Известь строительная: свойства и применение. Негашеная известь

Ее применение.

Гашеная известь (формула – Ca(OH)2) является сильным основанием. Может часто встречаться в некоторых источниках под названием гидроксида кальция или "пушонки".

Свойства: Представлена белым порошком, который мало растворим в воде. Чем меньше температура среды, тем меньше растворимость. Продуктами его реакции с кислотой являются соответствующие соли кальция. Например, при опускании гашеной извести в серную кислоту получатся сульфат кальция и вода. Если оставить раствор "пушонки" на воздухе, то она будет взаимодействовать с одной из составляющих последнего – углекислым газом. При данном процессе раствор мутнеет. Продукты этой реакции представлены карбонатом кальция и водой. Если продолжать барботацию углекислого газа, реакция закончится образованием гидрокарбоната кальция, который разрушается при повышении температуры раствора. Гашеная известь и угарный газ будут взаимодействовать при t около 400оС, его продуктами станут уже известный карбонат и водород. Вещество может реагировать и с солями, но только в том случае, если процесс закончится выпадением осадка, например, если смешать "пушонку" с сульфитом натрия, то продуктами реакции станут гидроксид натрия и сульфит кальция.

Из чего делают известь: Само название "гашеная" уже говорит о том, что для получения этого вещества что-то погасили. Как всем известно, любое химическое соединение (да и вообще что-либо) обычно гасят водой. А ей есть с чем реагировать. В химии существует вещество с названием "негашеная известь". Так вот, добавляя к ней воду, получают искомое соединение.

Применение: Гашеную известь используют для побелки любого помещения. Также с ее помощью смягчают воду: если добавить "пушонку" к гидрокарбонату кальция, то образуется оксид водорода и нерастворимый осадок – карбонат соответствующего металла. Гашеную известь применяют в дублении кож, каустификации карбонатов натрия и калия, получении соединений кальция, различных органических кислот и множества других веществ.

С помощью раствора "пушонки" – небезызвестной известковой воды – можно обнаружить наличие углекислого газа: при реакции с ним она мутнеет (фото). Стоматология не может обойтись без обсуждаемого сейчас гидроксида кальция, ведь благодаря ему в этой отрасли медицины можно дезинфицировать корневые каналы зубов. Также с помощью гашеной извести делают известковый строительный раствор, смешивая ее с песком. Подобная смесь использовалась еще в древние времена, тогда без нее не обходилась ни одна строительная кладка. Однако сейчас из-за ненужного выделения воды при реакции "пушонки" с песком данный раствор успешно заменяют цементом. С помощью гидроксида кальция производят известковые удобрения, также он является пищевой добавкой E526… И еще многие отрасли не могут обойтись без его использования.

Негашеная известь – Негашеная известь (неочищенный оксид кальция) получается кальцинированием известняка, содержащего очень мало глины или не содержащего ее совсем. Она очень быстро соединяется с водой, выделяя значительное количество тепла и образуя гашеную известь (гидроксид кальция).

Известь негашеная имеет множество полезных свойств, за счет этого находит широкое применение в строительстве, промышленности сельском хозяйстве.

Свойства: мелкопористые куски СаО размером 5…10 см, получаемые после обжига сырья, средняя плотность 1600…1700 кг/м3.
В зависимости от содержания оксида магния воздушную известь разделяют на кальциевую (70…90 % СаО и до 5 % МО), магнезиальную (до 20% М§0) и высокомагнезиальную или доломитовую (М§0 от 20 до 40 %).
Негашеную воздушную известь выпускают трех сортов. В зависимости от времени гашения извести всех сортов различают: быстрогасящуюся известь (время гашения до 8 мин); среднегасяющуюся (до 25 мин), медленногасящуюся (свыше 25 мин).

Строительная воздушная известь разделяется на три сорта.
Плотность негашеной извести колеблется в пределах 3,1-3,3 г/см3 и зависит главным образом от температуры обжига, наличия примесей, недожога и пережога.
Плотность гидратной извести зависит от степени ее кристаллизации и равна для Са(ОН)2, кристаллизованной в форме гексагональных пластинок, 2,23, аморфной - 2,08 г/см3.
Объемная масса комовой негашеной извести в
куске в большой мере зависит от температуры обжига и возрастает с 1,6 г/см3 (известь, обожженная при температуре 800° С) до 2,9 г/см3 (длительный обжиг при температуре 1300° С).
Объемная масса для других видов извести следующая: для молотой негашеной извести в рыхлонасып-ном состоянии 900-1100, в уплотненном 1100-1300 кг/м3; для гидратной извести (пушёнки) в рыхлонасыпном состоянии - 400-500, в уплотненном 600-700 кг/м3; для известкового теста-1300-1400 кг/м3.
Пластичность, обусловливающая способность вяжущего придавать строительным растворам и бетонам удо-бообрабатываемость, -важнейшее свойство извести. Пластичность извести связана с ее высокой водоудержи-вающей способностью. Тонкодисперсные частички гидрата окиси кальция, адсорбционно удерживая на своей поверхности значительное количество воды, создают своеобразную смазку для зерен заполнителей в растворной или бетонной смеси, уменьшая трение между ними. Вследствие этого известковые растворы обладают высокой удобообрабатываемостью, легко и равномерно распределяются тонким слоем на поверхности кирпича или бетона, хорошо сцепляются с ними, отличаются водо-удерживающей способностью даже при нанесении на кирпичные и другие пористые основания.

Применение: Данное вещество достаточно широко используется в разных сферах человеческой деятельности. К наиболее крупным потребителям следует отнести: черную металлургию, сельское хозяйство, сахарную, химическую, целлюлозно-бумажную промышленность. Используется СаО и в строительной индустрии. Особое значение соединение имеет в сфере экологии. Известь используется для очистки от оксида серы дымовых газов. Соединение также способно смягчать воду и осаждать присутствующие в ней органические продукты и вещества. Кроме того, применение негашеной извести обеспечивает нейтрализацию природных кислых и сточных вод. В сельском хозяйстве при контакте с почвами соединение устраняет кислотность, вредную для культурных растений. Известь негашеная обогащает грунт кальцием. За счет этого повышается обрабатываемость земли, ускоряется гниение гумуса. Вместе с этим сокращается необходимость внесения азотных удобрений в больших дозах.

Гидратная смесь применяется в птицеводстве и животноводстве для подкормки. Так устраняется недостаток кальция в рационе. Кроме того, соединение используют для улучшения общих санитарных условий при содержании и разведении скота. В химической промышленности гидратная известь и сорбенты применяются для получения фторида и гидрохлорида кальция. В нефтехимической промышленности соединение нейтрализует кислые гудроны, а также выступает в качестве реагента в основном неорганическом и органическом синтезе. Достаточно широко используется известь в строительстве. Это обусловлено высокой экологичностью материала. Смесь используют при приготовлении вяжущих материалов, бетонов и растворов, производства изделий для строительства.

Коррозия металлов и способы защиты от коррозии

Коррозия металлов - процесс разрушения металлов и сплавов вследствие химического или электрохимического взаимодействия с внешней средой, в результате которого металлы окисляются и теряют присущие им свойства. Коррозия - враг металлических изделий. Ежегодно в мире в результате коррозии теряется 10…15% выплавляемого металла, или 1… 1,5% всего металла, накопленного и эксплуатируемого человеком.

Химическая коррозия - разрушение металлов и сплавов в результате окисления при взаимодействии с сухими газами при высоких температурах или с органическими жидкостями - нефтепродуктами, спиртом и т. п.

Электрохимическая коррозия - разрушение металлов и сплавов в воде и водных растворах. Для развития коррозии достаточно, чтобы металл был просто покрыт тончайшим слоем адсорбированной воды (влажная поверхность). Из-за неоднородности строения металла при электрохимической коррозии в нем образуются гальванические пары (катод - анод), например между зернами (кристаллами) металла, отличающимися один от другого химическим составом. Атомы металла с анода переходят в раствор в виде катионов. Эти катионы, соединяясь с анионами, содержащимися в растворе, образуют на поверхности металла слой ржавчины. В основном металлы разрушаются от электрохимической коррозии.

Коррозия металлов наносит большой экономический ущерб, вследствие коррозии выходят из строя оборудование, машины, механизмы, разрушаются металлические конструкции. Особенно сильно подвержен коррозии оборудования, контактирующего с агрессивной средой, например растворами кислот, солей.

При обычных условиях металлы могут вступать в химические реакции с веществами, содержащимися в окружающей среде, – кислородом и водой. На поверхности металлов появляются пятна, металл становится хрупким и не выдерживает нагрузок. Это приводит к разрушению металлических изделий, на изготовление которых было затрачено большое количество сырья, энергию и количество человеческих усилий.
Коррозией называют самопроизвольное разрушение металлов и сплавов под воздействием окружающей среды.
Яркий пример коррозии – ржавчина на поверхности стальных и чугунных изделий. Ежегодно из-за коррозии теряют около четверти всего производимого в мире железа. Затраты на ремонт или замену судов, автомобилей, приборов и коммуникаций, водопроводных труб во много раз превышают стоимость металла, из которого они изготовлены. Продукты коррозии загрязняют окружающую среду и негативно влияют на жизнь и здоровье людей.
Химическая коррозия происходит в различных химических производствах. В атмосфере активных газов (водорода, сероводорода, хлора), в среде кислот, щелочей, солей, а также в расплавах солей и других веществ происходят специфические реакции с привлечением металлических материалов, из которых сделаны аппараты, в которых осуществляется химический процесс. Газовая коррозия происходит при повышенных температурах. Под ее влияние попадают арматура печей, детали двигателей внутреннего сгорания. Электрохимическая коррозия происходит, если металл содержится в любом водном растворе.
Наиболее активными компонентами окружающей среды, которые действуют на металлы, является кислород О2, водяной пар Н2О, карбон (IV) оксид СО2, серы (IV) оксид SО2, азота (IV) оксид NО2. Очень сильно ускоряется процесс коррозии при контакте металлов с соленой водой. По этой причине корабли ржавеют в морской воде быстрее, чем в пресной.
Суть коррозии заключается в окислении металлов. Продуктами коррозии могут быть оксиды, гидроксиды, соли и т.д. Например, коррозии железа можно схематично описать следующим уравнением:
4Fe + 6H2O + 3O2 → 4Fe (OH) 3.
Остановить коррозию невозможно, но ее можно замедлить. Существует много способов защиты металлов от коррозии, но основным приемом является предотвращение контакта железа с воздухом. Для этого металлические изделия красят, покрывают лаком или покрывают слоем смазки. В большинстве случаев этого достаточно, чтобы металл не разрушался в течение нескольких десятков или даже сотен лет. Другой способ защиты металлов от коррозии электрохимическое покрытие поверхности металла или сплава другими металлами, устойчивых к коррозии (никелирование, хромирование, оцинковка, серебрение и золочение). В технике очень часто используют специальные коррозионностойкие сплавы. Для замедления коррозии металлических изделий в кислой среде также используют специальные вещества – ингибиторы.

Жизнь и деятельность А.М.Бутлерова

Александр Бутлеров родился в 1828 году в Бутлеровке – небольшой деревушке неподалеку от Казани, где находилось имение отца. Матери своей Саша не помнил, она умерла через 11 дней после его рождения. Воспитанный отцом, человеком образованным, Саша хотел во всем походить на него.

Сначала он ходил в пансион, а затем поступил в Первую казанскую гимназию, учителя которой были очень опытные, хорошо подготовленные, они умели заинтересовать учеников. Саша легко усваивал материал, так как с раннего детства его приучили к систематической работе. Особенно привлекали его естественные науки.

После окончания гимназии, вопреки желанию отца, Саша поступил на естественнонаучное отделение Казанского университета, правда, пока только слушателем, так как он был еще несовершеннолетним. Лишь в следующем, 1845 году, когда юноше исполнилось 17 лет, его фамилия появилась в списке принятых на первый курс.

В 1846 году Александр заболел тифом и чудом выжил, а вот заразившийся от него отец скончался. Осенью вместе с тетей они переехали в Казань. Постепенно молодость брала своё, к Саше вернулись и здоровье, и веселье. Молодой Бутлеров занимался с исключительным усердием, но, к своему удивлению, заметил, самое большое удовольствие доставляют ему лекции по химии. Лекции профессора Клауса его не удовлетворяли, и он стал регулярно посещать лекции Николая Николаевича Зинина, которые читались для студентов физико-математического отделения. Очень скоро Зинин, наблюдая за Александром во время лабораторных работ, заметил, что этот светловолосый студент необыкновенно одарен и может стать хорошим исследователем.

Бутлеров занимался успешно, но все чаще задумывался над своим будущим, не зная, что ему, в конце концов, выбрать. Заняться биологией? Но, с другой стороны, разве отсутствие ясного представления об органических реакциях не предлагает бесконечные возможности для исследования?

Чтобы получить ученую степень кандидата, Бутлеров должен был представить диссертацию по окончании университета. К этому времени Зинин уехал из Казани в Петербург и ему не оставалось ничего иного, как заняться естественными науками. Для кандидатской работы Бутлеров подготовил статью «Дневные бабочки Волго-Уральской фауны». Однако обстоятельства сложились так, что Александру все-таки пришлось вернуться к химии.

После утверждения Советом его ученой степени Бутлеров остался работать в университете. Единственный профессор химии Клаус не мог вести все занятия сам и нуждался в помощнике. Им стал Бутлеров. Осенью 1850 года Бутлеров сдал экзамены на ученую степень магистра химии и немедленно приступил к докторской диссертации «Об эфирных маслах», которую защитил в начале следующего года. Параллельно с подготовкой лекции Бутлеров занялся подробным изучением истории химической науки. Молодой ученый усиленно работал и в своем кабинете, и в лаборатории, и дома.

По мнению его теток, их старая квартира бала неудобной, поэтому они сняли другую, более просторную у Софьи Тимофеевны Аксаковой, женщины энергичной и решительной. Она приняла Бутлерова с материнской заботой, видя в нем подходящую партию для дочери. Несмотря на постоянную занятость в университете, Александр Михайлович оставался веселым и общительным человеком. Он отнюдь не отличался пресловутой «профессорской рассеянностью», а приветливая улыбка и непринужденность в обращении делали его желанным гостем повсюду. Софья Тимофеевна с удовлетворением замечала, что молодой ученый был явно не равнодушен к Наденьке. Девушка и в самом деле была хороша: высокий умный лоб, большие блестящие глаза, строгие правильные черты лица и какое-то особое обаяние. Молодые люди стали добрыми друзьями, а со временем начали все чаще ощущать необходимость быть вместе, делится самыми сокровенными мыслями. Вскоре Надежда Михайловна Глумилина – племянница писателя С.Т. Аксакова стала женой Александра Михайловича.

Бутлеров был известен не только как незаурядный химик, но и как талантливый ботаник. Он проводил разнообразные опыты в своих оранжереях в Казани и в Бутлеровке, писал статьи по проблемам садоводства, цветоводства и земледелия. С редкостным терпением и любовью наблюдал он за развитием нежных камелий, пышных роз, выводил новые сорта цветов.

4 июня 1854 года Бутлеров получил подтверждение о присуждении ему ученой степени доктора химии и физики. События разворачивались с невероятной быстротой. Сразу же после получения докторской степени Бутлеров был назначен исполняющим обязанности профессора химии Казанского университета. В начале 1857 года он стал уже профессором, а летом того же года получил разрешение на заграничную командировку.

Бутлеров прибыл в Берлин в конце лета. Затем он продолжил поездку по Германии, Швейцарии, Италии и Франции. Конечной целью его путешествия был Париж – мировой центр химической науки того времени. Его влекла, прежде всего, встреча с Адольфом Вюрцем. Бутлеров работал в лаборатории Вюрца два месяца. Именно здесь он начал свои экспериментальные исследования, которые в течение последующих двадцати лет увенчались открытиями десятков новых веществ и реакций. Многочисленные образцовые синтезы Бутлерова этанола и этилена, третичных спиртов, полимеризации этиленовых углеводородов лежат у истоков ряда отраслей промышленности и, таким образом, оказали на нее самое непосредственное стимулирующее влияние.

Занимаясь изучением углеводородов, Бутлеров понял, что они представляют собой совершенно особый класс химических веществ. Анализируя их строение и свойства, ученый заметил, что здесь существует строгая закономерность. Она и легла в основу созданной им теории химического строения.

Его доклад в Парижской академии наук вызвал всеобщий интерес и оживленные прения. Бутлеров говорил: «Может быть, настало время, когда наши исследования должны стать основой новой теории химического строения веществ. Эта теория будет отличаться точностью математических законов и позволит предвидеть свойства органических соединений». Подобных мыслей никто до сих пор не высказывал.

Через несколько лет, во время второй заграничной командировки, Бутлеров представил на обсуждение созданную им теорию. Сообщение он сделал на 36-м съезде немецких естествоиспытателей и врачей в Шпейере. Съезд состоялся в сентябре 1861года.

Он выступил с докладом перед химической секцией. Тема носила более чем скромное название: «Нечто о химическом строении тел».

Бутлеров говорил просто и ясно. Не вдаваясь в ненужные подробности, он познакомил аудиторию с новой теорией химического строения органических веществ: его доклад вызвал небывалый интерес.

Термин «химическое строение» встречался и до Бутлерова, но он переосмыслил его и применил для определения нового понятия о порядке межатомных связей в молекулах. Теория химического строения служит теперь основой всех без исключения современных разделов синтетической химии.

Итак, теория заявила своё право на существование. Она требовала дальнейшего развития, и где же, как не в Казани, следовало этим заниматься, ведь там родилась новая теория, там работал ее создатель. Для Бутлерова ректорские обязанности оказались тяжким и непосильным бременем. Он несколько раз просил освободить его от этой должности, но все его просьбы оставались неудовлетворенными. Заботы не покидали его и дома. Только в саду, занимаясь любимыми цветами, он забывал тревоги и неурядицы прошедшего дня. Часто вместе с ним в саду работал его сын Миша; Александр Михайлович расспрашивал мальчика о событиях в школе, и рассказывал любопытные подробности о цветах.

Наступил 1863 год – самый счастливый год в жизни великого ученого. Бутлеров был на правильном пути. Ему удалось впервые в истории химии получить самый простой третичный спирт – третичный бутиловый спирт, или триметилкарбинол. Вскоре после этого в литературе появились сообщения об успешно проведенном синтезе первичного и вторичного бутиловых спиртов.

Ученым был известен изобутиловый спирт еще с 1852 года, когда он был впервые выделен из природного растительного масла. Теперь уже ни о каком споре и речи быть не могло, так как существовало четыре различных бутиловых спирта, и все они – изомеры.

В 1862 – 1865 годах Бутлеров высказал основное положение теории обратимой изомеризации таутомерии, механизм которой, по Бутлерову, заключался в расщеплении молекул одного строения и соединении их остатков с образованием молекул другого строения. Это была гениальная мысль. Великий ученый утверждал необходимость динамического подхода к химическим процессам, то есть рассматривать их как равновесные.

Успех принес ученому уверенность, но в то же время поставил перед ним новую, более трудную задачу. Необходимо было применить структурную теорию ко всем реакциям и соединениям органической химии, а главное, написать новый учебник по органической химии, где все явления рассматривались бы с точки зрения новой теории строения.

Бутлеров работал над учебником почти два года без перерыва. Книга «Введение к полному изучению органической химии» вышла из печати тремя выпусками 1864 – 1866 годах. Она не шла ни в каком сравнение, ни с одним из известных тогда учебников. Этот вдохновенный труд был откровением Бутлерова – химика, экспериментатора и философа, перестроившего весь накопленный наукой материал по новому принципу, по принципу химического строения.

Книга вызвала настоящую революцию в химической науке. Уже в 1867 году началась работа по ее переводу и изданию на немецком языке. Вскоре после этого вышли издания почти на всех основных европейских языках. По словам немецкого исследователя Виктора Мейера, она стала «путеводной звездой» в громадном большинстве исследований в области органической химии.

С тех пор как Александр Михайлович закончил работу над учебником, он все чаще проводил время Бутлеровке. Даже во время учебного года семья по нескольку раз в неделю выезжала в деревню. Бутлеров чувствовал здесь себя свободным от забот и целиком отдавался любимым увлечениям: цветам и коллекциям насекомых.

Теперь Бутлеров меньше работал в лаборатории, но внимательно следил за новыми открытиями. Весной 1868 года по инициативе знаменитого химика Менделеева, Александра Михайловича пригласили в Петербургский университет, где он начал читать лекции и получил возможность организовать собственную химическую лабораторию. Бутлеров разработал новую методику обучения студентов, предложив ныне повсеместно принятый лабораторный практикум, в котором студенты обучались приемам работы с разнообразной химической аппаратурой.

Одновременно с научной деятельностью Бутлеров активно включается и в общественную жизнь Петербурга. В то время прогрессивную общественность особенно волновал вопрос об образовании женщин. Женщины должны иметь свободный доступ к высшему образованию! Были организованы Высшие женские курсы при Медико-хирургической академии, начались занятия и на Бестужевских женских курсах, где Бутлеров читал лекции по химии.

Многосторонняя научная деятельность Бутлерова нашла признание Академии наук. В 1871 год его избрали экстраординарным академиком, а три года спустя – ординарным академиком, что давало право получить квартиру в здании Академии. Там жил и Николай Николаевич Зинин. Близкое соседство еще больше укрепило давнюю дружбу.

Годы шли неумолимо. Работа со студентами стала для него слишком тяжела, и Бутлеров решил покинуть университет. Прощальную лекцию он прочитал 4 апреля 1880 года перед студентами второго курса. Они встретили сообщение об уходе любимого профессора с глубоким огорчением. Ученый совет принял решение просить Бутлерова остаться и избрал его ещё на пять лет.

Ученый решил ограничить свою деятельность в университете лишь чтением основного курса. И все-таки несколько раз в неделю появлялся в лаборатории и руководил работой.

Через всю жизнь Бутлеров пронес ещё одну страсть – пчеловодство. В своем имении он организовал образцовую пасеку, а в последние годы жизни настоящую школу для крестьян-пчеловодов. Своей книгой «Пчела, ее жизнь и правила толкового пчеловодства» Бутлеров гордился едва ли не больше, чем научными работами.

Бутлеров считал, что настоящий ученый должен быть и популяризатором своей науки. Параллельно с научными статьями он выпускал общедоступные брошюры, в которых ярко и красочно рассказывал о своих открытиях. Последнюю из них он закончил за полгода до смерти.

Достижение любой цели - это ежедневная работа. Если ваша цель - получение хорошего урожая, то вам понадобится не только вложить свой труд, но и обеспечить ваш сад и огород должным уходом, вниманием и заботой. Наверняка опыт долгих лет всех научил тому, что при выращивании чего-либо в саду и огороде - не обойтись без химических препаратов.

Скорее всего, каждому приходилось слышать о гашеной извести в той или иной сфере разговора. Гашеная известь (или, как ее еще называют - пушонка) имеет химическое название - гидроксид кальция. Интересно то, что такую известь применяют в различных областях: строительство, смягчение воды, дубление кож, стоматология, химическая промышленность. Также нашлось применение и в садоводстве.

Состав гашеной извести довольно прост, в нем преобладают оксиды кальция. Сам процесс получения (гашения) тоже не замысловат, и заключается в добавлении воды и тщательном перемешивании.

Приготовить гашеную известь (пушонку) не сложно, для этого нужно ее погасить (смешать) водой, что занимает около 10-20 минут. В процессе гашения производится безопасная, полезная подкормка.

Главное правило - вода для гашения должна быть холодной, чтобы известь не потеряла своих полезных веществ.

Применение гашеной извести достаточно широко в садоводстве. Простой, незатейливый способ давно стал одним из главных инструментов у опытных садоводов. Некоторые из методов применения:

  • Борьба с сорняками: некоторые из видов сорняков можно полностью удалить из огорода, для этого следует в осенний период провести известкование почвы. Норма внесения - 300-400 гр на кв.м. После процедуры вам будут не страшны сорняки: хвощ, пырей, мокрица, конский щавель.
  • Гашеную известь можно также добавить в компостную яму - так вы ускорите процесс разложения ее содержимого.
  • Раскисление почвы при помощи известкования требует соблюдения норм и доз: тяжелые и глиняные почвы - 600-900 гр. на кв.м, легкие, суглинистые - 400-500 гр. на кв. м, легкие, песчаные - 300-400 гр. на кв.м. Известкование земли проводится 1 раз в 3-4 года.
  • Процесс побелки деревьев очень прост. Рекомендуется использовать известь высшего или первого сорта. Разводят известь до получения насыщенно-белого цвета, ориентировочная пропорция - 1:1.

Отличие гашеной и негашеной извести

Логичной будет мысль о том, что если существует гашеная известь, то должна быть и негашеная. Чем же она отличается от гашеной, и где применяется? Как бы противоречиво это не звучало, но слово «известь» имеет греческое происхождение и означает «негасимый».

Негашеная известь имеет гранулированный вид. Ранее негашеная известь могла быть использована для строительных работ в качестве цемента, однако по итогу такого применения были замечены ее не лучшие свойства, а именно - абсорбирование влаги и размножение грибковой плесени. Несмотря на это, негашеная известь широко применяется в строительстве для производства шлакобетона, красочных веществ, силикатных кирпичей, штукатурных материалов. В пищевой промышленности негашеная известь выступает эмульгатором, помогая связывать вещества, свойства которых не позволяют им растворяться друг в друге. Также негашеная известь находит применение в процессе нейтрализации сточных вод, дымовых газов.

Основное отличие гашеной и негашеной извести - химическая формула. Гашеная известь - гидроксид кальция, негашеная - оксид кальция. В отличие от гашеной извести, чаще всего встречающейся в виде порошка, негашеная известь - это гранулы.

Правила гашения извести и техника безопасности

Дегидратация - процесс гашения извести. Прежде, чем начать работу с известью, обязательно примените все меры безопасности:

  • одежда на вас должна быть плотной, работайте в рукавицах, респираторе, защитных очках;
  • производить гашение необходимо исключительно в металлической емкости;
  • если гашение производится в помещении, обеспечьте хорошее проветривание;
  • при попадании извести в глаза или на кожу, следует промыть пораженное место слабым уксусным раствором или большим количеством воды, после чего обратиться к врачу.

Дегидратацию производят в открытом пространстве. По скорости гашения различают:

  • быстрогасящуюся известь - до 8 минут;
  • среднегасящуюся известь - до 25 минут;
  • медленногасящуюся известь - более 25 минут.

Процесс гашения - добавление воды в негашеную известь. Добавление воды следует проводить медленно, чтобы не снижать температуру, т.к. в процессе гашения выделяется тепло.

Хранить известь необходимо в определенных условиях. Подготовьте яму для хранения, раствор сверху присыпают слоем песка в 20 см (если предполагается хранение в мороз, то сверху песка можно добавить слой земли 50-70 см). Яму огородите - для безопасности людей и животных.

Особенности применения пушонки в саду и огороде

Гашеная известь представляет собой органическое вещество. Основными элементами пушонки являются кальцит и доломит. Как уже было сказано, гашеная известь может быть использована как удобрение и как защитное средство в саду и огороде.

Богатая калием, магнием и кальцием пушонка быстро приобрела популярность в садоводстве. Причем калий, входящий в состав, имеет форму, которая быстро усваивается растениями. Кальций должен входить в состав грунта, отвечает за иммунитет растений, защиту против болезней, поэтому гашеная известь - экономный и эффективный вариант для подпитки почвы кальцием. Кроме своего прямого воздействия, кальций активизирует деятельность микроорганизмов, и они начинают выделять азот. Применение пушонки способствует изменению химического состава почвы, ее нормализации и приобретению необходимых функций и составляющих.

Наиболее востребованным и практичным материалом, который нашел свое широкое применение в строительстве, ремонте, сельском хозяйстве и быту, является гашёная известь.

Она является основным составляющим компонентом современных покрытий, смесей и растворов, обладающих высокими эксплуатационными характеристиками. Далее о том, как правильно гасить и хранить известь, а также в каких целях ее можно применять.

Гашёная известь – химическое порошкообразное соединение неорганической формы (Ca(OH) 2), которое может получиться при взаимодействии оксида кальция (негашеной извести ) и воды.

При производстве гидратной извести важно поддерживать правильный температурный режим нагрева воды, который не должен превышать 500 градусов. Чем выше температура воды, тем ниже качество готового продукта.

В зависимости от способа гашения могут образоваться следующие виды составов:

  • Известковая вода.
  • Известковое молоко (суспензия).
  • Известковое тесто.
  • Пушонка (гидроксид кальция в порошковой форме).

Отличия между гашеной и негашеной известью

Разница между известью гашеной и негашеной заключается в химической формуле и свойствах вещества.

Отличительные характеристики двух веществ наглядно представлены в таблице.

Отличить гашеную известь от исходного материала можно не только визуально, но и тактильно – она не способна выделять тепловую энергию, поэтому всегда остается холодной.

Негашеная известь – горная порода, которая получается путем выжигания меловых или известняковых пород при температуре свыше 1000 градусов. В результате высокой гигроскопичности материал редко используется в чистом виде. Он предназначен для приготовления различных строительных растворов, смесей и элементов.

Инструкция по гашению извести

Процесс гашения извести можно организовать на строительной площадке или дома. В зависимости от типа исходного сырья, готовый раствор бывает:

  • Быстрогасящийся (готовится за 10 минут).
  • Среднегасящийся (гасится в течение 25 минут).
  • Медленногасящийся (для приготовления требуется до 1 часа).

Продолжительность гашения определяется временем от начала добавления воды в исходное сырье и до момента полной стабилизации химического состава готового продукта.

Подготовительный этап

Для работы необходимо подготовить сырье и средства индивидуальной защиты от негативного воздействия теплового пара – перчатки, очки, маску, одежду из плотной ткани.

В качестве сырья должна использоваться известь в негашеной форме, глубокая деревянная или металлическая емкость и приспособление для замеса.

Также для приготовления большого объема смеси потребуется земляная яма и вместительный ящик из деревянного основания, оборудованный сливным окошком с сетчатым фильтром.

Процесс гашения

Для получения качественной гидратной извести выполняются следующие действия:

  1. В подготовленную емкость засыпается исходное сырье.
  2. В основу постепенно добавляется вода в пропорциях 1:1 и медленно размешивается для активизации процесса гашения. Данная пропорция подходит для приготовления пушонки – порошкообразной смеси. Для получения известкового теста или молока на 1 кг сырья необходимо добавить 400 г воды.
  3. Помешивание субстанции выполняется до полного завершения реакции гашения.
  4. Свежегашеный раствор в емкости настаивается в течение 40 часов до загустения, а используется через 30 дней после приготовления.

Гашение в деревянном ящике

Если для приготовления извести использовался деревянный ящик, готовая смесь сливается через фильтрующее окошко в земляную яму, закрывается досками и настаивается несколько дней.

После окончания срока известь засыпается песчаной прослойкой высотой в 18 см и дополнительно настаивается в течение 2–3 недель.

Правила хранения извести

Гидратная известь – продукт длительного хранения, который не меняет свою химическую структуру и не теряет полезные свойства на протяжении всего срока эксплуатации.

  • После завершения дегидратации продолжительность выдержки материала составляет: для приготовления строительных растворов и элементов – 2 недели, для оштукатуривания – 30 дней.
  • При зимнем хранении материала в яме обустраивается дополнительная теплоизоляционная подушка: из песка до 20 см и грунта – 70 см. Также можно использовать твердые утеплители.
  • Хранение материала в упаковках допускается в хорошо проветриваемых складских помещениях с бетонными, асфальтированными и кирпичными полами. Склады должны иметь необходимые средства пожаробезопасности: деревянные ящики с песком, огнетушители с углекислотой, пожарные краны с гидрорукавами.
  • Гашеную известь нельзя хранить вблизи взрывоопасных и горючих веществ.

Благодаря своим уникальным характеристикам гашеная известь давно применяется в современном строительстве, медицине, садовом хозяйстве и быту.

Применение в строительстве

Широкое применение извести в строительстве для решения следующих задач:

  • Внутренняя побелка поверхностей в помещениях.
  • Приготовление строительных растворов, связующих смесей и красящих составов.
  • Защита деревянных конструкций от возгорания и гниения.
  • Изготовление арболита, шлакоблоков, силикатных кирпичных блоков и тяжелого бетона.
  • Приготовление кладочного состава для возведения печных конструкций.
  • Изготовление известкового цементного раствора.
  • Приготовление известковой воды для определения соединений углекислого газа.

Гидравлические характеристики обеспечивают быстрое отвердение готовых строительных растворов на основе гашеной извести. Поэтому они часто используются при возведении опорных элементов мостов и прочих конструкций повышенной сложности.

Применение в быту

Некоторые способы применения материала в бытовой сфере:

  • Приготовление безопасных удобрений для снижения кислотности грунта и борьбы с различными вредителями.
  • Приготовление профилактического раствора для побелки стволов садовых и декоративных деревьев.
  • Приготовление смесей для защиты растений от грибковых болезней, насекомых и мелких грызунов.
  • Приготовление активной добавки для подкормки птиц и животных.
  • Снижение жесткости питьевой воды из колодцев, скважин и водопровода.
  • Обеззараживание и дезинфекция различных поверхностей и деревянных конструкций.
  • Каустификация натриевого или калиевого карбоната.
  • Нейтрализация кислых составов и кислот на органической основе.
  • Дубление и обработка натуральной кожи.
  • Приготовление пищевых добавок. Наиболее распространенная из них – эмульгатор (Е526).

Уникальный материал, который отличается следующими преимуществами: доступность приготовления, длительность хранения, отличные дезинфицирующие характеристики, широкая сфера использования. Да и сам процесс гашения извести в домашних условиях достаточно прост в освоении. Готовые растворы успешно используются для проведения сельскохозяйственных работ, бытового ремонта, возведения жилых и коммерческих зданий, что прежде всего обусловлено низкой стоимостью расходного сырья.

Известь - греческое слово, которое имеет свое значение. В дословном переводе оно означает «негасимый». Это один из тех материалов, которые существуют с незапамятных времен. Его уже давно человечество использует в своих целях. Как ни странно, его свойства определили совершенно случайно. А вот начали применять материал во многих сферах, посредством ошибок и проб, можно сказать, вслепую. Известь - универсальный материал, который используется и сегодня.

За счет своих свойств, материал употребляется в разных промышленностях, которые отличаются друг от друга. В этой статье мы рассмотрим, как добывают материал, чем отличается гашеная известь от негашеной и в каких областях ее применяют.

История возникновения материала

В древние времена, когда люди еще ничего не понимали относительно кальция и его соединений с кислородом и углем, они кое-что сообразили. Что именно? Путем «научного тыка» было выяснено, что известняк обладает отличными свойствами, особенно в качестве строительного материала. Кроме того, если обжечь некоторые горные породы, такие как тот же известняк, доломит, мел и т. д., то получится вещество, обладающее связующими свойствами.

Если вспомнить историю древнего Китая, то цементом из известняка работники стабилизировали почву и делали кладку своей знаменитой Великой Китайской стены. Ее длина составляет 2500 км. Удивительно то, что она уцелела до наших дней, и сегодня мы можем лицезреть ее величие. С течением времени, известь стала ключевым компонентом для приготовления удобрений, которые применяются в сельском хозяйстве.

Различают два вида материала: гашеная и негашеная известь. Как получается тот или иной вид? Какова между ними разница? Давайте узнаем ответы на эти вопросы.

Производство сырья

Нам уже известно, что известь - это продукт горной породы. Его добывают путем обжига в специальных печах из известняка, доломита и мела. На выходе получается материал в виде белых комков, или как его еще называют - комовая «кипелка». Это и есть негашеная известь. Процесс добычи происходит на специальных фабриках, откуда известь доставляется дальше. «Кипелка» - первоначальный продукт, из которого дальше будет произведены другие виды. Химическая формула материала - CaO (оксид кальция).

Готовое после обжига сырье не используется для растворов и цемента, так как обладает способностью очень сильно абсорбировать влагу, а также способствует образованию на стенах грибковой плесени. Все же, кипелка довольно востребована в строительной промышленности, а именно для изготовления шлакобетона, силикатного кирпича, красящих веществ и смесей для штукатурки.

В зависимости от времени, за которое можно гасить комовую «кипелку», ее делят на 3 вида. Первый из них - быстрогасящаяся известь. Время, которое необходимо для ее погашения - до 8 минут. Второй вид - среднегасящаяся, которая доходит за 25 минут. Ну и последний вид - медленногасящаяся, которой необходимо 25 минут и больше, чтобы дойти до кондиции. Вот так плавно мы перешли к другому виду материала - гашеной извести.

Известь гашеная

Отличия гашеной и негашеной извести, в чем они выражаются? Само название уже показывает, в чем же разница между материалами. Если обычное сырье имеет формулу CaO, то гашеный материал получается в результате добавления воды: CaO + H 2 O = Ca(OH) 2 . В этом заключается процесс гашения. Примечательно, что при смешивании сырья с водой происходит бурная реакция, при которой выделяется огромное количество тепла и дыма. Вода буквально закипает. Вот поэтому и комовую известь называют «кипелкой». На выходе получается гидратная пушонка.

Из комовой «кипелки» можно получить разные подвиды: молотую негашеную, гидратную пушонку, известняковое тесто или молоко. В зависимости от количества добавляемой для гашения воды, получается тесто или молоко. Например, для получения известнякового теста, жидкости для реакции требуется в 3-4 раза больше, чем самого материала. А если нужно получить известняковое молоко, то количество жидкости увеличивается в 8-10 раз.

Как произвести гашеную пушонку

Для производства гашеной извести, нужно соблюдать некоторые правила. Дегидратацию (процесс гашения) требуется проводить на открытом воздухе. Само сырье нужно поместить в резервуар или емкость. Так как в процессе будет выделяться довольно большое количество пара, нужно защитить себя. Сам материал тоже может причинить вред человеку и даже обжечь кожу. Вот почему требуется защитить кожу рук и всего тела, глаза и дыхательные пути. Вам никак не обойтись без костюма или специальной одежды, перчаток, очков и респиратора. Тогда все пройдет безопасно для вашего здоровья.

Важно помнить, что спешка в этом деле не нужна. Качества негашеной извести могут разниться, одна гасится быстро, другая долго. Если не довести все дело до конца, то возможно такое, что материал будет дымиться в готовой только сделанной штукатурке. Когда вы используете медленногасящуюся известь, то сразу заливать ее водой не рекомендуется. Лучше делать это небольшими порциями. Среднюю и быстрогасящуюся заливают до тех пор, пока пар полностью не исчезнет, чтобы не допустить перегорания.

Обратите внимание! Свежегашеная известь может иметь остатки исходного материала. Их гасят повторно, после чего удаляют.

После дегидратации количество извести будет больше. Из 1 кг негашеного материала можно получить 2 и больше. Известь гашеная и негашеная разница налицо. Но где используют эти материалы?

Применение в строительстве

Основной областью, в которой применяют гашеную и негашеную известь - является строительство. Известь - прекрасный вяжущий материал. Одно из его преимуществ - экологическая чистота и натуральность. Он совершенно невредный для человека. Немного о применении негашеного сырья мы уже говорили, но это не все аспекты. Она необходима для изготовления сухой строительной смеси, раствора и штукатурного состава. Кроме того, за счет добавления извести в бетонные изделия, они становятся гораздо прочнее, влагоустойчивее и плотнее.