Организация автоматического водоснабжения при помощи преобразователя частоты. Частотный преобразователь для скважинного насоса: помощник для систем водоснабжения Назначение частотных преобразователей для насосов

Автоматизацию работы насосного оборудования, можно считать самым важным аспектом в области технического развития систем водоснабжения и водоотведения. Это важно не только для станций, обеспечивающих водой населённые пункты.

Умный насос для скважины сделает так же комфортной эксплуатацию автономного водопровода. Для этого очень важно правильно произвести расчёт скважинного насоса, и соответственно полученным расчётам, подобрать для него преобразователь частот.

Видео в этой статье поможет вам сделать это своими руками.

Достоинства автоматического водоснабжения

Чтобы добиться максимально щадящего режима эксплуатации оборудования, на насосных станциях автоматизируют всё – начиная от запуска и остановки агрегатов, и заканчивая контролем расхода воды. Приборы, помогающие осуществлять тотальный контроль над системой, передают сигналы на табло в диспетчерском пункте.

Примерно тоже, только в меньших масштабах, происходит и в случае автоматизации домашнего насоса. Давайте рассмотрим, какие преимущества даёт системе автоматика.

Итак:

  • Наиболее важно вот что: плавный запуск и остановка двигателя насоса, сводит до нуля вероятность возникновения гидроударов, а бережный режим эксплуатации способствует продлению срока службы любого оборудования. При этом снижаются расходы, связанные с эксплуатацией водозабора.
  • Прежде всего, это расход электроэнергии. Её цена неуклонно растёт, и это ощущают все: как частные лица, так и предприятия. Частотное регулирование работы двигателей насосов даёт возможность уменьшить объёмы накопительных резервуаров, и даже полностью от них отказаться.

В таких случаях, используют прибор, который называется: «инверторный блок управления для скважинного насоса» — именно его вы видите на фото сверху. Инвертор объединяет в себе различные комбинации контрольных приборов, которыми не оснащён сам насос, и в том числе, имеет встроенный преобразователь частот.

Функциональность и подбор частотного преобразователя

Понятно, что максимальное потребление воды происходит только в определённые моменты, а большую часть времени мощность насоса оказывается излишней. Частотный преобразователь позволяет настроить систему так, чтобы в «час пик» насос выдавал полную мощность, а в остальное время снижал обороты.

  • От количества вращений в определённый промежуток времени колеса насоса, зависит развиваемый им напор, и, соответственно, производительность. Суть применения частотного преобразователя заключается в том, чтобы заставить вращаться вал двигателя в заданном темпе. При этом частота переменного тока, получаемого из электросети, меняет свою величину.
  • Современные преобразователи имеют широчайший диапазон, и способны преобразовать напряжение как выше, так и ниже характеристик питающей электросети. Схема данного прибора разделена на две части: силовую, состоящую из группы транзисторов либо тиристоров, и управляющую, по сути, являющуюся электронным ключом.
  • Состоит управляющая часть из цифровых микропроцессоров, и выполняет все контрольные и защитные функции. Так как структура силовой части имеет характерные различия, частотные преобразователи подразделяются на две группы. Одна из них, включает в себя приборы с промежуточным звеном постоянного тока.

  • Вторая группа этого звена не имеет, и называется «преобразователи частот с непосредственной связью». Приборы без промежуточного звена обладают более высоким КПД, и способны «обуздать» самый мощный высоковольтный двигатель. Не смотря на то, что цена данного варианта более высокая, система, в которую он внедрён, по затратам получается на порядок экономичнее.
  • За счёт чего получается экономия? Дело в том, что такие преобразователи имеют малый диапазон частот, причём он не может быть равным, или превышать характеристики питающей сети. Нормативная частота тока в сети равна 50Гц, а прибор преобразует её до 30Гц и ниже, вплоть до нуля. Следовательно, снижается потребление электроэнергии – вот вам и экономия!

Столь ограниченный диапазон не позволяет использовать преобразователи данного типа в промышленных масштабах. Зато для бытовых насосов это как раз то, что надо.

Подбор насоса для скважины

Прежде всего, нужно иметь в виду, что мощностные характеристики насоса должны превышать расчётное потребление. То есть, всегда должен быть запас мощности.

Расчёт строится на таких данных:

  • Глубина и
  • Диаметр обсадной трубы
  • , а если проще — расстояние от зеркала воды в скважине, до поверхности земли при работающем насосе
  • Суммарный суточный расход воды на семью, содержание животных и полив (рассчитывается исходя из существующих нормативов)
  • Удалённость скважины от дома
  • Высота подачи воды (учитывается этажность здания)
  • Диаметр напорного трубопровода

Напор насоса для скважины, из которой вода будет подаваться непосредственно в дом, представляет собой сумму протяжённости вертикальных и горизонтальных расстояний, умноженную на сопротивление трубопровода — этот коэффициент является величиной постоянной, и равен 1,15.

  • Если же в системе водоснабжения присутствует накопительная ёмкость, то к сумме расстояний добавляется ещё и давление гидробака. Давление выражается в атмосферах, а каждая атмосфера приравнивается к 10 вертикальным метрам.
  • Рассмотрим, как будет выглядеть расчёт на конкретном примере. Допустим, у вас есть скважина с динамическим уровнем в 35 м. Находится она в 20м от двухэтажного дома высотой 7 м. При этом в доме установлен гидроаккумулятор ёмкостью 60л и давлением в 3 атм.

Расчёт напора будет выглядеть так: Н = (35+20+7+(3*10))*1,15 = 105 метров.

Если учесть небольшой запас, то можно купить насос с напорной характеристикой 110-115м. Как видите, особой сложности данный расчёт не представляет. Теперь поговорим о критериях подбора частотного преобразователя, сокращённо ЧП.

Подбор преобразователя

Что касается технических характеристик ЧП, то они должны соотноситься с типом и мощностью электродвигателя, к которому он будет подключаться. Далее, нужно учитывать необходимый диапазон регулирования, а так же уровень точности настройки и поддержания крутящего момента на валу мотора.

  • Конструктивные особенности инвертора, то есть, его габариты, конфигурация, встроенное или выносное управление, так же имеют значение. В подавляющем большинстве установлены асинхронные двигатели. К ним ЧП подбирается по мощности, и лучше, если эта характеристика у преобразователя будет на порядок выше, чем у насоса.

  • Существуют преобразователи с векторным управлением, которые позволяют поддерживать скорость вращения при переменных нагрузках, а так же работать, не снижая оборотов в нулевом диапазоне. Такие преобразователи наиболее точно контролируют крутящий момент и частоту вращения вала. Это особенно важно, когда в сети работает два насоса.
  • Вообще, частотные преобразователи имеют свою классификацию. Как и любое другое электрическое оборудование, они могут быть однофазными и трёхфазными. Вариант исполнения инверторов может быть бытовым, для сети 220В. Есть так же промышленные преобразователи, мощностью до 500В, и высоковольтные – до 6000В.
  • Степень защиты IP, тоже бывает разной. По типу управления, ЧП делятся на векторные и скалярные. Все ведущие производители насосного оборудования, предлагают потребителю и инверторные блоки. Обычно производители привязывают модели преобразователей к конкретным модификациям насосов, и дают рекомендации по их применению.

Покупателю и думать-то особо не надо над выбором: консультант-продавец укажет вам модель преобразователя, подходящую к данному насосу, и разъяснит вам, в чём заключаются особенности его использования.

Большинство общепромышленных моделей частотных преобразователей можно использовать для управления насосами, но для этого необходимо их запрограммировать специальным образом.

Преобразователи частоты для насосов являются адаптированными приборами и показывают лучшие результаты в работе с насосным оборудованием. Частотные преобразователи для насосов более экономичны и функциональны в своей сфере.

Модели приборов и аналоги

Ниже в таблице представлен краткий обзор нескольких оптимизированных под управление насосами моделей. Подробную информацию по моделям можно получить на карточке соответствующего частотного преобразователя .

Модель Диапазон мощностей Вход Выход Уровень защиты Температура среды Примечания, особенности
PD20
0,75…18,5 кВт 3Ф 380В Выходная частота
0…50/60 Гц
IP65 -10…+40°С Полнофункциональные ПЧ с высоким уровнем защиты, могут устанавливаться на двигатель, специализированы для многонасосных применений
0,37…2,2 кВт 1Ф 220В Выходная частота
0…50/60 Гц
IP65 -10…+40°С Полнофункциональные ПЧ с высоким уровнем защиты, могут устанавливаться на двигатель, специализированы для одиночных небольших насосов
15…315 кВт 3Ф 380В Выходная частота
0…400 Гц
IP20 -10…+40°С Скалярное управление, многофункциональные выходы и входы, полный набор функций для работы с насосами
0,75…400 кВт 3Ф 230В
3Ф 460В
ПИД IP20 -10…+50°С Специализированные модели
0,75…220 кВт 3Ф 230В
3Ф 460В
ПИД IP20 -10…+40°С Доступны специализированные модели
0,4…4 кВт 1Ф 220В
3Ф 380В
Выходная частота
0…600 Гц
IP20 -10…+50°С Для насосов и вентиляторов

Области применения преобразователей частоты для насосов

ПЧ для насосов оптимизированы для следующих приложений:

  • Системы вентиляции и кондиционирования (компрессоры и т.п.)
  • ЖКХ, системы водоснабжения и водоотведения, отопления (насосы горячей/холодной воды, оборудование котельных, канализация)
  • Энергетика (оборудование ТЭС, ТЭЦ, котлоагрегатов)
  • Технологические линии в обогатительной отрасли (песковые, пульповые насосы)
  • Прочие насосные агрегаты (станции подкачки для водопроводных сетей либо силовых распределительных пунктов)
  • Погружные, скважинные насосы

Несмотря на вышеуказанные применения, такие приборы пригодны и для общепромышленного применения.

Назначение частотных преобразователей для насосов

  • Оптимизированное управление в насосных системах с целью поддержания определенных параметров на заданном уровне (давление, температура, уровень, расход, потребление воды)
  • Групповое управление насосами
  • Экономия воды и электроэнергии на предприятиях, ресурсосбережение на станциях подкачки
  • Защита трубопроводов от гидроударов, увеличение срока службы арматуры
  • Полная защита электродвигателей в насосных установках
  • Автоматизация насосных станций

Преимущества

Преобразователи частоты для насосов имеют преимущества:

  • Как правило, имеют более высокий уровень защиты
  • Благодаря своей специализации реализуют наиболее эффективное управление в насосных системах
  • В большинстве случаев представляют собой многофункциональные устройства, способное полностью автоматизировать насосную станцию

Недостатки

На недостатки приборов влияют используемые в них принципов регулирования. В зависимости от того скалярный это или векторный преобразователь, ему присущи те или иные недостатки. (ссылки на страницы)

Принцип работы частотных преобразователей для насосов

Преобразователь частоты для насосов преобразует входное силовое напряжение в оптимальное для выбранного режима работы насоса выходное. При этом в системе формируется контур управления с обратной связью по выбранному параметру (например, по давлению воды в системе водоснабжения). Датчик давления передает информацию в электронный блок ПЧ, а преобразователь, в свою очередь, изменяет выход (частоту, напряжение) в ту или иную сторону для поддержания постоянного давления воды в трубопроводе.

Примеры представлены на рисунках:


Насосная станция на два насоса
(автоматическое поддержание давления, пуск дополнительного насоса от сети)


Автоматизация водонапорного оборудования увеличивает бесперебойность, надежность снабжения водой, снижает затраты производства, расходы эксплуатации, величину объема резервуаров регулирования водоснабжения.

Для автоматической подачи воды кроме общего оборудования, такого как пускатели, реле, используется специальная аппаратура: контрольные реле уровня, заливки, датчики, поплавковые реле и другие.

Автоматизация водоснабжения

Работа насосов автоматизируется путем управления электронасосами погружного типа по уровню наполнения, давлению.

На рисунке изображена схема автоматизации – помпы 1, электрических соединений. Автоматизация проводится путем монтажа реле уровня. Работа ключа управления состоит из авто- и ручного режимов.

На этом рисунке видна схема автоуправления насосом по водяному уровню, находящемуся в баке водонапора. Она выполнена элементами релейного вида. Выключатель SA1 задает режим автоматизации. При включении в состояние «А» и включении автомата QF поступает напряжение. При положении воды менее отметки датчика, клеммы по схеме разомкнуты. На реле КV1 ток не поступает, контакты пускателя включены. Пускатель подключает двигатель насоса, отключается лампа сигнала НL1 и светится лампа НL2. Помпа подает воду.

Когда вода наполняется и закрывает промежуток срабатывания датчика, то цепь SL2 замыкается. Реле КV1 не подключается, последовательные контакты разомкнуты. При достижении воды до верха, цепь замыкается, а реле КV1 подключается. При этом реле, расцепив контакты обмотки пускателя, выключает контактор, замкнув контакты, остается на питании по цепи датчика. Электромотор помпы отключается, гаснет лампа сигнала НL2 и начинает светиться лампа НL1. Двигатель запустится снова, когда уровень понизится до размыкания цепи, отключится реле КV1.

Насос подключится при любом режиме, если датчик контроля уровня замкнулся. Главной отрицательной стороной такого управления стало то, что зимой электроды датчиков замерзают, насос не отключается, вода в баке переливается, разрушается башня из-за образования льда на воде.

Если управлять по давлению, то манометр устанавливают на трубе напора насосной станции. Это делает легким техосмотр датчиков, не допускает их замерзание.

Если вода отсутствует, то манометр замкнут, а концевой выключатель верхнего предела разъединен. Реле срабатывает, клеммы замыкаются, пускатель включается и запускает насос, который качает воду. Поднимается давление до тех пор, пока не замкнется манометр, который настроен до отметки верхнего уровня.

При расходе воды давление уменьшается, размыкает контакты, насос не включается, на реле нет напряжения. Насос включится, когда уровень уменьшится до критического. Цепи управления запитаны от пониженного напряжения 12 вольт от трансформатора. Это снижает опасность поражения током при обслуживании схемы.

Для ремонта насоса при поломке служит выключатель. Он при необходимости замыкает клеммы и пускатель снова соединяется с сетью питания. В разрыв управляющей цепи установлен контакт, размыкающийся когда нет фазы, катушка КМ разъединяется и помпа выключается до окончания ремонта. Силовые цепи защищены от замыканий автоматом.

Преобразователь частоты и водоснабжение

На схеме изображен процесс автоматизации погружного насоса, с обратным клапаном, расходомером. Управление работой водоснабжения выполняется по следующему сценарию. Если насос выключен, а давление снижается до минимального значения, датчик сигнализирует на запуск насоса. Привод запускается медленным повышением частоты тока мотора. Когда обороты привода насоса достигают необходимого значения, помпа выходит на нормальный режим. Частотник программируется для создания необходимого ускорения помпы. Использование привода насосов с регулированием дает возможность создать водоснабжение с прямотоком, с автоподдержанием давления.

Управляющий блок для плавной работы двигателя, датчик давления воды, дополнительные элементы.

Функции, обеспечиваемые блоком управления и частотником:

  • Плавный разгон и замедление насоса.
  • Автоуправление.
  • Блокировку сухого хода.
  • Автоотключение насоса при отсутствии одной фазы, малом напряжении, аварийной ситуации.
  • Блокировка от чрезмерного напряжения на частотнике.
  • Сигнализация об аварии, работе насоса.
  • Поддержание рабочей температуры в холодное время.

Автоматизация насоса с разгоном и автоподдержкой давления

Мотор . При нажатии кнопки «пуск» реле срабатывает, подключает частотник, дает возможность плавной работы по заданной программе. В аварийном положении частотника или мотора цепь замыкается, включает реле, которое отключает выход частотника. Снова включить схему защита позволит только при устранении поломки и нажатии сброса блокировки.

Датчик давления соединен с входом частотника, создавая обратную связь в уравновешивании давления. Работа стабилизации контролируется регулятором частотника. Нужное давление устанавливается потенциометром с помощью пульта частотника. При аварии горят индикаторные лампы. Шкаф с устройством управления подогревается специальными нагревателями, которые включаются от термореле. От коротких замыканий защищает автоматический выключатель.

Автоматизация водоснабжения считается в техническом развитии важнейшим аспектом. Это нашло свою актуальность не только на крупных станциях водоснабжения. Насосы с приборами автоматики создают комфортную работу отдельных водопроводов. Для организации такого водопровода необходимо рассчитать скважинный насос, подобрать по результатам расчета преобразователь частоты.

Пример работы частотника на демонстрационном стенде

Во всем мире пользуются для управления насосами достаточно давно. К сожалению, в России такая техника пока не прижилась. Расскажем, в чем прелесть этих маленьких незамысловатых коробочек, и какой огромный плюс они дают потребителю при их использовании в системе частного водоснабжения.

Что такое частотный преобразователь? Как правило, владельцы домов и коттеджей используют в своих системах водоснабжения погружные скважинные насосы. осуществляется при помощи реле давления и гидроаккумуляторов различной емкости.

Реле давления имеет два порога: верхний и нижний. При таком устройстве системы водоснабжения в момент, когда насос включается, давление падает очень сильно и потребителю это некомфортно. Он испытывает дискомфорт, потому что давление меняется. Особенно это чувствуется при приеме душа. Владельцы коттеджей это прекрасно понимают, так как они уже сталкивались с этой проблемой. Те, кому только предстоит обустроить свою систему водоснабжения, эта информация окажет помощь в представлении ожидаемого эффекта.

Как улучшить комфорт, чтобы давление в системе было постоянным? Есть решение этой проблемы. Это применение частотного преобразователя. Многие компании осуществляют поставку частотников фирмы Italtecnica. Этот концерн выпускает частотные преобразователи с монофазными насосами серии . Эти частотные преобразователи могут управлять монофазными насосами мощностью до 1,5 киловатт.

Функциональность преобразователя

Как работают преобразователи? Они изменяют частоту в сети. Частота сети в России 50 герц. SIRIO меняет частоту с 25 до 50 герц в зависимости от потребления воды. Чем больше потребляется воды, тем быстрее крутится двигатель. Чем меньше потребление воды, тем частота тока в сети меньше и двигатель замедляется, при этом потребляя меньше энергии.

На стенде смонтирована система водоснабжения с погружным скважинным насосом, частотным преобразователем и гидроаккумулятором на 5 литров. Прелесть частотных преобразователей заключается в том, что им не требуется большой гидроаккумулятор для работы. Достаточно маленького гидроаккумулятора, даже при производительности насоса 4 м 3 в час. В данном случае гидроаккумулятор не служит как накопитель, он только гасит гидроудары. Эти гидроудары очень незначительны, потому что . В момент, когда стартует насос, он подает на него частоту всего 25 герц, поэтому насос запускается очень медленно, при этом потребляет мало энергии.

В данном случае на стенде имитирована система водоснабжения из четырех кранов. Преобразователь частоты запрограммирован таким образом, что он будет поддерживать постоянно 3 атмосферы в системе водоснабжения, независимо от того, один кран открыт или четыре. При открытии крана с водой насос начинает запускаться. Происходит это плавно, в течение нескольких секунд. Насос начинает набирать обороты, которые достаточно на низком уровне. Если мы открываем остальные краны, насос начинает увеличивать свои обороты, частота сети будет меняться в сторону увеличения для того, чтобы компенсировать потерю давления на нескольких кранах.

Потребление в этом случае будет очень комфортным. Давление не будет изменяться независимо от того, сколько кранов открыто. При закрытии кранов частота вращения на двигателе начинает падать, но давление при этом останется неизменным. В нашем случае запрограммировано давление на 3 атмосферы. Независимо сколько кранов открыто это давление будет постоянным. Закрываем все краны, и видим, что происходит отключение насоса, замедление вращения двигателя. Через несколько секунд насос выключается, набрав 3 атмосферы.

Достоинства частотных преобразователей в системе водоснабжения

Плюсов несколько:

  1. Не нужен большой гидроаккумулятор. Это экономия пространства и денежных средств.
  2. Частотный комфортным. Вы получаете постоянное давление в системе независимо от того, сколько кранов вы открыли. Бывает так, что на первом этаже открыли душ, на втором срабатывает стиральная машина. При этом человека обдает кипятком, либо холодной водой, так как разность горячей и холодной воды обуславливается разностью давления в 0,5 атмосферы. Это чувствительно при приеме душа. В нашем случае это не зависимо, сколько человек пользуется водой, давление в системе остается постоянным.
  3. Экономия электроэнергии. Это также очень важно. Преобразователь частоты стоит не дешево, но экономия от его использования окупается через два года.
  4. Преобразователь защищает насос. Если в системе закончится вода, то преобразователь отключится, тем самым предотвратит сгорание насоса. Если в насосе заклинят рабочие колеса, он также выключится. Если в системе есть утечки, он будет несколько раз перезапускаться, потом отключится, так как наличие утечек может повредить насос. В частотнике предусмотрена защита от перенапряжения. Если напряжение высокое, он просто не запустится. При очень низком напряжении преобразователь тоже не запустит насос, так как двигатель может выйти из строя. Также частотник имеет защиту по току. Часто бывает, что на вал двигателя могут намотаться посторонние предметы, или попасть песок, который будет подклинивать рабочие колеса. В этом случае ток в обмотке двигателя будет расти, но тепловая защита еще не сработает, частотник также отключит насос, чтобы можно было провести чистку насоса. Обычные средства защиты не спасают от повышенного тока, потому что тепловая защита рассчитана на максимальный ток. А когда номинальный ток повышается на 20%, это незаметно, но происходит медленное убивание мотора насоса. Повышенный ток приводит к расслоению обмоток двигателя, лака на них, постепенно обмотка сгорает. Потребитель заметит этот процесс только через 2-3 месяца.

Частотник обладает большим комфортом. Его использование в частном доме позволяет получить полноценный водопровод с постоянным давлением. Занимает малые габариты, экономит электроэнергию. Это немаловажно, так как насосы обычно имеют большую мощность, 1,5 – 2 кВт. На преобразователи дается гарантия от 1 до 2-х лет заводом производителем.

Как подобрать частотный преобразователь

Технические данные должны сочетаться с мощностью и типом мотора насоса, с которым он будет работать. Нужно учесть нужный интервал регулировки, точность настраивания и поддержки момента вращения на двигателе.

Особенность конструкции инвертора, его габариты, управление, конфигурация также оказывают влияние на выбор. Чаще в скважинах монтируют асинхронные моторы. Частотник к нему выбирается исходя из мощности, чтобы ее величина была больше, чем у двигателя.

Если в сети два насоса, то лучше выбрать частотник с векторным управлением, дающим возможность поддерживать обороты мотора при изменяющихся нагрузках, функционировать без понижения оборотов. Такие устройства точнее контролируют момент двигателя и скорость работы.

Частотники разделяются на классы по напряжению: для бытовых нужд на 220 В, промышленные до 500 В, высоковольтные до 6000 В. А также устройства имеют разную степень защиты, тип управления. Крупные производители выпускают инверторные блоки насосов. В них частотники привязаны к моделям насосов, даются рекомендации по использованию. Потребителю не нужно задумываться о выборе, консультант разъяснит все особенности применения.

На видео — погружной насос.

В корзине пока пусто

Частотные преобразователи для насосов систем водоснабжения

Первые насосы появились ещё в античные времена. В наши дни это, пожалуй, самое распространенное устройство, которое применяется практически повсеместно. Поверните рукоятку крана, из него потечет вода, которую подает насос. В каждом автомобиле работают несколько насосов для масла, топлива, воды, охлаждающей жидкости. Велосипедист не отправится в путь, не накачав насосом шины. При изготовлении электронной лампы из нее, выкачивают воздух. Насосы накачивают, выкачивают, откачивают и перекачивают воздух, воду, нефть, молоко, бензин и даже цемент. От водопровода до ракеты, от вентилятора до атомной станции - таков диапазон применения насосов.

Но сам по себе насос работать не может. Для приведения его в действие нужен электродвигатель и устройство регулирования давления/разрежения. Самым известным и распространенным способом регулирования в насосной системе является дросселирование, когда двигатель работает на полных оборотах, а регулирование давления в системе осуществляется с помощью запорной арматуры (задвижек, вентилей, отводов, шаровых кранов и т.д.). Если проводить параллели с управлением автомобилем, то дросселирование выглядит примерно так: водитель, нажав до упора педаль газа, регулирует скорость движения педалью тормоза.

Более рационально и эффективно управлять насосами позволяют частотные преобразователи, с помощью которых на двигатель подается необходимое количество энергии для создания и поддержания необходимого уровня давления/разрежения в системе, например в трубопроводе. При этом достигается до 30% экономии потребления энергии, а если учесть, что в течение срока службы двигатель расходует электроэнергии на сумму, намного превосходящую его стоимость, то это показатель оказывается чрезвычайно актуальным. К примеру, в течение года работы по 8 часов в день двигатель мощностью 11 кВт израсходует электроэнергии на сумму около 85 тыс. руб. Частотный преобразователь при таких параметрах работы окупится в течение года, и в дальнейшем будет приносить предприятию прибыль.

Рассмотрим описанные выше методы регулирования давления в насосной системе более подробно.

Мощность насоса для конкретной системы всегда рассчитывается по уровню максимально потребления, то есть с определённым запасом. На рис.1 продемонстрирована типовая схема вычисления необходимой мощности насоса. Голубой линией показана «кривая насоса» - подающая часть системы водоснабжения, которая отражает зависимость давления нагнетания от величины расхода жидкости (протока). Красная линия - это «кривая системы» - потребляющая часть водоснабжения, так же отображающая взаимозависимость расхода и давления жидкости, но в зеркальном отображении. Пересечение этих кривых является точкой оптимума, когда насос обеспечивает необходимый проток и требуемый уровень давления.

Но фактически в таком режиме система работает крайне редко, лишь в моменты пикового потребления. В остальное время расчётная мощность насоса оказывается чрезмерной, и тогда в системах без регулирования или с применением дросселирования происходит следующее: при снижении расхода насос создаёт избыточное давление, на создание которого расходуется дополнительная энергия. На рис.2 это наглядно показано.

Применение частотных преобразователей, за счёт снижения оборотов двигателя и как следствие подаваемой мощности позволяет изменить «кривую насоса» адаптировав её под «кривую системы»

Управление насосами систем водоснабжения

Как известно, расход воды на хозяйственные и бытовые нужды очень сильно колеблется в течение суток, во время выходных и праздников. Множество людей принимают душ, стирают, моют посуду одновременно в определённые часы суток и почти не пользуются водой в другое время, например, ночью. Это создает условия для возникновения таких проблем, как плохой напор воды в утренние и вечерние часы, значительные суточные колебания давления в системе водоснабжения и, как следствие, ускоренный износ труб и запорной арматуры.

К счастью, сегодня стабилизация давления не является такой уж сложной задачей. Сегодня уже более актуален вопрос повышения общей эффективности управления системами водоснабжения, то есть достижение максимальных результатов при минимальном энергопотреблении и незначительных капиталовложениях в модернизацию оборудования. Использование частотно-регулируемых приводов (ЧРП) на насосных станциях позволяет блестяще справиться с этой задачей. Статистика показывает, что ЧРП способен снизить потребление энергии на насосных станциях от 30 до 50%, а срок их окупаемости составляет от одного до полутора лет.

Такая экономия достигается за счет того, что частотный преобразователь способен изменять частоту вращения электродвигателя плавно в широком диапазоне. Фактически, это обозначает, что электродвигатель насоса всегда будет потреблять ровно столько энергии, сколько необходимо для поддержания стабильного давления вне зависимости от текущего потребления системы водоснабжения в данный конкретный момент. Плавные пуск, останов и изменение частоты вращения двигателя позволяет также избежать гидравлических ударов в трубопроводах, сокращая потери воды и увеличивая срок безаварийной эксплуатации насоса, трубопровода, запорно-регулирующей арматуры и измерительных приборов.

Выбор частотного преобразователя для насосов

Компания Rockwell Automation предлагает частотные преобразователи для решения самых разнообразных задач управления насосами: от управления одиночными маломощными насосами, до каскадного управления группой насосов с автозаменой. Преобразователи PowerFlex могут питаться как от однофазной, так и трехфазной сети.

Однофазные преобразователи, используя одну фазу 220В, формируют на выходе трёхфазное синусоидальное напряжение для эффективного управления трехфазными двигателями без потери мощности и без применения фазосдвигающих цепей, конденсаторов. Такое решение предлагается для преобразователей , в диапазоне мощностей от 0,2 до 2,2 кВт.

Трёхфазные преобразователи способны работать в более широком диапазоне мощностей (от 0,2 до 250 кВт), ассортимент таких преобразователей дополнен моделями PowerFlex 40P и PowerFlex 400.

Для решения самых простых задач управления маломощными насосами доступны преобразователи PowerFlex 4, PowerFlex 4М, PowerFlex 40 и . Они позволят выполнять плавный пуск и останов, управление режимами разгона/торможения, защиту от «сухого хода», энергосбережение и т.д. Кроме того, PowerFlex 40 и 40P, помимо скалярного (U/f, вольт-частотного) имеют режим бездатчикового векторного управления двигателем. Такой режим отличается повышенной точностью управления и позволяет получить высокий крутящий момент двигателя на пониженных скоростях вращения. Приводы отличаются малыми габаритами, могут монтироваться с нулевыми зазорами, вплотную друг к другу и предлагаются в исполнении для работы от однофазной и трехфазной сети.

Для решения более сложных задач (автоматическое подержание давления, каскадное управление, управление заслонкой и т.п.) рекомендуется использовать преобразователи PowerFlex 400. Частотные преобразователи этой серии имеют встроенный контур ПИД-регулирования (пропорционально-интегрально-дифференциальное регулирование). Контур ПИД используется для поддержания обратной связи процесса, например давления, потока или натяжения, в соответствии с заданным значением. А такие дополнительные встроенные функции как каскадное управление тремя дополнительными двигателями и управления заслонкой в ряде случаев позволяют использовать без управляющего контроллера.

Встроенная функция управления дополнительными двигателями позволяет запустить до трех двигателей с непосредственным пуском в дополнение к тому двигателю, работа которого управляется напрямую приводом PowerFlex 400. Выход системы может изменяться от 0% до 400%. Функция автоматической замены распределяет нагрузку между двигателями путем периодической замены управляемого приводом двигателя дополнительными двигателями.

Встроенная логическая схема управления заслонкой, позволяет сэкономить на внешнем управляющем аппаратном и программном обеспечении. При подаче команда запуска привод формирует команду открытия/закрытия заслонки и контролирует поступление сигнала готовности. Когда заслонка находится в правильном положении, производится безопасный запуск привода.

Узнать более подробно о характеристиках рассмотренных выше приводов можно здесь:




Базовый элемент, обеспечивающий функциональность насоса, это электродвигатель. Ранее регулировка рабочего процесса происходила за счёт автоматики, теперь эту задачу решает частотный преобразователь для насосов.

Функциональное назначение преобразователя частот в конструкции насоса

Инвертор (частотный преобразователь) обеспечивает регуляцию работы насоса гораздо лучше, чем реле. Он работает в одно и то же время как стабилизатор, автоматика и регулятор рабочего процесса. Благодаря ему обеспечивается высокая эффективность прибора:

  • Снижается уровень подачи электричества, при необходимости, и частоты вращения двигателя, что способствует предохранению насоса от преждевременного износа.
  • Предотвращается образование в трубах избыточного давления.
  • Решается проблема со скачками напряжения, что также определённо увеличивает срок эксплуатации насоса.

Преимущественно уже в процессе сборки насосной станции вживляется . К числу подобных устройств нужно отнести модели весьма известного насоса Грундфос.

Визуально он представляет собой коробку оснащённую электроникой (несколько плат, датчик, осуществляющий замеры, и инвертор, выравнивающий уровень напряжения) и малогабаритным экраном.

Более дорогие образцы оснащены микропроцессорами. Могут быть встроены аккумуляторы, дополнительные выравниватели и так далее.

Используемые преобразователи могут быть однофазного или трёхфазного типа.

По принципу работы преобразователь частоты достаточно прост. Волна электрического тока подаётся на платы прибора. Расположенные там инверторы и стабилизаторы обеспечивают его выравнивание. Одновременно с этим датчик считывает данные давления и прочую значимую информацию.

Все сведения перенаправляются к блоку автоматики. Далее, преобразователь частоты осуществляет их оценку, определяя уровень мощности, который необходимо подать, и, в соответствии с этим, подавая необходимый для продолжения работы объём электроэнергии.

Как результат, преобразователь частоты может отрегулировать плавность запуска электродвигателей, уровень давления воды и остановку работы в критической ситуации. Перечень всех возложенных на частотник «обязанностей» постоянно расширяется ввиду производимых разработчиками усовершенствований.

Процесс управления действиями преобразователя осуществляется всего лишь нажатием нужной кнопки с ориентировкой на данные, отображаемые на экране. Более дорогие устройства способны распознать большее число команд. Самые качественные модели рассчитаны на несколько десятков рабочих режимов со сменой скорости и программы.

Затраты на инсталляцию и покупку преобразователя полностью компенсируются в течение одного года эксплуатации

Перечень положительных функций преобразователя частот:

  • Способность выравнивать входное напряжение.
  • Обеспечение регулировки мощности насоса.
  • Создание условий, позволяющих экономить электроэнергию.
  • Увеличение длительности эксплуатации насосного оборудования.
  • Предоставление возможности работы без гидроаккумулятора.
  • Стабилизация внутрисистемного давления.
  • Снижение уровня шумового воздействия насоса.

Также он работает как заместитель автоматики.

Отрицательные моменты:

  • Высокая себестоимость прибора.
  • Осуществление настройки и подключения обычно доступно только специалистам.

Преобразователь частот работает в конструкции насоса следующим образом: при значительном падении уровня давления в гидробаке (определяется с помощью реле), частотник получает соответствующий сигнал и даёт команду на запуск электромотора. При этом всё осуществляется «без резких движений», мощность нарастает постепенно, обеспечивая страховку от гидравлической перегрузки. В настоящее время модели преобразователей обеспечивают регуляцию времени разгона от 5 до 30 секунд.

Пока осуществляется разгон преобразователь непрестанно получает сведения о том, каков уровень давления в трубопроводе. Как только этот уровень достигает нужного значения, разгон прекращается, работа двигателя продолжается на достигнутой частоте.

Как выбирать и устанавливать оборудование?

Стандартная комплектация насосной станции состоит из:

  • Погружного или поверхностного насоса;
  • Манометра;
  • Шланга, оснащённого нержавеющим покрытием;
  • Гидроаккумулятора;
  • Реле давления воды.

К дополнительному оборудованию относят:

  • Источники бесперебойного питания;
  • Датчик;
  • Блоки;
  • Управляющие реле т.д.

Если конструкция уже имеющегося насосного оборудования не оснащена преобразователем частот, то можно осуществить его самостоятельную установку. Обычно в прилагаемой к модели насоса документации имеются указания относительно того, с каким именно преобразователем может взаимодействовать насос данного типа.

В случае отсутствия подобной информации нужно, опираясь на значимые параметры, подобрать преобразователь самостоятельно:

  1. Уровень мощности.

Необходимо соответствие между мощностью электропривода и преобразователя.

  1. Значение входного напряжения.

Указание на то, при какой силе тока преобразователь работает. Здесь необходимо учитывать каковы могут быть потенциальные колебания в сети (низкий уровень напряжения провоцирует остановку, высокий — поломку).

  1. Категория двигателя насоса.

Однофазный, двухфазный или трёхфазный.

  1. Границы диапазона частотного управления.

Для скважинного насоса требуется 200 — 600 Гц (в зависимости от того, какова первичная мощность насоса), для циркулярного насоса — 200 — 350 Гц.

  1. Соответствие числа входов/выходов управления эксплуатационным потребностям.

Чем их больше, тем больше возможностей управления рабочим процессом.

  1. Выбор подходящего способа управления.

В случае со скважинным насосом — управление выносного типа, позволяющее осуществлять управление напрямую из дома, а циркуляционный насос отлично работает с пультом дистанционного управления.

Определять надёжность приобретаемых устройств нужно косвенно по длительности гарантийного срока. Соответственно, чем он больше, тем лучше качество.

Где устанавливать преобразователь для насоса?

Частотные преобразователи, имеющие гидравлическое подключение, устанавливаются прямо на напорной магистрали. Без такого подключения, на магистраль крепится лишь датчик давления воды, соединённый с ПЧ.

Преобразовать располагается максимально близко к насосу, но только внутри отапливаемого помещения. Общая схема подключения к питанию проста и не вызывает затруднений.

Модели преобразователей для насоса

  • Grundfos Cue

Преобразователи, выпускаемые компанией, расположенной в Дании и производящей насосы. Как следствие, эти частотники спроектированы в максимальном соответствии с конструкцией моделей насоса от Грундфос. Прибор отвечает за тонкую регуляцию работы всего механизма, выполнение предохраняющих и управляющих функций. Преобразователи системы Cue отличаются разнообразием высококачественных моделей (более 15-ти видов в ассортименте), однако стоимость у них соответствующая. Кроме того цена напрямую зависит от того, для механизма какой мощности требуется преобразователь частоты. Среди спектра моделей можно найти преобразователи и для однофазного насоса (), и для трёхфазного (Micro Drive FC101).

  • Erman E-9

Преобразователи этой компании отличаются бюджетностью. Отвечают за компенсацию крутящего момента, плавность запуска, контроль давления и обладают различными режимами управления числом до 24-х. Соответствие по мощности подбирается в индивидуальном порядке. Имеется защитный корпус, предохраняющий от воздействия пыли и грязи.

  • Hyundai N 50

Преобразователь частот однофазного типа. Можно использовать в бытовых приборах. Уровень мощности составляет 0,7-2,5 кВт. Малогабаритный, что делает его удобным для установки в любых устройствах. Примечателен тем, что обеспечивает тонкую настройку благодаря нескольким режимам настройки и 16-ти дискретным скоростям. Стоит примерно вдвое больше предыдущей модели.

  • PowerFlex 40

Модели этой марки отличаются универсальностью и весьма популярны. Их отличительная особенность — качественный привод и векторное управление. Привод помимо прочего гасит шумы во время работы двигателя, автоматически подхватывает частоты вращения электрического двигателя, защищает весь механизм от перегрузки и перегрева, обеспечивает плавный старт. По стоимости сопоставимо с Grundfos Cue .

Использование насоса в системах автономного водоснабжения и отопления

Модели насоса данной категории считаются весьма производительными, но отличаются чрезмерно высоким уровнем энергопотребления, что, конечно, затрудняет эксплуатацию. Снизить объём энергозатрат, уровень давления и продлить срок службы позволяют конечно же частотные преобразователи.

Большая часть современных насосов спроектирована в соответствии с принципом дросселирования. Электрические моторы этих механизмов находятся в режиме работы на верхнем мощностном пределе, то есть буквально на износ. Зачастую из-за отсутствия плавности при включении наблюдаются мощные гидравлические удары, портящие конструкцию насоса. Чтобы точно настроить такой механизм тоже нужно изрядно постараться.

Расчёт данных для насосного оборудования всегда производится исходя из предельного уровня мощности, хотя максимальную нагрузку механизм испытывает лишь эпизодически при пиковом потреблении воды, что случается нечасто. В остальное время осуществление работы на пределе возможностей совершенно неоправданна. Как раз в такие моменты частотный преобразователь для циркуляционного и скважинного насоса сокращает энергопотребление на 30 — 40 %.

Помимо прочего, использование частотного преобразователя в станции насоса обеспечивающего доставку воды позволяет предотвратить проблему «сухого хода». Она актуальна в тех случаях, когда воды внутри системы нет, а двигатель работает дальше. Из-за «сухого хода» может произойти перегрев двигателя и поломка механизма в целом. Это ещё раз доказывает необходимость использования преобразователя.

Однофазный частотный преобразователь для насоса в рамках бытовой системы водоснабжения

Эргономичность приборов является весьма значимым показателем в рамках бытового обслуживания. Улучшение данного параметра для системы водоснабжения, использующей маломощную однофазную модель насоса, затруднительно, поскольку для этого требуется преобразователь с входным/выходным уровнем напряжения 1х220В, а найти такой нелегко.

Обычно бытовые насосы не имеют нареканий по энергопотреблению, однако это не компенсирует затрат на покупку, ввиду её редкой эксплуатации.

Однако установка преобразователя при этом не теряет актуальности, поскольку он помогает поддержанию постоянного сетевого давления. Иначе говоря здесь осуществляется запрос на комфортную эксплуатацию.

Особенно важна такая опция при использовании горячей воды. То есть, применение частотника избавляет от температурных скачков и изменения силы напора.

Однофазные преобразователи подходят как для погружных, так и для поверхностных насосов.

Однофазный преобразователь частоты для домашнего пользования

Преобразователи стандартного типа обычно не оснащены гидравлическим подключением. Попытка самостоятельного модернизирования устройства под такие нужды может оказаться бесполезной, даже если за дело возьмётся специалист.

Осознавая данную проблему, производители, занимающиеся выпуском преобразователей частоты, создали специальный однофазный частотный преобразователь для насоса, обеспечивающего бытовые системы водоснабжения.

Одним из подобных преобразователей является , оснащённый гидравлическим подключением и способный к выполнению всех стандартных задач частотника.