленных, бытовых и офисных помещениях.

7.Flourish - перспективные сельскохозяйственные роботы .

8.RETRAINER - робот помощник в процессе реабилитации людям, перенесшим инсульт, и для восстановления функций руки и кисти.

9.RobDREAM - усовершенствованные промышленные мобильные роботы- манипуляторы .

10.RoMaNS - роботизированная система по очистке накопившихся ядерных отходов.

11.SARAFun - двурукий робот для сборочных операций на базе ABB YuMi .

12.EurEyeCase - хирургические роботы для глазных операций.

13.SecondHands - робот помощник , обеспечивающий содействие при выполнении рутинных операций профилактического обслуживания.

14.Smokebot - разработка мобильных роботов с новыми экологическими датчиками для обследования мест стихийных бедствий с низкой видимостью.

15.SoMa - разработка мягких элементов роботов для безопасного взаимодействия с человеком и окружающей средой.

16.Sweeper - обеспечение автоматизированной уборки урожая сладкого перца.

17.WiMUST - расширение и улучшение функциональных возможностей существующих морских робототехнических систем.

…другие последние значимые события, тренды в мире:

Дроны - китайская компания DJI один из крупнейших в мире производителей потребительских беспилотных летательных аппаратов (дронов) пытается привлечь до 10 млрд. долларов для расширения производства.

Роботизированные манипуляторы - компания ABB объявила о приобретении немецкой робототехнической компании Gomtec с целью расширения ассортимента своей продукции за счет так называемых коллективных или совместных роботов. Легкие, гибкие роботизированные манипуляторы от Gomtec представляют собой семейство шести осевых модульных роботов «коллективного» типа под названием Роберта, с базовой ценой от € 27 900 до € 32 700 .

Роботизированные пылесосы - становятся все более популярными в мире, переходя из категории диковинок в разряд товаров массового спроса. Компания iRobot в 2014г. уже продала 12 миллионов пылесосов марки Roombas с начала их продаж. Роботизированные пылесосы сейчас составляют 18% на мировом рынке пылесосов и их доля растет с ежегодным темпом 21,8% (компания iRobot занимает 83% на североамериканском, 62% на Европейском и Ближневосточном и 67% на Азиатско-тихоокеанском рынках). Еще одна китайская компания - Ecovacs , только за один день сумела продать 73 300 шт. пылесосов, большая часть из которых были пылесосы-роботы Ecovacs Deebot.

7.Роботы / робототехника - виды роботов,

лучшие роботы:

Перечень существующих и применяемых роботов в мире : аптечный, биоробот, промышленные, транспортные, подводный, бытовые, боевой, зооробот, летающий робот, медицинский робот, микроробот, наноробот, персональный робот, педикулятор, робот - артист, робот для аптеки, роботы игрушки, робот официант, роботы - программы, робот - хирург, робот - экскурсовод, социальный робот, шароробот, человекообразный робот, торговый робот в трейдинге.

Человекообразные роботы:

Робот, играющий в пинг-понг - «Topio» на международной выставке роботов, далекий 2009г. Токио.


Компания SCHAFT Япония, принадлежащая Google - р обот «S-One», весит 95 кг, оснащен двумя «ногами» и двумя «руками». Высота аппарата - 1,48 м, ширина - 1,31 м.

1:54 SCHAFT DARHA Robotics Challenge 8 Tasks + Special Walking

«Aiko» - девушка-робот , владеет японским и английским языками, может решать математические задачи, понимает более 13 000 предложений, поет песни, читает газеты, способна идентифицировать различного рода объекты и т.д.

Биороботы:

Фрэнк - разработан и создан в Смитсоновском институте США. Первый в мире биоробот, состоящий из 28 частей тела, копирующими человеческие - функционируют сердце, легкие, почки и т.п. Робот разговаривает и передвигается, но не обладает самостоятельным мышлением, отсутствует мимика лица.

1:21 Биоробота с лицом и органами покажут публике.

Промышленные роботы:

Промышленная робототехника по большей части предназначена для использования роботов в производстве и сборке в автомобильной, электронной промышленности, а так же в производстве продуктов питания и напитков. Чаще всего роботы используются для автоматизации таких процессов, как сварка, окраска, сборка, контроль продукции, тестирование и упаковка . Существуют несколько типов промышленных роботов: роботы типа SCARA, шарнирные роботы, декартовы роботы, цилиндрические роботы . Эти роботы используются в тяжелом машиностроении для выполнения таких функций, как сварка и паяльные работы, подача сырья и обработка материалов, измельчение и окраска, и т.д.

Согласно прогнозам аналитиков компании TechNavio , среднегодовой прирост мирового рынка промышленной робототехники в машиностроении составит 6,27% в период с 2013 г. по 2018 г.

Роботизированный сборочный цех компании Нисан, 2010г. новый завод - город Канда, Япония.


2:29 Промышленный робот Panasonic.

Подводные роботы:

Бытовые роботы:

Военные, боевые роботы:

В мире:

10:33 Военные роботы США.

Россия:

3:05 "Русский Терминатор" Российские боевые роботы

не имеют аналогов в мире! *(неужели?

Торговые роботы в трейдинге:

2:55 Алгоритмическая система. Торговый робот.

Торговый робот, созданный командой "United Traders" , занял первое место в конкурсе «Лучший частный инвестор-2011» . За 2,5 месяца его доходность составила почти 8 000 % годовых! Разработчики торгового робота для трейдинга из United Traders не исключают, что разработанный ими торговый робот для торговли на американских рынках, вполне возможно, на сегодняшний день не имеет конкурентов в России, а возможно, и во всем мире. Торговля идет всегда в плюс, поскольку используется сразу несколько стратегий, и если одна из них начинает давать просадки, она тут же исключается и включается следующая.

Лучшие возможности для использования торгового робота в трейдинге представляет так называемый высокочастотный трейдинг или скальпинг , где заработок во многом зависит от количества успешных сделок, каждая из которых в отдельности принося не большой доход, суммарно позволяет за день заработать значительные средства. Однако использование торговых роботов в таких сделках позволяет совершать тысячи подобных операций в день (увеличивая итоговую доходность на порядок), поскольку человек физически не способен на подобное.

В настоящее время не менее 95% от всего количества заявок и до 40% от фактических объемов торговли на ММВБ выставляются и осуществляются торговыми роботами. На срочном рынке (форварды, фьючерсы. опционы, свопы) доля торговых роботов в общем количестве выставленных заявок и объемов торговли составляет не менее 90% и 60% соответственно.

В связи с этим особую популярность завоевывают решения по автоматизации производства на базе промышленных роботов, позволяющих обеспечить полный цикл обработки с высокой производительностью и точностью, избежать перерывов и производственных ошибок, свойственных человеку.

История промышленных роботов

История рынка промышленной робототехники насчитывает уже более 50 лет. Первый патент на робота был получен в 1961 году (подан в 1954) изобретателем Джорджем Деволом (George Devol), который основал в 1956 году вместе с инженером Джозефом Энгельбергом (Joseph F. Engelberger) компанию по первому серийному производству роботов Unimation Inc (от Universal Automatic – универсальная автоматизация). Энгельберг привлекал в компанию дополнительное финансирование, распространял идеи роботизации среди потенциальных заказчиков и популяризировал идею промышленной автоматизации. Несмотря на то, что патент был закреплен за Деволом, именно Энгельберга принято считать «отцом робототехники».


Возможностями автоматизации в первую очередь воспользовались автомобилестроители, и уже в 1961 году начались поставки роботов Unimate на завод General Motors, Нью Джерси. Роботы Unimate были сконструированы с использованием гидроусилителей и программировались в обобщенных координатах, воспроизводя последовательность действий, записанных на магнитный барабан.

Позднее компания Unimation передала свою технологию в Kawasaki Heavy Industries и Guest­Nettlefolds, таким образом открыв производство роботов Unimate в Японии и Англии.

Основное развитие промышленных роботов началось в конце 60­х – начале 70­х годов, когда в 1969 году в Стенфордском университете студент факультета машиностроения Виктор Шейнман (Victor Scheinman) разработал прототип современного робота, отдаленно воспроизводящего возможности человеческой руки, ­ Stanford arm с шестью степенями свободы, электрическими приводами и компьютерным управлением.

В 1969 году появляются разработки в области робототехники компании Nachi. В 1973 году немецкая компания KUKA Robotics демонстрирует своего первого робота Famulus, и почти одновременно швейцарская компания ABB Robotics выводит на рынок робота ASEA. Оба робота имеют по шесть управляемых осей с электромеханическим приводом.

В 1974 году промышленные роботы разрабатываются и устанавливаются на собственное производство в компании Fanuc, а в 1977 году первый робот Yaskawa появляется у компании Motoman.

Дальнейший рост промышленной робототехники был обусловлен развитием компьютера, электроники и масштабным расширением компаний на рынке автомобилестроения – основных заказчиков роботов. General Motors в 80­х годах потратила более 40 миллиардов долларов на разработки в области автоматизации. Основным рынком роботов считается внутренний рынок Японии, на котором находится большинство компаний по их производству: Fuji, Denso, Epson, Fanuc, Intelligent Actuator, Kawasaki, Nachi, Yaskawa (Motoman), Nidec, Kawada. В 1995 году из 700 000 роботов, используемых в мире, 500 000 работали в Японии.

В Советском Союзе крупнейшим интегратором робототехники стала компания «Автоваз». Развивая мощности по выпуску автомобилей и перенимая опыт мировых автомобилестроительных предприятий, в 1984 г. она приобрела лицензию фирмы KUKA. На базе отдельного станкостроительного подразделения концерна «Автоваз» началось производство отечественных роботов, применяемых на поточных линиях предприятия. На сегодняшний день ОАО «Автоваз» совместно с МГТУ «Станкин» реализуют программу выпуска линейки роботов для промышленных производств ­ до 1000 единиц ежегодно.

Преимущества использования промышленных роботов в производстве

Современный промышленный робот­манипулятор в большинстве случаев применяется для замены ручного труда. Так, робот может использовать инструментальный захват для фиксации инструмента и осуществления обработки детали либо держать саму заготовку для того, чтобы подавать ее в рабочую зону на дальнейшую обработку.

Робот имеет ряд ограничений, таких как зона досягаемости, грузоподъемность, необходимость избежать столкновения с препятствием, необходимость предварительного программирования каждого движения. Но при его правильном применении и предварительном анализе работы системы робот способен обеспечить производство рядом преимуществ, повысить качество и эффективность рабочего процесса.

Для оценки актуальности внедрения робота в процесс обработки приведем ряд преимуществ и недостатков применения робототехники на предприятии:

1. Производительность

При применении робота производительность обычно повышается. Прежде всего, это связано с более быстрым перемещением и позиционированием в процессе обработки, также играет роль и такой фактор, как возможность автоматической работы 24 часа в сутки без перерывов и простоев. В случае правильно выбранного применения роботизированной системы производительность по сравнению с ручным производством возрастает в разы или даже на порядок.

Следует отметить, что при широкой номенклатуре изделий, постоянных переналадках, необходимости большого количества периферийного оборудования для разных деталей производительность может и снижаться, делая процесс неэффективным и сложным.

2. Улучшение экономических показателей

Заменяя человека, робот эффективно снижает затраты на оплату специалистов. Особенно данный фактор важен в экономически развитых странах с высокими заработными платами рабочих и необходимостью больших надбавок за переработку, ночное время и т.д. В случае применения робота или автоматизированной системы, в цехе необходимо лишь наличие оператора, контролирующего процесс, при этом оператор может контролировать сразу несколько систем.

При первоначальной закупке роботизированная ячейка – достаточно серьезное финансовое вложение, и предприятие заинтересовано в его быстрой окупаемости. Неправильное применение оборудования и ошибки в его комплектации и расстановке могут привести к увеличению времени обработки либо трудоемкости работы, тем самым снизить экономичность производства.

3. Качество обработки

Часто причиной внедрения технологической системы на базе промышленного робота становится необходимость обеспечения заданного в документации на изделие качества обработки.

Высокая точность позиционирования промышленных роботов (0.1 ­ 0.05 мм) и повторяемость обеспечивают надлежащее качество изделия и устраняют возможность производственного брака. Исключение человеческого фактора приводит к минимизации рабочих ошибок и сохранению постоянной повторяемости на всей производственной программе.

4. Безопасность

Применение робота достаточно эффективно на вредном производстве, оказывающем неблагоприятное воздействие на человека, например, в литейной промышленности, при зачистке сварных швов, окрасочных работах, сварочных процессах и т.д. В случаях, когда применение ручного труда ограничивается законодательством, внедрение робота может являться единственным решением.

При работе в цехе периметр рабочей зоны ограждается различными устройствами для предотвращения проникновения человека в зону действия робота. Наличие защитных систем является главным и неотъемлемым условием безопасной работы роботизированных систем по всему миру.

5. Минимизация рабочего пространства

Правильно скомплектованная ячейка на базе промышленного робота более компактна, чем рабочая зона для выполнения ручных работ. Это достигается более эргономичной конструкцией сборочных кондукторов, небольшим размером места, занимаемого роботом, возможностью его размещения в подвешенном состоянии и т.д.

6. Минимальное обслуживание

Современные промышленные роботы, благодаря применению асинхронных двигателей и качественных редукторов, практически не нуждаются в обслуживании. Изготавливаются специальные модели роботов из нержавеющей стали, например, для работы в медицинской и пищевой промышленности, при высоких и низких температурах и в агрессивных средах. Это делает их менее восприимчивыми к окружающей среде и повышает износостойкость оборудования.

Применение роботов в отдельных производственных процессах

Сварка

Сварка считается наиболее типичным процессом для внедрения роботов. Исторически роботизированная сварка начала широко применяться в автомобилестроении, и в настоящее время практически все автомобильные производства в мире оснащены конвейерами, которые могут состоять из нескольких сотен роботизированных комплексов.


По данным исследований, около 20% всех промышленных роботов используются в сварочных процессах (в США около половины). Вторым по значимости применением считается укладка грузов на поддоны, применяемая на предприятиях с высоким объемом продукции, в особенности в пищевых производствах.

Аргонно­дуговая (TIG, MIG, MAG) или точечная сварка (RWS) с использованием робота обеспечивает более высокое качество изделий по сравнению с принятым сварочным процессом ручной или полуавтоматической сварки. Возможности периферийного оборудования позволяют обеспечивать полный контроль процесса, например, реализовать функцию бесконтактного слежения за сварным швом.

В настоящее время активно развивается применение роботизированной лазерной сварки (LBW), позволяющей лазеру сфокусироваться на точке с варьированием от 0,2 мм, с минимизированием теплового воздействия на изделие и высокой точностью и качеством сварки. Возможность выдержать сверхвысокие длины фокусировки (до 2 метров) и тем самым обеспечить дистанционную сварку существенно расширяет границы применимости сварочного процесса и увеличивает производительность изготовления изделия. Лазерная сварка активно применяется в авиастроении, автомобилестроении, приборостроении, медицине и т.д.

Переход на автоматическую сварку с использованием роботов минимизирует время цикла в несколько раз. Это достигается эргономичной конструкцией или модернизацией сварочной оснастки для обеспечения быстрого цикла сбора изделия, высокими скоростями перемещения робота и организацией поточного производства с обеспечением единовременной сборки­сварки изделий. Необходимо отметить тот факт, что роботизированные системы являются единственной возможностью совмещения обрабатывающих операций, к примеру, обеспечения плазменного или лазерного раскроя, и последующей сварки с помощью смены горелки или режимов сварки без переустанова детали.

Также роботизация сварочного процесса позволяет интегрировать программы сварки в применяемые на предприятии CAD/CAM системы для обеспечения процесса цифрового производства.

Автоматизация загрузки и выгрузки изделий – процесс, имеющий значение на любом современном производстве с высокой производительностью или большим весом и габаритами изделий. Так, роботы применяются для загрузки заготовок в металлообрабатывающие станки, выгрузки готовых изделий и укладки на соответствующие паллеты. Причем достаточно часто один робот обслуживает сразу нескольких машин и работает с разными изделиями, что удешевляет инвестиции в подобную автоматизацию и расширяет функционал внедряемого робота.






В Европе прослеживается тенденция к максимальному увеличению производительности за счет безостановочной круглосуточной работы, внедряется философия безлюдного производства, связанная со стремлением минимизировать расходы на персонал.

В СССР задачи сокращать ручной труд не ставили, робототехника применялась для автоматизации технологических машин, где могут существовать ограничения на труд человека, – штампов, прессов, гальванических ванн, нагревательных печей и т.д. Кроме того, человек может быть ограничен весом изделий. Так, для деталей от 20­30 килограмм требуется применение дополнительного грузоподъемного оборудования.

Внедрение автоматизации в литейных и кузнечно­прессовых цехах обусловливается необходимостью устранения тяжелых условий для рабочих и повышения качества производства: выгрузка тяжелых поковок, литейных заготовок, последующее охлаждение, загрузка в штампы для пресса и т.д. Не случайно, третье место применения роботов после загрузки­выгрузки занимает именно совмещение с кузнечно­прессовым и литейным оборудованием. Практически все процессы литья под давлением в Европе сопровождаются автоматизацией с использованием роботов.

Применение технологических систем на базе роботов может стать альтернативой использованию обычного специализированного на каком­либо технологическом процессе оборудования.

В среднем, цена внедрения робота с установкой и необходимым пакетом для взаимодействия с оборудованием обойдется предприятию в 5 млн. рублей, представляя собой действительно гибкое решение, которое может в будущем использоваться и для иных задач или реализовывать вспомогательные операции, к примеру, сортировку различных изделий, удаление заусенцев, сборочные операции и т.д.

Металлообрабатывающие процессы с использованием роботов

Помимо сварочных и вспомогательных операций роботы могут применяться в самих процессах обработки, выступая альтернативой обрабатывающему оборудованию.





Раскрой материала

Промышленные роботы активно используются для операций раскроя металла с помощью плазмы, лазера и гидроабразивной резки. В отличие от традиционной установки плазменного раскроя плазменные горелки с применением робота могут осуществлять трехмерную резку, что актуально для обработки металлоконструкций, металлопроката (тавров, двутавров, уголков и т.д.), а также подготовки поверхностей под углом для дальнейшей сварки, вырезки различных отверстий и т.д.

Раскрой металла с помощью лазерной резки выступает альтернативой для трехмерного лазерного комплекса, позволяя выполнить любой раскрой в трехмерном пространстве. Данная технология широко используется в автомобилестроении, а также достаточно эффективна для обрезки краев изделий после штамповочных и формовочных операций. Роботизированная ячейка для лазерной резки может использоваться и для лазерной сварки, а также в дальнейшем совмещать двух роботов, использующих один источник.

Гидро­ или гидроабразивная резка роботом расширяет возможности раскроя до обработки любых трехмерных деталей, повышает производительность. Гидроабразивная резка отличается отсутствием теплового воздействия и возможностью обработки практически любых материалов. Так, гидроабразивная резка роботом используется для вырезки всех отверстий в стали толщиной 3 мм по корпусу автомобиля Renault Espace на заводе во Франции (Romorantin, France). Полный цикл вырезки отверстий занимает 2 минуты 30 секунд.

Гибка труб

Гибка труб роботом используется в ограниченном виде, представляя собой бездорновую гибку с помощью позиционирования заготовки роботом и использования сопутствующей гибочной головки. Преимуществом такой обработки является высокая скорость изготовления, возможность обработки изделий с уже существующими присоединительными элементами и одновременное совмещение с загрузкой­выгрузкой изделий тем же роботом. Такие системы используются в автомобилестроении, изготовлении металлической мебели и других товаров народного потребления, где применяется бездорновая гибка.

Фрезерование, сверление, удаление заусенцев и сварных швов

Использование роботов для фрезерования, сверления и обработки кромок металлов, пластмасс, древесины и камня – новая, динамично развивающаяся технология. Она стала возможна прежде всего благодаря увеличению жесткости и точности современных манипуляторов. Основные преимущества заключаются в практически неограниченной рабочей зоне робота (систему можно оборудовать линейной осью в несколько десятков метров), высокой скорости обработки и большом количестве управляемых осей. Например, типичная фрезеровальная ячейка на базе промышленного робота имеет 8 – 10 управляемых осей и позволяет получить максимальную гибкость обработки.



Возможно использование самого разного приводного инструмента, пневматического и электрического, с воздушным и жидкостным охлаждением. Для снятия заусенцев с кромок деталей после фрезерования используются пневматический приводной инструмент с частотой вращения 35 000 об/мин, а для фрезерования металлов – электрический шпиндель с водяным охлаждением, мощностью 24 кВт.

Отдельно стоит упомянуть такой тяжелый, трудоемкий процесс для человека, как зачистка сварного шва на изделии. Применение автоматизации позволяет снизить воздействие вредных производственных факторов и существенно уменьшить время на выполнение зачистки.

Полирование и шлифование

Шлифование металлических деталей – сложный и грязный процесс, крайне вредный для человека. В то же время его автоматизация довольно проста и не представляет проблемы для современных промышленных манипуляторов. Робот всегда сможет повторить траекторию движения шлифовальщика, обеспечив при этом неизменную повторяемость и отличное качество обработки.

Процессы абразивной обработки поверхности можно разделить на два основных класса – шлифование и полирование. При шлифовании используют абразивные круги или ленты, съем материала может быть существенным, образуется много пыли. Полирование – более тонкий процесс, для которого применяются войлочные круги с абразивной пастой, съема материала при этом практически не происходит. Как правило, эти процессы комбинируют. Преимущество робота заключается в том, что он может обрабатывать деталь на нескольких абразивных инструментах поочередно, за один установ. Например, сначала снимается поверхностный слой на абразивной ленте, а потом деталь заполировывается на войлочном круге с автоматической подачей пасты.

Перспективы применения роботов

Достоинство робототехники – гибкость применения и возможность использования в практически неограниченном количестве процессов. Так, например, в авиастроительной отрасли в целях повышения качества при снижении ручного труда роботы начинают применяться в процессах клепки, обшивки фюзеляжа, выкладки композитных материалов, при различных работах в условиях ограниченного пространства. Активно распространяется применение роботов в измерительных системах. В США и Европе роботы используются в камерах очистки изделий под высоким давлением.

В России применение роботов пока ограничено. Так, в докризисный 2007 год было внедрено до 200 роботизированных систем с общей численностью около 8000 промышленных роботов по стране. Для примера, за тот же год в США было внедрено около 34 тыс., Европе – 43 тыс., Японии – 59 тыс. роботизированных систем. Причинами отставания являются недостаточная информированность российских технических специалистов и менеджмента предприятий, желание избежать больших затрат на их внедрение, низкая стоимость ручного труда.

Вместе с тем, в отличие от стационарного ЧПУ оборудования, робот ­ более широкофункциональная система, ориентированная на повышение качества и производительности производства и минимизацию ручного труда, приводящих в конечном итоге к положительному экономическому эффекту и повышению конкурентоспособности предприятия. А потому все больше российских интеграторов готовы решать задачи прикладного внедрения роботов в технологические процессы. Мы надеемся, что в течение ближайших лет концепция «безлюдного производства» в России будет интенсивно набирать обороты.

Игорь Проценко, Борис Иванов

ООО «Нью Лайн Инжиниринг»

Конечно, компаний гораздо больше — мы выделили лишь самые значимые из них, а также те, которые занимаются разработкой промышленных роботов в России и странах СНГ.

Seiko Epson Corporation более известная как Epson — структурное подразделение японского многоотраслевого концерна Seiko Group. Один из крупнейших производителей струйных, матричных и лазерных принтеров, сканеров, настольных компьютеров, проекторов, а также роботов для монтажа мелких деталей.

Роботы Epson впервые появились на мировом рынке в далеком 1984 году. Изначально созданные для удовлетворения потребностей внутренней автоматизации, роботы компании Epson быстро стали популярным на многих известных производственных площадках по всему миру. За последние 30 лет Epson Robots стала лидером отрасли роботизации для сборки мелких деталей и привнесла множество новинок, включая управление на базе ПК, компактные scara роботы и многое другое. На сегодняшний день более 55 000 роботов Epson установлено на заводах по всему миру. Многие из ведущих компаний-производителей полагаются на этих роботов каждый день, чтобы снизить издержки производства, улучшить качество продукции, увеличить производительность.

Comau (Италия)

Компания Comau — итальянская многонациональная компания, базирующаяся в Турине и являющаяся частью FCA Group. Comau — это интегрированная компания, специализирующаяся в области промышленной автоматизации с международной сетью из 35 действующих центров, 15 производственных предприятий и 5 инновационных центров по всему миру. Компания предлагает полные комплексные решения, услуги, продукты и технологии с компетенциями, начиная от резки металла до полностью роботизированных производственных систем для удовлетворения конкретных производственных потребностей в различных отраслях промышленности, от автомобильной, железнодорожной и тяжелой промышленности до возобновляемой энергетики и других отраслей.

Comau выпускает различные модели промышленных роботов грузоподъемностью до 800 кг.

Применяемость роботов Comau стандартна для любых роботов с антропоморфной кинематикой: сварочные технологии, паллетирование, механическая обработка, нанесение составов: окраска, грунтовка, клеи, геметики.

Panasonic (Япония)

Panasonic - это не только известная во всем мире японская машиностроительная корпорация с почти столетней историей (компания была основана в 1928 году), которая производит бытовую технику и электронные товары, но и один из лидеров рынка промышленной робототехники и сварочного оборудования.

Panasonic Robots - подразделение глобальной корпорации Panasonic, которое специализируется на разработке, производстве и продаже промышленных роботов различного назначения. В частности, робот для сварки от Panasonic - это технологии «все в одном», без дополнительного интерфейса между роботом и сварочным источником. Сегодня продажи сварочных роботов Panasonic достигли отметки 40 000 единиц. Компания также выпускает универсальные манипуляторы для многих видов производственных задач.

Роботы Panasonic отличаются высокой надежностью, долгим сроком службы и относительно низкой стоимостью. В настоящее время они успешно применяются в автомобильной, нефтехимической промышленности, машиностроении, а также логистике (обработке грузов).

Adept (США)

Adept Technology, Inc. - многонациональная корпорация со штаб-квартирой в Калифорнии. Компания специализируется на промышленной автоматизации и робототехнике, включая программное обеспечение. Компания Adept была основана в 1983 году. Все началось, когда основатели компании Брюс Шимано и Брайан Карлайл, оба аспиранты Стэнфордского университета, начали работать с Виктором Шейнманом в стенфордской лаборатории искусственного интеллекта.

Сегодня компания активно работает в различных отраслях промышленности, требующих высокой скорости, точности обработки, включая обработку пищевых продуктов, потребительских товаров и электроники, упаковочной, автомобильной, медицинской и лабораторной автоматизации, а также развивающиеся рынки, такие как производство солнечных панелей.

Universal Robots (Дания)

Universal Robots — это датский производитель небольших гибких производственных совместных роботов, т. н. коллаборативных. Компания была основана в 2005 году тремя датскими инженерами. В ходе совместных исследований они пришли к выводу, что на тот момент на рынке робототехники преобладали тяжелые, дорогие и громоздкие роботы. Как следствие, они разработали идею сделать робототехнику доступной для малых и средних предприятий. В 2008 году первый UR5 cobots был представлен на датском и немецком рынке. В 2012 году был запущен второй робот — UR10. На выставке automatica 2014 в Мюнхене компания запустила полностью пересмотренную версию своего коллаборативного робота. Год спустя, весной 2015 года, был представлен новый робот UR3.

Rozum Robotics (Беларусь)

Rozum Robotics - компания-производитель инновационных продуктов в сфере робототехники. В портфеле компании сегодня ультра-лёгкий коллаборативный робот-манипулятор PULSE. Это лёгкий, компактный, простой в использовании робот, предназначенный для работы на производстве, в сфере обслуживания (а в перспективе и в доме).

Благодаря продуманным характеристикам безопасности робот компании Rozum Robotics не может нанести вред в случае столкновения с человеком. Это позволяет устанавливать роботов рядом с человеком для помощи в рутинных, неинтересных или опасных задачах.

Коллаборативный робот-манипулятор Rozum Robotics может быть использован для автоматизации множества задач и позволяет модернизировать и оптимизировать процессы на всех участках производства.

Торговый дом «АРКОДИМ » (Россия)

Компания «АРКОДИМ-Про» была основана в 2013 году в Казани и изначально производила станки с ЧПУ. Идея освоить производство роботов пришла весной 2014 года. Анализируя рынок станкостроения в России, руководители компании пришли к выводу, что роботов у нас никто не производит, а вот производителей станков с ЧПУ предостаточно. В результате всерьёз задумались разработать собственного промышленного робота.

На сегодняшний день компания выпускает декартовых линейных роботов-манипуляторов ARKODIM. Роботы данной архитектуры нашли широкое применение в производствах, занимающихся литьём пластика под давлением. Также роботы ARKODIM широко применяются вкупе с различными конвейерами, где они захватывают подаваемые конвейером детали и укладывают их в упаковку. Если робота оснастить разрабатываемой этой же компанией системой машинного зрения, то он сможет выполнять ещё ряд дополнительных функций. Ещё одной из сфер применения роботов ARKODIM является сварка.

BIT Robotics (Россия)

Компания BIT Robotics создает новое оборудование для новых технологических процессов. BIT Robotics является создателем первого российского промышленного дельта робота. Созданный компанией дельта робот по характеристикам не уступает самым современным и скоростным иностранным аналогам. В его конструкции применены самые передовые материалы, в том числе композитные.

Возможности предприятия и компетенции позволяют создавать любые роботизированные системы, широко применять серво системы и техническое зрение. Инженеры предприятия имеют богатый опыт работы. Большинство из них из космической и авиационной отрасли. Компания располагает самым современным производством, оснащенным станками с ЧПУ, литейным производством, гальваническим цехом, производством полимерных материалов и пр.

Алиса Конюховская - [email protected]

Мировой рынок промышленной робототехники показывает высокий темп роста. Какие регионы и страны являются лидерами мирового рынка? Какие отрасли демонстрируют наибольший спрос? На каком уровне развития находится российский рынок промышленной робототехники? Какие существуют ограничения развития российского рынка? Ответы на все эти вопросы представлены в данной статье.

С 2010 г. спрос на промышленные роботы значительно вырос в связи с трендом автоматизации производства и техническими усовершенствованиями промышленных роботов. В период между 2010 и 2014 гг. средний рост их продаж составлял 17% в год: между 2005 и 2008 гг. было продано в среднем около 115 тыс. шт. роботов, в то время как между 2010 и 2014 гг. средний объем продаж вырос до 171 тыс. шт. (рис. 1). Увеличение поставок произошло приблизительно на 48%, что является признаком значительного роста спроса на промышленных роботов по всему миру. В 2015 г. было продано уже более 250 тыс. роботов, что стало новым рекордом рынка, который вырос на 8% за год. Наибольший спрос был зарегистрирован в автомобилестроении.

Регионы

Азия (включая Австралию и Новую Зеландию) – самый крупный рынок: в 2014 г. было продано около 139 300 промышленных роботов, что на 41% превысило показатель 2013 г.. В 2015 г. в азиатском регионе было продано более 144 тыс. шт.

Европа – второй по размеру рынок, где продажи в 2014 г. увеличились на 5%, т.е. до 45 000 шт. В 2015 г. продажи в Европе выросли на 9% и достигли 50 000 единиц. Самый бурный рост в 2015 г. продемонстрировал рынок Восточной Европы – в 29%.

Северная Америка – третий рынок по объему продаж: в 2014 г. было продано 32 600 шт., что на 8% больше, чем в 2013 г., а в 2015 г. было продано 34 000 шт., что стало новым рекордом для региона. В первом квартале 2016 г. в регионе было продано 7 125 роботов на $448 млн. Также североамериканскими компаниями было заказано 7 406 роботов общей стоимостью около $402 млн, что превышает на 7% объем заказов за тот же период в прошлом году.

Страны-лидеры

Китай – крупнейший рынок промышленных роботов и самый быстрорастущий рынок в мире. В 2014 г. было продано 57 096 промышленных роботов, что на 56% больше, чем в 2013 г.. Из них китайскими поставщиками была произведена установка около 16 000 роботов – по информации Китайского Альянса Робототехнической Отрасли (China Robot Industry Alliance, CRIA). Объем продаж стал на 78% выше, чем в 2013 г.. Частично это связано с тем, что увеличилось число компании?, которые впервые предоставили свои данные о продажах в 2014 г.. Иностранные поставщики промышленных роботов в Китае увеличили свои продажи на 49%, т.е. до 41100 единиц, включая роботов, изготовленных международными производителями в Китае. В период между 2010 и 2014 гг. общий объем поставок промышленных роботов увеличивался в среднем примерно на 40% за год, а в 2015 г. Китай продолжил демонстрировать высочайший рост, продажи достигли 66 000 единиц, а рынок вырос на 16%. Такое быстрое развитие является уникальным рекордом для истории робототехники. В самых различных отраслях Китая наблюдается всё большее инвестирование в автоматизацию производства.

В Японии в 2014 г. было продано 29 300 промышленных роботов, рынок вырос на 17%. С 2013 г. Япония стала вторым по величине рынком по размеру годовых продаж. Продажи роботов в Японии имели тенденцию к снижению с 2005 г., когда был пик продаж, который составил составлял 44 000 роботов, до 2009 г., когда продажи упали до 12 800 единиц. В период между 2010 и 2014 гг. продажи увеличивались в среднем на 8% за год.

Рынок промышленных роботов США , третий по величине в мире, в 2014 г. увеличился на 11%, достигнув пика в 26 200 единиц. Драйвер этого роста – тенденция к автоматизации производства с целью укрепления позиции? американской промышленности на мировом рынке и сохранения производства в домашнем регионе, а в некоторых случаях и с целью возращения производства из других регионов.

Продажи в Республике Корея в 2014 г. увеличились на 16%, до 24 700 единиц, немного не дотянув до рекорда 2011 г. – 26 536 единиц. Как и в 2013 г., существенно увеличились закупки промышленных роботов у поставщиков автомобильных компонентов (в частности, в производстве электрических компонентов, например, батареи? и т.п.), в то время как почти все другие отрасли в 2014 г. купили значительно меньше роботов. В течение 2010-2014 гг. годовой объем продаж роботов в Республике Корея был более или менее стабилен.

Германия является пятым по величине рынком промышленных роботов. В 2014 г. продажи роботов увеличились на 10%, до 20 100 единиц, что стало рекордом продаж. Поставки роботов в Германию увеличивались за 2010-2014 гг. в среднем на 9%, несмотря на существующую в стране высокую плотность роботов. Основным драйвером роста продаж в Германии была автомобильная промышленность.

С 2013 г. Тайвань занимает шестое место среди самых важных рынков промышленных роботов в мире по оценке годовых поставок в страну. Инсталляция робототехнических систем значительно увеличивалась между 2010-2014 гг. – в среднем на 20% в год. В 2014 г. объем продаж роботов увеличился на 27%, до 6 900 единиц. Тем не менее, количество установленных роботов в Тайване значительно ниже, чем в Германии, которая занимает пятое место с 20 100 единицами.

Италия является вторым по величине рынком промышленных роботов в Европе после Германии и занимает 7 место в общемировом рейтинге по поставкам промышленных роботов. Продажи в ней увеличились на 32% – до 6 200 единиц в 2014 г.. Начиная с 2001 г., это второй столь высокий уровень годовых продаж, что является явным признаком восстановления экономики Италии. В период между 2010 и 2013 гг. годовой объем продаж в Италии был довольно слабым в связи с кризисной ситуацией в стране.

Таиланд также является растущим рынком промышленных роботов в Азии, занимая 8 место в 2014 г. среди других рынков. Было установлено 3 700 роботов – лишь 2% от общего числа мировых поставок.

В Индию в 2014 году было продано около 2 100 промышленных роботов, что является новым пиком для страны. Поставки роботов в другие страны Южной Азии (Индонезия, Малайзия, Вьетнам, Сингапур и др.) увеличивались в 2014 г.: 10 140 единиц в 2014 г. по сравнению с 661 единицами в 2013 г..

Во Франции также восстановился рынок промышленных роботов – 3 000 единиц (+36%). В Испании продажи промышленных роботов снизились на 16%, до 2 300 единиц. После значительных инвестиции? между 2011 и 2013 гг. продажи в автомобильной промышленности заметно снизились, хотя другие отрасли продолжали увеличивать инвестирование в робототехнику. Продажи промышленных роботов в Великобритании снизились в 2014 г. до 2 100 единиц после значительных инвестиции? в автомобильную промышленность в 2011-2012 гг.

Спрос на промышленных роботов по отраслям

Основные «катализаторы» роста мировых продаж промышленных роботов – автомобильная промышленность и электрика/электроника.

С 2010 г. автомобильная промышленность – это самый важный клиент производителей промышленных роботов, значительно увеличивающий инвестирование в промышленных роботов по всему миру. В 2014 г. был зафиксирован новый пик продаж: на предприятиях было установлено около 98 000 новых роботов, что на 43% больше, чем в 2013 г.. Доля автомобильной промышленности от общего числа поставок промышленных роботов равняется примерно 43%. В период между 2010 и 2014 гг. продажи роботов в автомобильной промышленности возрастали за год в среднем на 27%. Инвестиции в новые производственные мощности на развивающихся рынках и инвестиции в модернизацию производства в основных странах, производящих автомобили, вызвали рост продаж робототехнических установок. В 2014 г. большая часть роботов была продана производителям элементов автомобильной электроники для производства аккумуляторов и других электронных деталей в автомобилях.

Продажи роботов для производства электрики и электроники (в том числе компьютеров, аппаратуры, радио, телевизоров, устройств связи и др.) значительно увеличились в 2014 г. и выросли на 34%, до 48 400 единиц. Доля от общего объема поставок – около 21%. Растущий спрос на электронику и новые продукты, а также необходимость автоматизировать производство, были движущими факторами для ускоряющегося спроса.

Продажи во всех отраслях промышленности, за исключением автомобилестроения и электроники/электрики, увеличились в 2014 г. на 21%. Между 2010 и 2014 гг., средний темп проста составил 17%. Темп роста продаж автомобильной промышленности в данный период равнялся 27%, а электрической/электронной промышленностей – 11%. Это явный признак того, что число продаж увеличилось не только в областях, которые являются основными потребителями промышленных роботов (автомобилестроение и производство электрики и электроники), но и в других отраслях промышленности. Поставщики роботов сообщают, что число клиентов в последние годы демонстрирует значительный рост. Хотя число заказанных клиентом роботов зачастую очень невелико.

Плотность роботизации

Во многих странах наблюдается высокий потенциал использования промышленных роботов. Сравнение в разных странах количественных показателей, например, общего числа единиц робототехники на рынке, может вводить в заблуждение. Для того чтобы учитывать различия в масштабах производящей промышленности, предпочтительно использовать показатель плотности роботизации. Эта плотность выражается в отношении количества многофункциональных роботов на 10 000 работников, задействованных в обрабатывающей, автомобильной промышленности или в промышленности в целом, которая включает в себя все промышленные отрасли за исключением автомобильного производства.

Приблизительная мировая плотность роботов равняется 66 установленным промышленным роботам на 10 000 работников сферы обрабатывающей промышленности (рис. 2). Производства с самым высоким уровнем роботизации – это производства в Республике Корея, Японии и Германии. За счет продолжения расширенной установки роботов на протяжении последних нескольких лет в 2014 г. Республика Корея была первой по уровню плотности роботов (478 промышленных роботов на 10 000 работников). Продолжает снижаться плотность роботов в Японии: в 2014 г. она достигла отметки в 314 единиц. В Германии наблюдается обратная динамика: плотность роботов выросла до 292 единиц. Соединенные Штаты Америки входят в пятерку крупнейших мировых рынков роботизированного производства: плотность в США в 2014 г. составила 164 единицы техники на 10 000 рабочих. Китай – самый большой рынок робототехники в мире с 2013 г. – достиг отметки в 36 единиц техники на 10 000 рабочих, что демонстрирует высокий потенциал для дальнейшей установки роботов в этой стране.

В 2014 г. плотность роботизации в обрабатывающей промышленности по регионам составила: 85 в Европе, 79 в Америке, 54 в Азии (рис. 3).

Плотность роботизации в автомобильной промышленности выше. Несмотря на общее сокращение показателей уровня плотности роботов, на данный момент в Японии самый высокий показатель по плотности использования робототехники в автомобильной промышленности (1 414 единиц техники установлено на 10 000 рабочих). Далее следуют Германия (1 149 единиц техники на 10 000 рабочих), Соединенные Штаты Америки (1 141 единиц техники на 10 000 рабочих) и Республика Корея (1 129 единиц техники на 10 000 рабочих).

С 2007 г. значительно возросла плотность робототехники в автомобильной промышленности в Китае (305 единиц техники), однако она все еще находится на среднем уровне. Причиной этому служит большое количество рабочих, задействованных в данной сфере. Согласно «Китайскому статистическому ежегоднику», на 2013 год в автомобильной промышленности работали около 3,4 млн. людей (включая производство автомобильных запчастей). В 2014 г. в Китае было произведено около 20 млн. автомобилей, что стало рекордом для страны и составило примерно 30% всех произведенных в мире автомобилей. Необходимая модернизация и дальнейший прирост мощностей значительно увеличат установку роботов в ближайшие годы: потенциал для установки робототехники на этом рынке по-прежнему огромен.

Россия

В России продажи роботов крайне низкие – около 500-600 роботов в год, плотность роботизации составляет около 2 роботов на 10 000 рабочих. Помимо действительно низкого уровня использования РТК в производстве, эти цифры также обусловлены сложностью получения данных о рынке, который разрознен и до недавнего времени целенаправленно не изучался. В 2015 г. была образована Национальная Ассоциация участников рынка робототехники (НАУРР), которая, помимо общих задач развития рынка, собирает статистику и создает аналитические материалы о рынке робототехники.

Общее число инсталлированных к 2015 г. промышленных роботов в Российской Федерации – около 2 740 шт. (рис. 4). С 2010 по 2013 год наблюдался стабильный рост продаж промышленных роботов – в среднем около 20% в год. В 2013 г. продажи достигли своего максимума – 615 роботов (увеличение на 34% по сравнению с 2012 г.), но в 2014 г. произошло резкое падение продаж на 56% – до приблизительно 340 роботов. Причиной этому является сильное изменение валютного курса.

Предварительные данные продаж 2015 г. – около 550 роботов. Лидерами российского рынка промышленной робототехники являются KUKA и FANUC, которые занимают около 90% рынка.

В России крайне мало отечественных производителей промышленных роботов. В 2015 г. закрылся Волжский машиностроительный завод, который долгое время был единственным производителем промышленных роботов в стране. В 2016 г. планируется запуск нового завода по производству промышленных роботов в Башкирии. Российские компании «Рекорд-Инжиниринг», «БИТ-Роботикс», «Эйдос-Робототехника» разрабатывают промышленных роботов, но объем их продаж пока неизвестен.

Помимо производителей промышленных роботов, важными игроками рынка являются системные интеграторы, которые встраивают робота в технологический процесс. Стоимость самого робота может составлять около 50% от цены решения, которое требует специализированной оснастки, настройки ПО, сервиса и т.д. В России существует около 50 компаний-интеграторов, которые отличаются по области специализации и своему размеру.

Одной из причин слабого уровня развития рынка промышленной робототехники является малая информированность предприятий о возможностях роботизации производственных процессов и связанных с этим сокращением издержек. Интеграторы почти не занимаются подсчетом реальной окупаемости РТК после установки, оставляя это на откуп предприятиям. Стимулировать развитие промышленной робототехники в стране можно через распространение систематизированной информации о реальной окупаемости РТК по отраслям и выполняемым операциям.

Для исследования различных барьеров развития робототехники (как промышленной, так и сервисной) Национальная Ассоциация участников рынка робототехники в декабре 2015 г. провела опрос российских робототехнических компаний. Ответы респондентов на вопрос об ограничениях, которые препятствуют развитию робототехники в РФ, о существующих рисках и барьерах на рынке робототехнике в целом, структурированы в таблице по группам «Образование и культура», «Технологии», «Экономика», «Государство», «Наука».

Таблица. Результаты опроса россии?ских робототехнических компаний о препятствиях развитию робототехники в стране
Группа Причины
Образование

и культура

  • Менталитет (в вопросах спроса на продукт и ведения бизнеса);
  • Низкая технологическая культура / устаревшая культура производства;
  • Низкий экспертный уровень / слабое профессиональное сообщество;
  • Малое количество узкоспециализированных специалистов;
  • Низкая квалификация в общей массе рабочего и инженерного состава предприятий для освоения робототехники;
  • Отсутствие высоких компетенций в области маркетинга у специалистов внутри РФ;
  • Слабая учебная инфраструктура;
  • Малое количество образовательных центров;
  • Медленное проникновение робототехники в учебные программы.
Технологии
  • Наличие готовых импортных решений;
  • Недостаток собственных технологий производства;
  • Отсутствие российской электронной базы, все современные комплектующие и технологии зарубежные;
  • Слабая инфраструктура;
  • Нехватка оборудования и ПО для проектирования;
  • Слабые аккумуляторы.
Экономика
  • Экономическая нестабильность;
  • Недостаток финансирования области;
  • Неправильное распределение бюджета предприятия;
  • Слабая заинтересованность, отсутствие заказчиков на внутреннем рынке;
  • Нет возможности выиграть конкурс на разработку – отсутствие гарантированного спроса;
  • Сложности с экспортом продукции с территории РФ;
  • Малый опыт работы в гражданской сфере;
  • Недоступность робототехники для обычных граждан в силу роста стоимости российских разработок по причине инфляции;
  • Отсутствие в РФ собственных международных корпораций, способных покупать стартапы и выводить их на мировой рынок;
  • Небольшой объем рынка венчурных инвестиций внутри РФ, ограничивающий скорость развития отечественных проектов по сравнению с аналогичными за рубежом (например, в США).
Государство
  • Бюрократия;
  • Отсутствие нормативно-правовой базы;
  • Устаревшие нормы качества;
  • Таможенная служба затрудняет и замедляет поставки и закупки комплектующих;
  • Недостаток государственной поддержки робототехники в целом;
  • Отсутствие реальной поддержки малых инновационных компаний со стороны государства;
  • Инертность и низкий старт реализации целевой программы развития госпредприятий с применением робототехники;
  • Ориентация на задачи служб специального назначения;
  • Объединение гражданских и военных разработок – нет органа, который бы решал вопросы по постановке робототехнических задач для нужд ВПК.
Наука
  • Отсутствие понятных и прозрачных механизмов финансирования исследований;
  • Отсутствие механизмов учета репутации, позволяющих оценивать успехи коллективов;
  • Проблемы с поставкой и закупкой комплектующих, что существенно тормозит разработки.

Преодоление существующих ограничений, конечно, невозможно мерами одного государства, для формирования стратегии развития отрасли необходим широкий диалог всех участников рынка.

Таким образом, мировой рынок робототехники показывает высокие темпы роста (около 8%). Мировыми лидерами в использовании РТК в промышленности являются Китай, Япония, Южная Корея, США и Германия. Россия же значительно отстает в роботизации производства по целому ряду причин, преодоление которых возможно только при коммуникации и консолидации участников рынка робототехники.