Летучие органические соединения (ЛОС). Летучие органические соединения

К ним относят бензол, толулол и ксилолы.

Бензол поступает в окр среду со сточными водами и газообразными выбросами производстав основного органического синтеза, нефтехимических и химико-фармацевтических произволе предприятии по производству пластмасс, взрывчатых веществ, ионообменных смол, лаков, красок и искусственной кожи, oн содержится в выхлопных газах автотранспорта и т.д. Бензол быстро испаряется из водоемов в атмосферу и способен к трансформации из
почвы в растения.
Содержание бензола в атмосферном воздухе колеблется в1 пределах 3-160 мкг/м в кубе. Более высокие концентрации! обнаруживаются в воздухе крупных городов, около^ не4угеперерабатывающих заводов. Выброс бензола в воздушный
бассейн России от стационарных источников составдяет 13-24 тыс. т" в год. В атмосферном воздухе городов среднегодовая концентрация
бензола достигает 90 iMKr/м, а максимальная - 2000 мкг/м (при| максимальной разовой ПДК 300 мкг/м и среднесуточной ПДК 1001 мкг/м3). Всемирная Организация Здравоохранения (ВОЗ) не дает
рекомендаций относительно нормативного уровня содержания
бензола в атмосферном воздухе и приводит только величины канцерогенных потенциалов, необходимых для расчета канцерогенного риска.
В атмосферном воздухе большинства городов с крупными
нефтехимическими производствами (Кемерово, Омск, Салават,
Самара, Тольятти, Усолье-Сибирское и др.) концентрация бензола находится в пределах 20 - 60 мкг/м3. Более высокие концентрации
200 MKT/MJ - регистрируются в воздушном бассейне городов с интенсивным движением автотранспорта - Москве и Санкт-Петербурге. Вероятно, высок уровень загрязнения атмосферного воздуха бензолом и в других городах с нефтехимическими производствами, однако там систематический контроль за содержанием этого продукта отсутствует.
В России подвергается около 2 млн. человек воздействию повышенных концентраций бензола, в том числе концентраций на
Уровне 50-70 мкг/м3 - до 0,5 млн. и концентраций 25-30 мкг/м3 - 1,3 млн. человек. В США воздействиям концентрации бензола 32 мкг/м3
подвержено около 0.08 млн. человек и воздействие», от 13-32 мкг/м в кубе 0,2 млн. человек.

Наряду с канцерогенным действием бензол обладает
мутагенным, эмбриотоксическим, тератогенным и аллергическим
действиями. У рабочих хроническая бензольная интоксикация характеризуется в основном поражением крови и кроветворных органов и в меньшей степени нервной системы. Часто неврологическая симптоматика соответствует тяжести гематологических сдвигов. Длительное воздействие высоких концентраций бензола (0,6-40,0 мкг/м) приводит к увеличению хромосомных аберраций.
Канцерогенность бензола подтверждена рядом эпидемиологических исследований, выявивших увеличение заболеваемости лейкемией среди рабочих, находившихся в условиях
длительного воздействия бензола концентрацией 32 - 320 мкг/м.
МАИР свидетельствует о линейной зависимости между дозой накопления бензола и заболеваемостью лейкемией.
В многочисленных эпидемиологических исследованиях
установлена причинная связь между воздействием бензола на рабочих и частотой возникновения различных типов лейкозов. Наиболее представительными были ретроспективные когортные исследования, проведенные в Китае. Среди 28 460 рабочих, имевших контакт с
бензолом, было обнаружено 30 случаев лейкозов (23 острых и 7 хронических), в то время как в референтной когорте из 28 257
рабочих, занятых в машиностроительной области (83 производства) и не имевших профессионального контакта с бензолом, зарегистрировано всего 4 случая заболевания лейкозом. Смертность от лейкоза в первой группе составила 14 случаев, во второй - 2 случая на
JOOOOO чел. в год. ж Биологическая оценка воздействия бензола основана на °пределении динамики содержания фенола в моче. У импактных лиц концентрация фенола в моче составляет 9,5 ± 3,6 мг/л и снижается сразу после окончания работы во вредных условиях труда. УРОВень
Фенола в моче порядка 25 мг/л считается показателем воздействия
бензола.
В питьевую воду бензол может попадать в результате загрязнения источника водоснабжения промышленными сточными водами, а также из угольных фильтров, используемых для очистки.1
Порог ощущения запаха бензола в воде составляет 0,5 мг/л 20 ОС. ПДК
бензола в питьевой воде (санитарно-токсикологический показатель вредности) установлен на уровне 0.01 мг/л.
Ксилол - смесь трех изомеров диметилбензола, получаемых из каменноугольной смолы и нефти. В технике он имеет значение как
растворитель и является важным исходным продуктом для получения
пластмасс, лаков, красок, клеящих веществ и др.
Ксилолы поступают в питьевую воду из водоисточников, загрязненных сточными водами преимущественно предприятий перерабатывающей промышленности. В поверхностных водах содержание ксилолов достигает 2-8 мкг/л, в водопроводной воде - 1 мкг/л. Они длительное время сохраняются в грунтовых водах.
Ксилолы обладают раздражающим и эмбриотропным действием, нарушают процессы репродукции и становятся опасными при проникновении через кожу. 50-60% вдыхаемого ксилола
адсорбируется в теле человека, причем он легко проникает в жировую
ткань и очень медленно высвобождается, и только после подкисления выделяется почками. В настоящее время проводятся исследования по
установлению его канцерогенности. Симптомами отравления при значительных концентрациях ксилола являются: понижение способности концентрации внимания, нарушение зрения и вестибулярного аппарата, нарушение картины крови, головные боли.
В концентрации 100 мг/л ксилолы тормозят процессы
биологического потребления кислорода. ПДК ксилола в воде водоисточников составляет 0,05 мг/л - органолептический показатель вредности.
Толуол - бесцветная водяно-прозрачная жидкость, по запаху напоминающий бензол. Входит в состав каменноугольного дегтя и многих видов нефти. Его получают из исходного сырья путем
фракционной перегонки.
Толуол важнейший исходный продукт химической
промышленности, применяется как растворитель и заменитель
бензола в производстве бензойной кислоты и взрывчатых веществ
(тринитротолуола).

Концентрация толуола в поверхностных водах, как правило, превышает 10 мкг/л. Порог ощущения запаха (I балл) сосугветствуег концентрации толуола 0.67 мг/л, причем хлорирование не рождает специфического запаха. Пороговая концентрация по вкусу составляет 1,1 мг/л. Толуол - яд общетоксического действия, вызывающий острые и хронические отравления. По мнению некоторых авторов длительный контакт с малыми дозами может сказывать влияние на кровь. Его
раздражающий компонент выражен сильнее, чем у бензола.
Представляет опасность проникновение толуола через неповрежденную кожу в организм, поскольку он вызывает эндокринные нарушения и снижает работоспособность. В way высокой растворимости в липидах и жирах накапливается преимущественно в клетках центральной нервной системы. ДК (допустимая концентрация) толуола в воде водоисточников (органолептический показатель вредности) составляет 0,5 мг/л. Некоторые производные толуола, особенно толуолсульфаты, являются сильнейшими аллергенами.

1.5 Серосодержаидие соединения
Сероводород (H2S) - бесцветный газ с характерным запахом тухлых яиц. Он присутствует в вулканических газах, а также продуцируется бактериями в процессе распада растительного и животного
белка. В значительном количестве сероводород присутствует в во здухе некоторых районов газовых месторождений, в частности Астраханского, а также в воздухе геотермально активных районов. Сероводород является побочным продуктом процессов коксования серосодержащего угля, рафинирования неочищенных серосодержащих масел, производства сероуглерода, вискозного шелка, крафтпроцессов при получении древесной массы. В воздушный бассейн городов России сероводород поступает преимущественно с выбросами целлюлозно-бумажных, коксохимических, металлургических, нефте- и газоперерабатывающих, нефтехимических производств, а
также заводов синтетических волокон. Ежегодное поступление сероводорода ранее достигало 30 тыс. т, и в последние годы уменьшилось до 15 тыс. т. Контроль за содержанием сероводорода в атмосферном воздухе осуществляется, более чем в 100 городах РФ. В последнее время, среднегодовая концентрация сероводорода составляет ~2 мкг/м.
Порог ощущения сероводорода весьма низок и зависит от индивидуальной чувствительности. Поэтому норматив максимальной
разовой ПДК 8 мкг/м3 установлен именно по порогу восприятия запаха. Близкий к этому значению норматив содержания сероводорода
рекомендует и ВОЗ (7 мкг/м3 за 30 мин). Однако при более длительном воздействии (в течение 24 ч) - рекомендован более мягкий норматив
150 мкг/м". , Основной путь поступления сероводорода в организм человека ингаляционный. В раде городов России, где расположены целлюлознобумажные комбинаты (Амурск, Байкальск, Братск, Селенгинск, УстьИлимск) и химические и коксохимические производства (Березники,
Сызрань, Красноярск, Тверь, Магнитогорск, Первоуральск и д.р.), а также в воздухе вблизи газоперерабатывающего завода в г. Оренбурге,
регистрируются значительные концентрации этого газа. Максимальная
разовая концентрация сероводорода в атмосферном воздухе этих городов колеблется в пределах 50-100 мкг/м, т.е. превышает максимальную разовую ПДК в 15 раз.
В ряде работ описано влияние повышенного содержания сероводорода в атмосферном воздухе на здоровье населения. Результаты таких воздействий могут быть различными - от неприятных ощущений до тяжелых поражений. Один из наиболее трагических
эпизодов связан с небольшим мексиканским городком Поса-Рико. где в
1950 г. произошел выброс больших количеств сероводорода в
результате аварии системы сжигания отходящих газов на заводе по восстановлению серы. Несгоревший газ в условиях атмосферной инверсии достиг территории жилого поселка, и в течение 3 ч было госпитализировано 320 чел, из них 22 умерло. Наиболее частым симптомом поражения была потеря обоняния.
В результате прямого раздражающего действия сероводорода на влажные ткани глаза, развивается керато-конъюнктивит, известный под названием «газовый глаз». При ингаляции сероводород раздражает верхние дыхательные пути и повреждает более глубоко лежащие структуры. В условиях воздействия очень высоких концентраций сероводорода (до 450 мкг/м3) является неприятный запах, вызывающий тошноту, нарушение сна, появление чувства жжения в глазах, кашель, головную боль и потерю аппетита. Действие повышенных концентраций сероводорода (в промышленных
УСЛОВИЯХ) может привести к развитию отека легких.
В городах Байкальске и Усть-Илимске, выявлены значительные изменения состояния здоровья детского населения. Наблюдается увеличение числа часто болеющих детей и детей с дисгармоничным физическим развитием. Между показателем общей заболеваемости детей и концентрацией сероводорода в атмосферном воздухе А.О Карелиным (1989) установлена статистически достоверная связь.
Сероуглерод (дисульфид углерода CS2) - бесцветная жидкость, легко воспламеняющаяся и образующая с воздухом взрывоопасные смеси. Технический сероуглерод, содержащий примеси, имеет запах гнилой редьки. 50-60% производимого сероуглерода используется для изготовления волокон в вискозной промышленности, 10-15% - для
получения целлофана. Остальное количество идет на синтез
четыреххлористого углерода, средств защиты растений,
фотохимикатов и др.
Источниками выбросов этого газа в атмосферный воздух
являются предприятия по производству искусственных волокон,
которых на территории России насчитывается 26, и коксохимические
заводы. Согласно сведениям, включенным в форму статистической
отчетности о количественном составе отходящих газов, ежегодное
количество выбросов сероводорода ранее достигало 30 тыс. т, но в
последние годы снизилось до 10-11 тыс. т.
Искусственные волокна производят на комбинатах: Балакова,
Барнаула, Красноярска, Твери и Рязани; коксохимические производства!
расположены в Магнитогорске, Нижнем Тагиле и Череповце.
Среднегодовая концентрация сероуглерода в этих городах составляет 10-16 мкг/м3. Наиболее высокое содержание этого газа зарегистрировано в воздухе городов Архангельск, Байкальск, Братск,
Калининград Новодвинск, Селенгинск, Балаково, Кемерово, Тверь,
Березники, Волгоград, где сосредоточено целлюлозно-бумажное! производство и химическая промышленность. В условиях воздействия повышенных концентраций сероуглерода проживает до 5,1 млн. человек.
Сероуглерод обладает сильным раздражающим действием на кожу и слизистые оболочки, влияет на ферментные системы, обмен витаминов, липидов, эндокринную и репродуктивную системы,. Порог запаха составляет 200 мкг/м3, т.е. он ощущается при превышении максимальной разовой дозы ПДК (30 мкг/м3) в 7 раз.

Длительное воздействие сероуглерода в производственных условиях вызывает сосудистые атеросклеротические изменения. Выявлено увеличение смертности среди рабочих, подвергавшихся воздействию высокой концентрации сероуглерода на протяжении более 10 лет.
Для женщин, занятых на вредном производстве, характерны нарушения менструального цикла, выкидыши, преждевременные роды. Нижний порог концентрации, при котором в производственных условиях отмечается какой-либо эффект, с точки зрения изменения здоровья, составляет 10000 мкг/м3, что соответствует, для обшей популяции, концентрации 1000 мкг/м3.
Индикатором воздействия сероуглерода является его содержание в моче. В исследованиях, проведенных В. В. Махлярчуком и соавт. (1993г), установлено повышенное его накопление в моче детей, проживающих вблизи завода по производству химического волокна в Рязани.

1.6 Нитраты как фактор окружающей среды.
В настоящее время одной из важных проблем, возникших в результате антропогенной нагрузки на экосистемы, является проблема нитратов. Доказано, что избыток нитратов представляет серьезную опасность для здоровья человека.
Тем не менее, наличие нитратов в растениях - нормальное явление. Нитраты соли азотной кислоты - один из основных источников азотного питания растений и микрофлоры почвы. Азот важнейший питательный элемент. Он входит в состав простых и
сложных белков, которые являются главной составной частью
цитоплазмы растительных клеток, а также нуклеиновых кислот, играющих важную роль в обмене веществ в организме. Азот содержится в хлорофилле, белковых комплексах, фосфатидах,
алкалоидах, большинстве ферментов и в других органических
веществах растительных клеток.
Среди продуктов питания главным источником нитратов являются свежие или консервированные овощи, на долю которых приходится 70-86% суточной нормы нитратов. Известны случаи
острого отравления и смерти детей из-за злоупотребления продуктами,
содержащими 80-1300 мг/л нитрат-ионов (пюре из свеклы, шпината и, несвежих овощей).
Доля остальных источников вместе с добавками солей нитрата или нитрата в мясных изделиях не превышает обычно 10-15% и не представляет угрозы для человека, за исключением случайного
попадания в организм непосредственно солей азотной кислоты.
Отрицательное действие нитратов, поступающих с питьевой водой, проявляется сильнее по сравнению с «нитрат содержащими; овощами. Овощи, содержащие нитраты имеют в своем составе аскорбиновую кислоту, которая частично нормализует возникающие нарушения белкового, витаминного и минерального обменов в организме.
Нитраты, содержащиеся в пищевых продуктах в незначительной концентрации, или в среде, в состав которой не входят окислители, практически безопасны для организма взрослого здорового человека.

Нитраты наиболее опасны для детей грудного возраста. Потенциальная
токсичность нитратов, содержащихся в повышенной концентрации в пищевом сыре и продуктах питания, заключается в том, что они частично восстанавливаются до нитритов, обусловливающих серьёзное нарушение здоровья не только детей, но и взрослых.
В организме человека нитриты, под действием бактерий, обитающих в организме, образуются в пищеварительном тракте и кишечнике или непосредственно в полости рта.
Поступающие с пищей нитраты всасываются в пищеварительном тракте, попадают в кровь и с ней в ткани.
В отличие от относительно нетоксичных нитратов, нитриты токсичны. Тяжелые отравления нитритами наблюдается при дозах около 2 г - это рвота, потеря сознания.
Токсическое действие нитритов в человеческом организме проявляется в форме так называемой метгемоглобинемии. Она является следствием окисления двухвалентного железа гемоглобина в трехвалентное железо, вызывая цианоз. В результате такого окисления гемоглобин, имеющий красную окраску, превращается в метгемоглобин, темно-коричневой окраски.
С нитритами связано образование сильных канцерогенов нитрозаминов. Они могут образоваться в желудочно-кишечном тракте из нитритов и аминов (например, из сыра), либо уже изначально присутствовать в определенных продуктах, например в мясных изделиях, образованных посолочной смесью. Из всех сортов пива больше всего нитрозоаминов содержит темное (старое) пиво верхового брожения. Наличие нитрозоаминов отмечается в некоторых косметических средствах и в табачном дыме. В машинных маслах было обнаружено до 3% нитрозоаминов.
Суммарное загрязнение нитрозоаминами, попавшими в организм человека из окружающей среды или образовавшимися внутри его, составляет около 10 мкг в сутки. Таким образом, в течение жизни человек приобретает нитрозоамины, в количестве ^ 4мг на 1 кг массы своего тела. В опытах на животных нитрозоамин уже при суммарной дозе 20 мг/кг массы тела, распределенной на весь жизненный срок, вызывает опухоли.

Экспериментально доказано, что нитpoзocoeдинeия обусловливают образование опухолей на всех органах, кроме костей.
Помимо прямого канцерогенеза ряд нитрозосоединений оказывает сильное аномальное действие на развивающийся плод (недоразвитие конечностей, слабое развитие центральньк органов).
Через 4-12ч. большая часть их (80% у молодых и 50% у пожилых людей) выводятся из организма через почки. Остальное их количество остается в организме.
Исследователи считают, что реакцию нитрозирования можно в человеческом организме регулировать аскорбиновой кислотой, витамином Е, полифенолами и пектиновыми веществами, содержащимися в овощах. Отсюда следует, что постоянное потребление витамина С может воспрепятствовать образованию канцерогенных нитрозоаминов.
Производство продукции с высоким содержанием нитратов не
только создаст прямую угрозу здоровью населения и животных, но и наносят экономический ущерб сельскому хозяйству, перерабатывающей промышленности. При высоком содержании нитратов снижается лежкость плодов овощных культур и клубней картофеля. Двухлетнее растение при посадке плодов с избыточным содержанием нитратов сильнее подвержены заболеваниям и не дают кондиционного семенного материала.

Среди овощных культур наибольшее количество нитратов содержится в свекле столовой, салате, шпинате, укропе, редисе,
редьке белой. Такие же культуры как томат, перец сладкий,
баклажаны, чеснок, горошек, фасоль отличаются низким
содержанием нитратов.
В связи с опасностью, какую представляют нитраты человеческого организма в различных странах мира, были разработаны нормативы содержания нитратов в различных видах продуктов питания - предельно допустимая концентрация
(величины ПДК приведены в приложениях 4). В приложениях
дано: содержание нитратов в различных органах и частях растений, также снижение их в процессе варки.

1.7 Боевые отравляющие вещества (БОВ)
БОВ, в зависимости от их действия, делятся на: нервно- паралитические, кожные, легочные, поражающие кровью. БОВ - это токсины, лакриматоры (слезоточивые газы), химическое оружие, пестициды (по заключению экспертной комиссии ООН по химическому и бактериальному оружию от 1969г.).
По физическим свойствам БОВ можно разделить: на газообразные, жидкие или твердые вещества с сильно или даже чрезвычайно сильно выраженной токсичностью. Их применяют в гранатах, бомбах, а также путем распыления с самолетов.
К боевым отравляющим веществам, полученным до второй
Мировой войны, относят:

Группу «Белого креста», это: бромацетон, хлорацетон, CN, CS, слезоточивые вещества, вызывающие раздражение и повреждение глаз и носа;

Группу «Зеленого креста» - фосген, поражающий дыхательные легкие с возможным смертельным исходом; - группу «Синего креста» - дифениларсинхлорид clark I, DA) и
его химические производные, вызывающие повреждение глаз и верхних дыхательных путей.

Группу «Желтого креста» - иприт, яд кожно-нарывного и
удушающего действия.

«Новые» БОВ; полученные в более позднее время - это газы нервнопаралитического действия: зоман, зарин, табун, VX (V-кожный яд). Попадание в организм смертельных доз этих газов может уже через несколько минут привести к смерти (приложение 7).
Особую группу БОБ составляют психотомиметические
отравляющие вещества, которые вызывают ряд психических аномалий, приводят к потере бое- и дееспособности. К этой группе относятся LSD (диэтиламид лизергиновой кислоты) и BZ
(производные лизергиновой кислоты).
Иприт был впервые получен немецкими учеными Люммелем и
Штейнконфом. Во время первой мировой войны было применено около 9 миллионов гранат с ипритом. Немцы назвали этот газ по его запаху - горчичным газом, а французы, в связи с его применением в
битве при Ипре - ипритом. Во время этой битвы в ночь с 12 на 13 июля 1917 года было применено около 125 тонн иприта, погибло 2229 английских и 348 французских солдат.
Щ В состав иприта входят родственные по химическому строению вещества: иприт сернистый (военное обозначение «HD») и азотистый иприт (военное обозначение «HN»). Они обеспечивают стойкое заражение местности в течение нескольких дней, а также способны проникать в кожу через униформу и сапоги. HD - темная жидкость с
горчично-чесночным запахом; HN - желто-коричневая жидкость с
запахом герани. Токсичные компоненты иприта вызывают в течение
нескольких минут ожоги кожи с образованием пузырей и нарывов, отмечаются поражения глаз, такие как помутнение роговицы,
временная или длительная утрата зрения, а, иногда, даже полная его потеря. Соединения иприта обладают мутагенными и канцерогенными
свойствами.

Фосген - сильно ядовитый бесцветный газ с запахом сена. Во время первой мировой войны фосген применялся французскими, а дифосген немецкими войсками. Под действием воды фосген разлагается до углекислого газа и соляной кислоты, обладающей повреждающим
действием, вследствие способности денатурировать белки.
Фосген применяется также в мирных целях, как сырье для изготовления красок, пластмасс, пестицидов, медикаментов. Вдыхание фосгена концентрации 1,25-2,5 частей на миллион является опасным для здоровья (повреждение легких). В высоких концентрациях он вызывает прямые кислотные ожоги и удушье.
Табун - военное сокращение «GA», трилон-83. Одно из наиболее ядовитых БОВ. Применение приводит к продолжительному химическому загрязнению местности. Табун - бесцветная жидкость с фруктовым запахом, может приобретать и запах горького миндаля, при
смешивании с водой образуется синильная кислота.
Табун легко проникает через слизистые оболочки, раневые поверхности и глаза. При получении смертельных доз смерть наступает в течение нескольких минут от удушья. Токсичность, исходя из LD 50 (летальная доза) для крыс, составляет 0,26 мг на 1 кг массы тела.
Зарин - превосходит по токсичности табун. Применение зарина может приводить к многочасовому заражению местности. Это вещество нельзя ни видеть, ни ощущать (в том числе и на вкус). При получении смертельной дозы, смерть от удушья наступает уже через несколько минут. Токсичность, исходя из LD 50 для крыс, составляет 0,1| мг на 1 кг массы тела.
Боевой газ «VX» - наиболее ядовитый и устойчивый из всех
БОБ. В случае боевого применения VX распространястся в виде: ядовитого тумана, который вследствие чрезвычайно высокой! стойкости задерживается на местности от 3 до 21 суток. VX представляет собой бесцветную либо желтоватого (янтарного) цвета1 жидкость без запаха, которая способна проникать в организм при контакте с кожей (контактный яд), либо в результате вдыхания; распыленного в виде тумана яда.
Согласно заключению исследователей ВОЗ в случае применения
4 тонн VX 30 тысяч человек погибнут немедленно, а еще 30 тысяч будут обречены на смерть в течение нескольких часов. Токсичность, исходя из LD 50, для крыс 0, 02 мг на 1 кг веса тела.

Летучее органическое соединение (ЛОС) - химические вещества, чья начальная точка кипения, измеренная при стандартном давлении 101,3 кПа, ниже или равна 250 °С.

Органические растворители это летучие органические соединения, используемые самостоятельно или в совокупности с другими химическими реактивами для растворения или разбавления материалов, красок или отходов, или используемое в качестве чистящего вещества при растворении загрязняющих веществ, или как корректор вязкости, или как дисперсионная среда, или корректор поверхностного напряжения, консервант или пластификатор.

Употребление термина «летучие органические соединения» в последнее время связано с ратификацией и ДИРЕКТИВЫ 2004/42/ЕС ЕВРОПЕЙСКОГО ПАРЛАМЕНТА И СОВЕТА ЕВРОПЫ о снижении эмиссий летучих органических соединений, причиной которых является применение органических растворителей в некоторых красках и лаках, а также в веществах для перекрашивания транспортных средств.

В качестве летучих компонентов (пропеллентов) в аэрозольных упаковках широко применяются фторхлоруглеводороды (фреоны). Для этих целей использовалось около 85 % фреонов и только 15 % - в холодильных установках и установках искусственного климата. Специфика использования фреонов такова, что 95 % их количества попадает в атмосферу через 1-2 года после производства. Считают, что почти все произведенное количество фтортрихлор- и дифтордихлорметана (5,27 млн т и 7,75 млн т соответственно в 1981 году) рано или поздно должно поступить в стратосферу и включиться в каталитический цикл разрушения озона.

В выбросах вентиляционных систем жилых домов идентифицировано более 40 токсичных и дурнопахнущих веществ: меркаптанов и сульфидов, аминов, спиртов, предельных и диеновых углеводородов, альдегидов и некоторых гетероциклических соединений. При сжигании в горелке кухонной плиты 1 мі природного газа образуется до 150 мг формальдегида, а в сумме в продуктах горения газа обнаружено 22 различных компонента.

Источниками одорантов служат сооружения по очистке сточных вод и свалки твердых отходов. Сточные воды содержат до 0,025 % органических веществ. После отстаивания и первичной обработки вода направляется в установки бактериальной деградации органических компонентов. Очистка, продолжающаяся около недели, сопровождается выделением одорантов, прежде всего серо- и азотсодержащих производных. Из минеральных компонентов сточных вод, в том числе солей тяжелых металлов, при микробиологическом метилировании образуются опасные летучие органические токсиканты, такие, как метил- и диметилртуть (СН 3 НgСН 3 и CH 3 HgCl), тетраметилсвинец (CH 3) 4 Pb, диметилселен (CH 3) 2 Se.

Высокой биологической активностью обладает еще один из компонентов летучих органических соединений (ЛОС) - этилен. Исследования показали влияние этилена на скорость созревания плодов, а также на опадение листьев. Это позволило назвать этилен гормоном созревания. В результате его действия на некоторые клеточные структуры происходят снижение интенсивности обменных процессов, замедление роста, опадение листвы и переход растения в состояние покоя. Полагают, что этилен продуцируется всеми наземными лиственными растениями. Недостаточно изучен биосинтез и осмыслена биологическая роль других выделяемых растениями легких углеводородов, гомологов метана и этилена. Установлено, что этан, пропан, бутан и пентан - продукты окисления ненасыщенных жирных кислот, входящих в состав липидов клеточных мембран. Опыты на растениях и отдельных элементах растительных клеток говорят о малой биологической активности этана и пропилена, еще менее выраженной у их высших гомологов. Так же обстоит дело с проблемой выделения низших спиртов. Экзогенные защитные функции низших алифатических спиртов едва ли значимы: при тех концентрациях, которые способны создать растения, метанол и этанол проявляют слабый эффект в качестве бактерицидных и фунгицидных агентов. Сильное токсическое действие на производящие их органеллы оказывают низшие карбонильные соединения. Как и спирты, они изменяют проницаемость клеточных мембран и ингибируют метаболизм. Карбонильные соединения, особенно низшие альдегиды (формальдегид и ацетальдегид), проявляют фунгицидные свойства уже при малых концентрациях.

Действие ЛОС может быть направлено не только против микроорганизмов, но и против высших растений других видов. В этом случае они выступают чаще всего в качестве химических ингибиторов, подавляющих прорастание семян растений-конкурентов. Эти вещества называют колинами. Яркий пример такого рода взаимодействия - распределение растительности в зарослях жестколиственных кустарников (чапарраля) в горах Калифорнии. Листвой входящих в состав чапарраля растений в атмосферу выделяется большое количество летучих соединений, оказывающих ингибирующее действие на другие виды.

Часть выделяемых в атмосферу соединений участвует и во взаимодействиях растений с животными. Они служат для привлечения насекомых-опылителей (аттрактанты) и отпугивания вредителей (репелленты). Например, a_пинен является аттрактантом жуков-лубоедов. Такую же роль для насекомых-опылителей многих видов орхидных выполняют терпены 3_цинеол и эвгенол. В то же время a- и b_пинены выступают как репелленты жука короеда, а ментол - тутового шелкопряда. Таким образом, накопленные в мировой литературе данные позволяют предполагать, что ЛОС, выделяемые растениями в атмосферу, являются важным фактором формирования биоценозов.

Важна роль ЛОС в терморегуляции растений. Многие компоненты, особенно интенсивно выделяемые в атмосферу в жаркую погоду (например, терпены), обладают высокой теплотой испарения, и поэтому их выделение сопровождается отводом большого количества тепла от тканей и предохраняет растения от перегрева.

Важна роль ЛОС в глобальных геофизических процессах. Прежде всего речь идет об окислении некоторых фитогенных органических соединений, что приводит к образованию атмосферных аэрозолей. В частности, голубоватую дымку над хвойными лесами, наблюдающуюся в летнее время на склонах Скалистых гор на западе США, связывают именно с этим процессом. Инициируемое озоном и радикалами гомогенное газофазное окисление терпенов имеет сложный механизм и приводит к образованию кислородсодержащих соединений (СО, альдегидов, кетонов, кислот). Поток токсичного СО за счет окисления терпенов оценивают величиной 222 млн т/год. Суммарный же поток монооксида углерода при окислении биогенных неметановых углеводородов составляет 560 млн т/год. Образование при окислении ЛОС больших количеств низших карбоновых кислот сказывается на кислотности атмосферных осадков. Например, дождевая вода в лесном районе Австралии имела рН 4-5, что было вызвано присутствием НСООН и СН 3 СООН (такие же данные получены для незагрязненных районов в бассейне Амазонки).

Важный аспект воздействия ЛОС связан с процессами удаления и образования озона. В незагрязненной атмосфере озон может вступать в реакции с фитогенными олефинами и, таким образом, как бы нейтрализоваться. Это важно, так как озон относится к сильнейшим фитотоксикантам и мутагенам. Напротив, в период повышенной фотохимической активности концентрация озона в городском шлейфе увеличивается за счет взаимодействия техногенных оксидов азота с чрезвычайно реакционноспособными фитогенными непредельными углеводородами. Обработка данных наблюдений в обсерватории Монсур во Франции (1876-1910 годы) и на севере Италии (1868-1893 годы) свидетельствует о более чем двукратном возрастании средних концентраций О 3 в конце 80_х годов по сравнению с концом XIX века.

Значимый негативный эффект оказывают некоторые другие продукты газофазного окисления фитогенных ЛОС. В частности, под пологом леса идет образование гидропероксидных компонентов: пероксида водорода H 2 O 2 и алкилпероксидов (ROOH). По наблюдениям в сосновом лесу в Швеции, максимальное содержание пероксида водорода приходилось на дневные часы. Естественные и культивируемые насаждения сильно страдают в результате образования таких фитотоксикантов. В последние годы все большее внимание исследователей привлекает новый тип поражения лесной растительности в Центральной и Восточной Европе - так называемый Waldschadensyndrome, проявляющийся в пожелтении и преждевременном опадении хвои и дефиците магния в листве.

Земная кора содержит различные газы в свободном состоянии, сорбированные разными породами и растворенные в воде. Часть этих газов по глубинным разломам и трещинам достигает поверхности Земли и диффундирует в атмосферу. О существовании углеводородного дыхания земной коры говорит повышенное (иногда в 3 раза) по сравнению с глобальным фоновым содержание метана в приземном слое воздуха над нефтегазоносными бассейнами.

Можно предположить, что дегазация недр планеты происходит по всей ее поверхности, но наиболее интенсивно по бесчисленным разломам коры. В связи с этим большой интерес представляет изучение спонтанных газов гидротермальных источников в районах сейсмической активности. В результате таких исследований в пробах газов было идентифицировано более 60 неорганических и органических соединений. Последние представлены углеводородами, легколетучими карбонильными соединениями и спиртами, галогенуглеводородами.

Впервые полученные данные о присутствии в геологических выделениях летучих галогенуглеводородов представляют наибольший интерес. Они показывают, что концентрации СFС1 3 и CF 2 Cl 2 в вулканических газах в 2,5-15 раз больше их содержания в морском воздухе. Для хлороформа и CCl 4 эта разница достигала 1,5-2 порядков величины. К сожалению, пока еще отсутствуют надежные данные об общих масштабах геологической эмиссии галогеноуглеродов, равно как и других ЛОС, включая метан.

Выживаемость любой популяции, в конечном счете, зависит от ее генетического разнообразия. Существование различий между отдельными представителями популяции дает возможность приспособиться к изменениям, происходящим в окружающей среде, и тем самым обеспечить выживание вида. С течением времени наиболее приспосабливающиеся экземпляры и виды становятся доминирующими, и могут рассматриваться в качестве стабильных компонентов экосистемы.

Генетическое разнообразие популяции служит причиной того, что изменения окружающей среды приводят к возникновению преимуществ одних экземпляров перед другими. В условиях стресса, вызванного очень сильным загрязнением воздуха, могут погибнуть все растения, однако такие явления наблюдаются исключительно редко.

В тех случаях, когда семенная популяция выработала определенную устойчивость к действию загрязнителей, из семян вырастает новое поколение растений. Однако развитие органов, ответственных за половое размножение, может быть нарушено из-за присутствия в атмосфере высоких концентраций SO 2 . Вследствие этого большими преимуществами обладают растения, размножающиеся неполовым путем, например за счет подземных столонов, корневых или ползучих побегов. Таким образом, клоны, то есть вегетативное потомство устойчивых экземпляров, могут селиться и размножаться в районах с высоким уровнем загрязнения. Загрязняющие вещества, образующиеся в результате фотохимических процессов, также оказывают воздействие на лесные экосистемы. Наблюдается гибель наиболее чувствительных экземпляров, хлороз и преждевременное опадание листвы.

Летучие вещества (ингалянты) - весьма странный вид наркотика, так как в буквальном смысле они не являются наркотиком вообще. Они представляют собой химические вещества, способные оказывать воздействие на человека и вызывать привыкание и зависимость. Опасность их заключается в том, что они становятся причиной серьезных повреждений мозга и даже смерти.

Продукты летучих веществ доступны практически в любом доме или офисе, и поэтому их трудно держать вдали от людей, которые могут ими злоупотребить. Ингалянтами в основном злоупотребляет трудная молодежь, бездомные люди, а также люди из неблагоприятной социальной среды. Среди бездомных употребление летучих веществ особенно распространено.

Летучие вещества (ингалянты), которыми злоупотребляют:

  • Растворитель для краски
  • Пятновыводитель
  • Обезжириватель
  • Жидкость для химчистки
  • Жидкость для зажигалок
  • Бензин
  • Клей
  • Корректор
  • Маркеры и фломастеры
  • Спрей-краска
  • Лак для волос
  • Газовые баллоны
  • Бутан
  • Пар холодильного агента
  • Эфир
  • Закись азота
  • Хлороформ
  • Амилнитрат
  • Резина
  • Крем для обуви

Как видно, большинство из этих продуктов находятся в широком доступе повсеместно, их легко приобрести. Запрета продавать эти вещества несовершеннолетним на государственном уровне не существует.

Злоупотребление ингалянтами

Если человек решил злоупотреблять летучими веществами, скорее всего он будет делать это путем распыления вещества в носовую или ротовую полость непосредственно; смачивать кусок ткани в вещество и класть в рот; вдыхать вещество из пакета, мешка или прямо из контейнера.

Эйфория от вдыхания летучих веществ, как правило, очень кратковременна, поэтому для продолжения удовольствия необходимо вдыхать вещество снова и снова в течении нескольких часов.

В результате вдыхания летучих веществ, наступает опьянение и состояние эйфории. Речь человека становится нечленораздельной, страдает координация движений, возможно головокружение. Тяжелые токсикоманы могут испытывать галлюцинации и бред.

В зависимости от летучего вещества, которое употреблял человек, когда действие его спадает, наступает головная боль, вместе со спутанным сознанием, тошнотой и рвотой.

Основные потребители летучих веществ

Токсикоманы - потребители летучих веществ, с целью получить удовольствие. Не смотря на то, что взрослые люди также злоупотребляют токсическими веществами, основным потребителем является беспризорная молодежь. Средний возраст начала токсикомании в этой среде - 13 лет. К сожалению, молодые люди, как правило, не имеют достаточно опыта и знаний, чтобы знать об ущербе, который они сами себе наносят.

Опасность токсикомании

Лица, злоупотребляющие летучими веществами рискуют нанести своему организму следующий вред:

  • Повреждение мозга и центральной нервной системы
  • Повреждение костного мозга
  • Потеря слуха
  • Спазмы рук или ног
  • Повреждение печени, сердца или почек
  • Смерть от сердечной недостаточности
  • Удушье от замены кислорода в легких другим газом.

Признаки токсикомании:

Родители и другие опекуны, которые подозревают подростка в злоупотреблении ингалянтами, должны следить за следующими признаками этого вида наркомании:

  • Дыхание с химическим запахом, запах на одежде или тканях дома
  • Остатки краски на лице, одежде, сумке или тряпках
  • Пустые контейнеры от растворителей или краски
  • Пьяный внешний вид
  • Невнятная речь
  • Неспособность сосредоточиться
  • Депрессия
  • Тошнота
  • Рвота
  • Головные боли
  • Потеря аппетита

Точно так же как и другие наркотики, летучие вещества могут вызывать зависимость

И так же, как после других препаратов, освобождение от ингаляционного злоупотребления может потребовать реабилитацию. Если человек не может отказаться от использования этих веществ самостоятельно, то необходимо предоставить этому человеку эффективную реабилитацию, которая может помочь ему изменить свою жизнь. Всегда существует причина, по которой этот человек начал злоупотреблять наркотиками. Эту причину необходимо устранить, ради трезвой и стабильной жизни. Некоторые из летучих веществ также вызывают физическое привыкание.

Наркологический психотерапевтический центр доктора Василенко поможет излечиться от токсикомании и вернуться к лучшей жизни.

ВЕЩЕСТВА ЛЕТУЧИЕ (в горючих ископаемых) - газо- и парообразные продукты, выделяющиеся при разложении орг. вещества при нагревании горючих ископаемых в стандартных условиях при t порядке 850 °С (ГОСТ 6382 - 65 , для антрацитов 7303 - 54). Гигроскопическая влага и карбонатная углекислота в это понятие не входят. Повышенное содер. м-лов, выделяющих при нагревании летучие продукты, вносит искажение в цифры выхода В. л.; твердый остаток после удаления В. л. называется нелетучим остатком. С повышением степени углефикации выход В. л. падает. Гумолиты отличаются пониженным выходом В. л. по сравнению с сапропелитами и липтобиолитами. Гелифицированные компоненты дают более низкий выход В. л., чем липоидные компоненты, и более высокий, чем компоненты фюзенизированные. Выход В. л. в клареновых разностях гумусовых углей, начиная с низших газовых, используется как один из важнейших показателей степени их углефикации.

Геологический словарь: в 2-х томах. - М.: Недра . Под редакцией К. Н. Паффенгольца и др. . 1978 .

Смотреть что такое "ВЕЩЕСТВА ЛЕТУЧИЕ" в других словарях:

    См. Вещества летучие. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978. Летучие вещества … Геологическая энциклопедия

    Газообразные и парообразные вещества, выделяющиеся из твердого минерального топлива при нагревании его без доступа воздуха или при недостаточном его подводе. Содержание Л. в. наряду с характером коксового остатка является важнейшей… … Технический железнодорожный словарь

    летучие вещества пигмента - Вещества, содержащиеся в пигменте, улетучивающиеся при определенных условиях испытаний. Примечание То же самое в отношении наполнителя. [ГОСТ 19487 74] Тематики материалы лакокрасочные Обобщающие термины дополнительные термины, характеризующие… …

    летучие вещества угля - Вещества, образующиеся при разложении угля в условиях нагрева без доступа воздуха. [ГОСТ 17070 87] Тематики угли Обобщающие термины состав, свойства и анализ углей EN volatile matter … Справочник технического переводчика

    Влага и углеводороды, содержащиеся в топливе и выделяющиеся из него при сухой перегонке в виде паров и газов. Количество Л. В. в Т. зависит от вида топлива и варьируется от 10 (в тощих углях и антрацитах) до 50 % (сухие длиннопламенные угли). Л.… … Морской словарь

    летучие вещества - — Тематики нефтегазовая промышленность EN volatile constituents … Справочник технического переводчика

    Летучие вещества - вещества, выделяющиеся из углеродосодержащих материалов (угля, кокса и др.) при нагревании. Содержание летучих веществ в углях колеблется от 50% (бурые угли) до 4% (антрациты). Твердая масса, остающаяся после удаления летучих веществ, называется… … Энциклопедический словарь по металлургии

    ЛЕТУЧИЕ ВЕЩЕСТВА - вещества, выделяющиеся из углеродосодержащих материалов (угля, кокса и других) при нагревании. Содержание летучих веществ в углях колеблется от 50% (бурые угли) до 4% (антрациты). Твердая масса, остающаяся после удаления летучих веществ, называют … Металлургический словарь

    Запрос «ЛАВ» перенаправляется сюда; см. также другие значения. Летучие ароматные вещества (ЛАВ) группа веществ, способных вызывать обонятельные ощущения. Термин предназначен для характеристики веществ, используемых в ароматерапии. В эту… … Википедия

    Эту статью следует викифицировать. Пожалуйста, оформите её согласно правилам оформления статей. VOC (volatile organic compounds) летучие органические вещества, русский эквивалент ЛОВ). Органи … Википедия

ПРОЦЕССЫ ОЧИСТКИ ВОЗДУХА

Воздух, которым человек дышит дома, на работе, в транспорте, продолжает ухудшаться. За сутки каждый человек вдыхает и пропускает через свои легкие его 15…18 кг воздуха, т.е. намного больше, чем еды и питья вместе взятых. Даже если примеси в воздухе не превышают ПДК, т.е. в среднем находятся на уровне 1…5 мг/м 3 , это означает, что за 1 сутки каждый из нас употребляет от 15 до 100 мг таких ядов как угарный газ, формальдегид, бензопирены и прочие, совсем не нужные для нашего здоровья соединения.

Это количество увеличивается в десятки раз в больших городах. Наша иммунная система не знает, как реагировать на их присутствие, поскольку в ходе эволюции ничто живое не сталкивалось с такими чисто антропогенными веществами как, например, метанол. Реакции иммунной системы - самые неожиданные: от аллергии и астмы, детского диатеза и экзем - до переутомления, головной боли и неврозов.

Именно поэтому на очистку воздуха в помещениях, салонах самолетов, тоннелях человечество тратит миллиарды долларов. На сегодняшний день наиболее эффективным и экономичным является метод фотокаталитического окисления органических и некоторых неорганических экозагрязнителей при концентрациях загрязнений до 100 ПДК и, как считают ученые, станет в XXI веке основным методом молекулярной очистки воздуха.

В основе фотокаталитического очистителя воздуха находится специальное фотоактивное вещество - фотокатализатор, на поверхности которого органические соединения разлагаются (окисляются до СО и НО) под действием ультрафиолетового света, а болезнетворные микроорганизмы, даже обладающие повышенной сопротивляемостью к ультрафиолету, погибают. Большинство запахов вызываются органическими соединениями, которые также полностью разлагаются очистителем и поэтому исчезают.

В период с 1993 по 1999 г.г. методу посвящено пять международных конференций, на которых в качестве примеров его опытно-промышленного применения сообщалось об очистке воздуха на:



 заводе по производству взрывчатых веществ (США)

 в цехах предприятия микроэлектроники (США)

 в салонах самолетов фирмы "Боинг"

 в салонах новых японских автомобилей (Япония)

 в жилых городских помещениях и тоннелях (Япония) серийно.

 в больницах для подавления патогенной микрофлоры в воздухе (США)

 при лечении аллергических заболеваний и астме (США).

В 1998 г. Японская фирма Toshiba приступила к серийному выпуску бытовых ФКО - очистителей. За один год на внутреннем рынке было продано более 1 млн. штук на общую сумму около 1 млрд. USD.

В России исследования по фотокаталитической очистке воздуха ведутся в двух институтах Российской Академии Наук - Институте Катализа г. Новосибирск и Институте Проблем Химической Физики г. Черноголовка.

На практике этот метод впервые реализован в приборах серии "Аэролайф" фирмой "Информационно - технологический институт" г. Москва.

Российский прибор по основным потребительским свойствам не уступает японскому и, естественно, существенно дешевле. Прибор имеет все необходимые сертификаты: гигиенический сертификат N 077.МЦ.03.346.Т.07352Г8 от 13.02.98 сертификат соответствия N РОСС RU. МЕ64.В03042 и защищен Свидетельством на Полезную Модель N 8634 от 16.06.98г.

Высокая эффективность приборов "Аэролайф"для очистки от всех основных экозагрязнителей подтверждена испытаниями в Независимой Лаборатории ИНЛАН (ПО Химавтоматика).

На сегодняшний день приборы установлены и успешно выполняют свое назначение:

 ГП Лазерная хирургия Центр "АСТР" (операционная)

 Министерство Науки РФ

 Мэрия г. Москва

 Городская клиническая больница N 59 (ортопедическое отделение)

 младшие классы школы № 610, г. Москва

Приборы серии "Аэролайф" целесообразно применять в следующих случаях:

1. Если квартира или рабочее помещение находятся вблизи автомобильных магистралей или промышленных предприятий.

2. Если произведен ремонт в квартире или куплена новая мебель, которая издает заметные запахи.

3. Если у человека наблюдается склонность к аллергии и острая реакция на различные запахи, особенно в периоды обострений.

4. Если используется кондиционер, помещение не проветривается и происходит накопление молекулярных загрязнений различной природы.

5. Если Ваше рабочее помещение посещает большое количество людей и Вы хотите уменьшить риск заражения болезнями, передающимися биоаэрозолями.


Летучие химические соединения (ЛХС)

Кроме химически инертного азота (N 2) и жизненно необходимого кислорода (O 2) во времена зарождения человечества в атмосфере Земли присутствовали в небольших количествах безобидные аргон (Ar) и углекислый газ (CO 2). Сегодня в городской атмосфере в измеримых количествах уже можно обнаружить (ЛХС):

Основные загрязнители воздуха
Одна из причин, по которой загрязненность воздуха вызывает всеобщее беспокойство - это токсичные частицы, пыль и аэрозоли попадающие в организм человека при дыхании и способные вызвать различные заболевания. Взвешенные в воздухе частицы обычно подразделяют на две категории: мелкодисперсные и крупнодисперсные. Мелкодисперсные аэрозольные частицы состоят из таких веществ, как соединения углерода, свинца, фтора, серы и азота, попадающих в атмосферу в результате человеческой деятельности. Крупнодисперсные частицы состоят из природных веществ, которые образуются вследствие естественной эрозии и в процессе различных работ по дроблению камня. К наиболее распространенным крупнодисперсным частицам относятся гипс, известняк, мрамор, карбонат кальция (мел), кремний и карбид кремния (карбид, используемый при сварочных работах). Первичные мелкодисперсные примеси - сажа, летучая зола, частицы металлов и пары - попадают в атмосферу в результате физических или химических процессов. Вторичные мелкодисперсные примеси образуются вследствие реакций между различными газами в атмосфере. Вторичные примеси составляют от шестидесяти до восьмидесяти процентов всех мелкодисперсных частиц, регистрируемых в городах. Человеческий нос естественным образом отфильтровывает крупные частицы пыли, но не защищает от мелкодисперсных частиц, и такие вещества, как серная кислота, мышьяк, бериллий или никель, могут попасть в легкие. Некоторые вещества (бензопирены, бензантрацен-супертоксикант, соединения металлов), попадающие в организм при вдыхании, обладают канцерогенными свойствами. Одно исследование показало, что соли серной кислоты, выбрасываемые в атмосферу автотранспортом, а также при сжигании нефти и угля, стали причиной двадцати одной тысячи преждевременных смертей в регионе, где проводилось это исследование. Специалисты считают, что эти вещества обостряют респираторные заболевания - астму, хронические бронхиты, эмфизему легких - и вызывают прерывистое дыхание и раздражение слизистой оболочки глаз. Оксиды азота (NOx), главным образом образующиеся вследствие вторичных реакций соединений азота, также связывают с респираторными и седечно-сосудистыми заболеваниями. As (мышьяк). Источники поступления в атмосферу: угольные и нефтяные печи, стекольное производство. Вызывает разрушение вегетативной нервной системы, паралич кровеносной системы, нарушение обмена веществ. Воздействие на протяжении продолжительного времени может привести к раку легких и кожи. С 6 Н 6 (бензол). Источники поступления в атмосферу: нефтеперерабатывающие заводы, автомобильные выхлопы. Воздействие на протяжении продолжительного времени может вызвать лейкемию. Сl 2 (хлор). Источники поступления в атмосферу: химическое производство. Вызывает раздражение слизистых тканей. СО (угарный газ). Источники поступления в атмосферу: автомобильный транспорт, сжигание угля и нефти, сталеплавильное производство. Вызывает удушье, поражает сердечно-сосудистую систему, нарушает работу кровеносной системы. Н х С y (углеводороды). Источники поступления в атмосферу - пары несгоревшего бензина. На солнечном свету вступает в реакцию с оксидами азота и образует фотохимический смог. НСНО (формальдегид). Источники поступления в атмосферу: автомобильный транспорт, химическое производство. Раздражает слизистые оболочки глаз и носа. НСl (хлористый водород). Источники поступления в атмосферу: мусоросжигающие заводы, химическое производство. Раздражает слизистые оболочки глаз и легкие. HF (фтористый водород). Источники поступления в атмосферу: заводы по производству минеральных удобрений, сталеплавильное производство. Раздражает кожу, глаза, слизистые оболочки. HNO 3 (азотная кислота). Источник: реакции диоксида азота (NO2) в атмосфере. В высоких концентрациях приводит к возникновению кислотных дождей. Вызывает респираторные заболевания. HONO (азотистая кислота). Поступает в атмосферу в результате реакций между диоксидом азота(NO2) и парами воды. Вызывает респираторные заболевания. Н 2 S (сероводород). Источники поступления в атмосферу: нефтеперерабатывающие заводы, очистные сооружения, целлюлозно-бумажное производство. Вызывает тошноту, раздражает глаза. H 2 SO 4 (серная кислота). Источник поступления в атмосферу: образуется на солнечном свету при реакции диоксида серы и гидроксил ионов(-OH). Вызывает респираторные заболевания. Mn (марганец). Источники поступления в атмосферу: металлургическое производство, электростанции. Воздействие на протяжении долгого времени может вызвать болезнь Паркинсона. NO (оксид азота). Источники поступления в атмосферу: автотранспорт, сжигание угля и нефти. Легко переходит в диоксид азота(NO2). NO 2 (диоксид азота). Источник поступления в атмосферу: образуется на солнечном свету из NO. При этом в тропосфере образуется озон, который в нижних слоях атмосферы является загрязнителем. При попадании в верхние слои атмосферы - стратосферу - диоксид азота разрушает озоновый слой земли. Диоксид азота вызывает бронхит, понижает сопротивляемость организма к респираторным заболеваниям. О 3 (озон). Источники поступления в атмосферу: образуется на солнечном свету при реакции оксидов азота и углеводородов. Раздражает слизистые глаз, обостряет астму. ПАН (гидронитрат пероксиацетила). Источники поступления в атмосферу: образуется на солнечном свету при реакции оксидов азота и углеводородов. Раздражает слизистые глаз, обостряет астму. SiF 4 (тетрофторид кремния). Источники поступления в атмосферу: химическое производство. Раздражает легкие. SO 2 (диоксид серы). Источники поступления в атмосферу: сжигание нефти и угля, сталеплавильное производство. Диоксид серы является причиной кислотных дождей. Понижает сопротивляемость к респираторным заболеваниям, раздражает слизистые глаз.

По данным Москомприроды в районах жилых застроек вблизи автомагистрали уровень загрязнений воздуха по угарному газу и окислам азота превышает предельно допустимый (ПДК) в 10…15 раз. Это означает, что точно такую же концентрацию загрязнителей можно обнаружить и у себя дома. От уличных ЛХС нельзя укрыться ни за какими герметичными стеклопакетами - чистому воздуху просто неоткуда взяться. Но и это еще не все.

В квартире нас "встречают" наши собственные источники загрязнения воздуха. Недорогую современную мебель делают из недорогих современных материалов - фанеры, ДСП. В этих материалах в качестве связующего используется фенолформальдегидная смола. У этого полимерного соединения множество достоинств: оно удобно в работе, очень недорого в производстве, почти не горит. Есть у него и недостаток: оно постепенно разлагается на фенол и формальдегид, а вот эти оба соединения считаются ядовитыми для человека. ПДК фенола и формальдегида - 0.03 мг/м 3 и 0.003 мг/м 3 соответственно.

С ошибками в строительстве связано появление "аммиачных домов ". При постройке здания в зимнее время, для того чтобы не замерзал кладочный раствор, в него добавляют карбамид (мочевину). Это безвредное вещество разлагается с образованием аммиака . В результате жилье приобретает характерный запах неприятный запах. Устранить запах можно только с использованием очистителей воздуха.

Методы очистки воздуха

Основное назначение бытовых воздухоочистителей – очистка воздуха помещений от взвешенных частиц, некоторых газов и запахов. Бытовые воздухоочистители по принципу фильтрации воздуха можно условно разделить на 4 группы:

- Фотокаталитические фильтры

- Адсорбционные фильтры

- Пылевые фильтры

- Ионизирующие очистители или электрофильтры

ФОТОКАТАЛИТИЧЕСКИЙ ФИЛЬТР - новинка в области очистки воздуха.

Принцип действия основан на том, что на поверхности катализатора под действием ультрафиолетового излучения происходит окисление всех органических веществ до безвредных компонентов чистого воздуха. На сегодняшний день, этот метод является, наиболее эффективным и экономичным. Как считают ученые, он станет в XXI веке основным методом молекулярной очистки воздуха.

В автомобилестроении применяются "катализаторы" - термокаталитические дожигатели выхлопных газов автомобиля. В этих устройствах токсичные примеси окисляются на поверхности катализатора, как правило на платине, под действием высокой температуры. Фотокаталитическая очистка воздуха несколько напоминает эти процессы. ФКО - по сути, повторяет естественные фотохимические процессы очистки воздуха в природе.

Сущность ФКО метода состоит в разложении и окислении токсичных примесей на поверхности фотокатализатора под действием ультрафиолетового излучения. Реакции протекают при комнатной температуре, при этом примеси не накапливаются, а разрушаются до безвредных компонентов, причем фотокаталитическое окисление не делает разницы между токсинами, вирусами или бактериями - результат один и тот же. Большинство запахов вызываются органическими соединениями, которые также полностью разлагаются очистителем и поэтому исчезают.

Явление было открыто более 20 лет назад, однако бытовые приборы серийно стали выпускаться только недавно. В период с 1993 по 1999 г.г. методу посвящено пять международных конференций, на которых в качестве примеров его опытно-промышленного применения сообщалось об очистке воздуха:

На заводе по производству взрывчатых веществ (США)

В цехах предприятия микроэлектроники (США)

В салонах самолетов фирмы "Боинг"

В салонах новых японских автомобилей (Япония)

В жилых городских помещениях и тоннелях (Япония) серийно.

В больницах для подавления патогенной микрофлоры в воздухе (США)

При лечении аллергических заболеваний и астме (США).

На этом принципе основаны очистители воздуха Аэролайф™

Преимущества :

· Размер уничтожаемых частиц - до 0,001 мкм.

· Срок службы сменных фильтров составляет от 4 до 7 лет.

· Эффективность чистки в 500 раз выше, чем у угольных фильтров.

· Эффективность очистки имеет стабильно высокий показатель, не зависящий от выработки фильтра, и составляет 95%.

· В процессе фотокатализа вредные примеси не накапливаются в фильтре, а под действием диоксида титана (фотокатализатора) и ультрафиолетового излучения разлагается до абсолютно безвредных компонентов естественной воздушной среды.

· Дезактивируются вирусы и бактерии.

· Не образуется озон.

· Низкий уровень шума.

· Низкий расход потребляемой мощности за счет применения инверторного двигателя.

Недостатки не выявлены.

АДСОРБЦИОННЫЕ УГОЛЬНЫЕ ФИЛЬТРЫ улавливают практически все токсичные примеси воздуха с молекулярной массой более 40 атомных единиц. Однако, исследования и практика использования адсорбционных угольных фильтров, показали, что уголь практически не адсорбирует легкие соединения, к числу которых относятся такие типичные загрязнители городского воздуха как оксид углерода, оксид азота, формальдегид. Таким образом, воздухоочистители, использующие угольные фильтры, оказались неэффективны для очистки воздуха городских помещений от его основных экозагрязнителей.

Существенным недостатком любых адсорбционных фильтров является их ограниченная емкость и при несвоевременной замене адсорбента, они сами становятся источником токсичных органических веществ и болезнетворных бактерий, загрязняющих окружающую атмосферу. Адсорбционные фильтры используются в приборах фирм Philips (Голландия) и Honeywell (США), а также в ряде отечественных системах воздухоочистки.

ПРЕИМУЩЕСТВА:

Улавливает практически все токсичные примеси с молекулярной массой более 40 атомных единиц, хорошо улавливает пыль.

Низкая цена

Удаляет запахи.

НЕДОСТАТКИ:

Не эффективен для основных экозагрязнителей городского воздуха.

Высокие эксплутационные расходы.

При несвоевременной смене фильтров воздухоочистель становится источником вредных веществ.

Фирмы: Philips, Honeywell, VENTA

ПЫЛЕВЫЕ ФИЛЬТРЫ – представляют собой специальную ткань из различных волокон, способных задерживать частицы пыли размером от 0.3 микрон и выше. Принцип их работы достаточно прост: воздух вентилятором прогоняется через ткань и тем самым освобождается от частиц пыли. Технология использования пылевых фильтров в промышленных и бытовых воздухоочистителях широко распространена на Западе и носит название HEPA (High Efficiency Particulate Air) . Данный принцип пылеулавливания используется в воздухоочистителях фирм Bionaire (Канада) и Honeywell (США), в России – в воздухоочистителях Петрянова.

ПРЕИМУЩЕСТВА:

Размер задерживаемых частиц - до 0,03 мкм.

Стоимость очистителя дешевле, чем фотокаталитического очистителя.

При установке нового фильтра НЕРА очистка возможна до 95%.

НЕДОСТАТКИ:

Очистка только от частиц пыли средней дисперсности, летучие экозагрязнители остаются в воздухе. Эффективность очистки от пыли достигается только при наличии предварительного фильтра.

Высокие эксплутационные расходы

Фильтр быстро загрязняется и нуждается в замене.

Фильтр НЕРА задерживает микроорганизмы, но не дезактивирует их, и поэтому при определенном накоплении могут возвращаться в воздух

Bionaire ; Honeywell; HEPA; VENTA

ИОНИЗИРУЮЩИЕ ОЧИСТИТЕЛИ , или ЭЛЕКТРОФИЛЬТРЫ, хорошо очищают воздух от пыли и копоти, абсолютно не освобождая от таких токсичных загрязнителей как оксид углерода, оксид азота, формальдегид и других вредных органических соединений, присутствующих в воздухе бытовых и производственных помещений. Кроме того, в процессе работы ионизационные очистители сами генерируют оксиды азота и крайне опасный газ озон, который в 5 раз токсичнее, чем угарный газ.

Озон – тот самый газ, который образуется в воздухе после грозы, запах которого мы ощущаем при сильных электрических разрядах. И, хотя присутствие этого запаха вызывает субъективное ощущение свежести, надо помнить, что озон является сильнейшим окислителем и, взаимодействуя с различными веществами, может приводить к образованию далеко не безопасных соединений. А у некоторых людей, страдающих астмой, наличие озона может вызывать приступы болезни.

Причиной образования озона является использование в ионизационной камере воздухоочистительного прибора электрического напряжения в несколько тысяч вольт.

Ионизационные фильтры используются в ряде моделей воздухоочистителей фирм Bionaire (Канада) и Honeywell (США). Сегодня на отечественном рынке имеются бытовые модели воздухоочистителей, укомплектованных ионизационными фильтрами, фирмы Daikin (Япония) и российская модель "Супер-Плюс".

К воздухоочистительным приборам, использующим принцип ионизации воздуха, относится и популярная в нашей стране "Люстра Чижевского". Ее отличие от вышеупомянутого ионизационного фильтра в том, что осаждающей поверхностью в схеме воздухоочистки, служат потолок и стены квартиры . Данный принцип очистки воздуха от пыли достаточно эффективен, но в результате его работы на потолке и стенах могут образовываться черные пятна.

ПРЕИМУЩЕСТВА:

Простота использования, средняя стоимость.

НЕДОСТАТКИ:

Очистка только от частиц пыли, органические и токсичные загрязнители остаются в атмосфере воздуха.

В процессе работы воздухоочистительных приборов генерируются окислы азота и крайне опасный для здоровья газ - озон.

Bionaire; Honeywell; Cупер-плюс; Daikin; Овион-С

3.3.2.1. Фотокаталитическая очистка воздуха

Уникальная технология фотокатализа дает высокий уровень очистки, уничтожает вредные вещества не за счет абсорбции (накопление внутри на примере угольного фильтра или НЕРА) а за счет расщепления частиц на молекулярном уровне и соответственно не накапливая их. Принцип действия фотокаталитического фильтра основан на уникальной особенности диоксида титана (фотокатализатора) в присутствии ультрафиолетового света расщеплять токсичные вещества до безвредных составляющих, а так же дезактивировать вирусы и бактерии.

Современное понятие "фотокатализ " звучит как " изменение скорости или возбуждение химических реакций под действием света в присутствии веществ - фотокатализаторов, которые в результате поглощения ими квантов света способны вызывать химические превращения участников реакции, вступая с последними в промежуточные химические взаимодействия и регенерируя свой химический состав после каждого цикла таких взаимодействий".

Сущность метода состоит в окислении веществ на поверхности катализатора под действием мягкого ультрафиолетового излучения диапазона А (с длиной волны более 300 нм). Реакция протекает при комнатной температуре и при этом токсичные примеси не накапливаются на фильтре, а разрушаются до безвредных компонентов воздуха, до двуокиси углерода, воды и азота.

Любой фотокаталитический очиститель воздуха включает в себя пористый носитель с нанесенным ТiО 2 - фотокатализатором, который облучается светом и через который продувается воздух.


Рис.1 – Принципиальная схема фотокатализатора

Вредные органические и неорганические загрязнители, бактерии и вирусы, адсорбируются на поверхности фотокатализатора ТiО 2 , нанесенного на пористый носитель (фотокаталитический фильтр). Под действием света от УФ лампы, диапазона А, их органические и неорганические компоненты, окисляются до углекислого газа и воды.

Фактически фотокатализ дает уникальную возможность окислять органические соединения с образованием безвредных компонентов.

3.3.2.2. Теоретические основы фотокатализа

TiO 2 - полупроводниковое соединение. Согласно современным представлениям, в таких соединениях электроны могут находиться в двух состояниях: в свободном и связанном.

В первом случае , электроны движутся по кристаллической решетке, образованной катионами Ti и анионами кислорода О 2 .

Во втором случае , основном, электроны связаны с каким-либо ионом кристаллической решетки и участвуют в образовании химической связи. Для перевода электрона из связанного состояния в свободное необходимо затратить энергию не менее 3.2 эВ. Эта энергия может быть доставлена квантами света с длиной волны 320…400 нм .

Таким образом, при поглощении света в объеме частицы TiO 2 рождаются свободный электрон и электронная вакансия. В физике полупроводников такая электронная вакансия называется дыркой.

Электрон и дырка - достаточно подвижные образования и, двигаясь в частице полупроводника, часть из них рекомбинирует, а часть выходит на поверхность и захватывается ею. Схематически происходящие процессы показаны на рисунке 2:


Рис.2 – Принцип действия полупроводникового фотокатализатора

Захваченные поверхностью электрон и дырка являются вполне конкретными химическими частицами. Например, электрон - это Ti 3+ на поверхности, а дырка локализуется на решетчатом поверхностном кислороде, образуя О 2- . Таким образом на поверхности оксида образуются чрезвычайно реакционно-способные частицы. В терминах окислительно-восстановительных потенциалов реакционная способность электрона и дырки на поверхности TiO 2 характеризуется следующими величинами: потенциал электрона ~ - 0.1 В , потенциал дырки ~ +3 В относительно нормального водородного электрона.

При этом могут образовываться такие мощные окислители, как О- и ОН - радикал . Основным же каналом исчезновения электрона являются реакции с кислородом. Дырка реагирует либо с водой, либо с любым адсорбированным органическим (в некоторых случаях и неорганическим) соединением OH- радикал или О- также способны окислить любое органическое соединение. И таким образом, поверхность TiO 2 под действием света становиться сильнейшим окислителем.

Вредные органические и неорганические загрязнители, бактерии и вирусы, адсорбируются на поверхности фотокатализатора ТiО 2 , нанесенного на пористый носитель (фотокаталитический фильтр). Под действием света от УФ лампы, диапазона А они окисляются до углекислого газа и воды .

3.3.3. Таблица сравнения основных характеристик воздухоочистителей*

Название воздухо-очистителя Принцип работы Произво-дитель-ность куб.м/час Мощ-ность, Вт Бы-товая пыль Летучие молеку-лярные загрязни-тели Виру-сы, бакте-рии Эксплуатацион-ные расходы за год (USD) Стоимость прибора в розницу (USD)
Philips HR 4320/B Голландия Фильтрация + - -
Philips HR 4320/АГолландия Фильтрация, адсорбция + + -
Bionair FE-1060, Канада Адсорбция, электроста-тическая фильтрация + - -
Bionair LC-1060, Канада Фильтрация, адсорбция + + -
Honewell Clean Air , США Фильтрация, адсорбция + + -
"Супер-Плюс" , Россия Электроста-тическая фильтрация + - -
Аэролайф™ "Севеж 45" Фильтрация, фотокатализ + + +
Аэролайф™"Севеж 60" Фильтрация, фотокатализ + + +
Аэролайф™ "Севеж 300" Фильтрация, фотокатализ + + +
Daikin MC704, Япония Фильтрация, электроста-тическая фильтрация, Фотокатализ + + +
Daikin ACEF3AV1 -C(H) , Япония Фильтрация, Фотокатализ + + -

Очиститель воздуха Аэролайф серии Севеж сочетает в себе технологию фильтрации пыли HEPA, угольно-адсорбционные фильтры и самый современный способ молекулярной очистки воздуха- фотокаталитическое окисление молекулярных загрязнителей воздуха. На сегодняшний день одним из самых эффективных и экономичных методов очистки воздуха помещений от органических и неорганических экозагрязнителей является метод фотокаталитического окисления используемый в очистителе воздуха Аэролайф, который, как считают ученые, станет в ХХI веке основным методом молекулярной очистки воздуха.

Модель Севеж-45 , не требует специального обслуживания, фотокатализатор нанесен на пористый стеклянный фильтр, который не нуждаются в замене. Отличный внешний вид подойдет как для квартиры, так и для офиса.

Эта модель идеально подходит для помещений в которых постоянно находится большое количество людей и высок риск распространения различных инфекций. Севеж - 45 прекрасно справляется с табачным дымом, неприятными запахами и вредными химическими веществами.

Характеристики: результаты тестов
40 / 45 куб.м/час
Напряжение питания: 220 В
40 Вт
320 нм - 400 нм
24 / 32 Дб
Габаритные размеры: 540х140х140 мм
Масса: 3.2 кг
Рекомендуемый режим работы: непрерывный
45 куб. метров
От молекулярных загрязнений более 45 %
От пыли размером до 4 мкм -
От пыли размером более 4мкм 90 %
От бактерий и вирусов более 90 %

Модель "Севеж -60 ", совмещает в себе высокую степень очистки , достаточную производительность и низкий уровень шума . Севеж - 60 предназначен для использования в квартирах и офисах.

Сочетание пылевого фильтра HEPA и фотокаталитической очистки - позволяет достичь максимально эффективной очистки воздуха. Результаты исследований показывают очень высокие показатели очистки воздуха от пыли, аллергенов и табачного дыма.

Замену пылевого фильтра следует производить раз в 3-4 месяца, в зависимости от запыленности помещения.Гарантия на фотокаталитический блок очистки 7лет. По желанию модель изготавливается в светящемся и несветящемся варианте.

Характеристики: результаты тестов
Производительность ночной / дневной режим: 45/60 куб.м/час
Напряжение питания: 220 В
Номинальная потребляемая мощность: 40 Вт
Диапазон излучения УФ лампы: 320 нм - 400 нм
Уровень шума ночной / дневной режим: 24/34 Дб
Габаритные размеры: 540х140х140 мм
Масса: 2.8 кг
Рекомендуемый режим работы: непрерывный
Рекомендуемый объем помещения: 60 куб. метров
Степень очистки за один проход:
От молекулярных загрязнений более 40%
От пыли размером до 4 мкм более 94 %
От пыли размером более 4мкм 99 %
От бактерий и вирусов более 90 %

Воздухоочиститель Севеж-200 предназначен для очистки воздуха в жилых и офисных помещениях от вредных выбросов, пыли, табачного дыма, вирусов и бактерий.

Это наиболее современный и эффективный воздухоочиститель который сочетает в себе 2-х ступенчатую систему фотокаталитической очистки воздуха, пылевой и угольный фильтр .

Благодаря угольному фильтру Севеж-200 позволяет эффективно бороться с залповыми выбросами воздушных загрязнителей, например при интенсивном курении.

Замену пылевого фильтра следует производить раз в 6 месяцев, в зависимости от запыленности помещения. Гарантия на фотокаталитический блок очистки 7лет.

Характеристики: результаты тестов
Производительность ночной / дневной режим: 120 / 200 куб.м/час
Напряжение питания: 220 В
Номинальная потребляемая мощность: 95 Вт
Диапазон излучения УФ лампы: 320 нм - 400 нм
Уровень шума ночной / дневной режим: 24/35 Дб
Габаритные размеры: 450х433х154 мм
Масса: 7.8 кг
Рекомендуемый режим работы: непрерывный
Рекомендуемый объем помещения: 200 куб. метров
Степень очистки за один проход:
От молекулярных загрязнений более 55 %
От пыли размером до 4 мкм более 94 %
От пыли размером более 4мкм 99 %
От бактерий и вирусов более 95 %

DAIKIN MC707VM - очиститель воздуха нового поколения. Его назначение - очистка воздуха в квартирах и офисах от любых загрязнений с использованием новой передовой технологии Flash Steamer и насыщение его аэроионами (освежение) с целью профилактики заболеваний и создания здоровой атмосферы в помещении.

В 2006 году японская компания Daikin разработала новый воздухоочиститель Daikin MC 707 VM. При разработке данного прибора корпорация Daikin применила свои традиции новаторства, которыми она известна на рынках бытовой и коммерческой климатехники. Новая технология от Daikin дает пользователю чистый воздух, высокие потребительские свойства, эстетический дизайн очистителей, а также бесшумную и тихую работу.

Воспользуйтесь поиском по сайту:

©2015- 2019 сайт Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав.