Равна энергия ферми натрия температуре. В металле по энергиям

При абсолютном нуле в каждом из состояний, энергия которых не превышает находится один электрон; в состояниях с электроны отсутствуют. Следовательно, функция распределения электронов по состояниям с различной энергией имеет при абсолютном нуле вид, показанный на рис. 52.1.

Найдем функцию распределения при температуре, отличной от абсолютного нуля.

Следуя Киттелю, рассмотрим неупругие столкновения равновесного электронного газа с атомом примеси, внедренным в кристаллическую решетку металла. Допустим, что атом примеси может находиться лишь в двух состояниях, энергию которых мы положим равной 0 и .

Из множества процессов столкновений рассмотрим тот, в результате которого электрон переходит из состояния к с энергией Е в состояние к с энергией . Атом примеси переходит при этом с уровня с энергией на уровень с энергией, равной нулю. Вероятность перехода к пропорциональна: 1) вероятности того, что состояние занято электроном, 2) вероятности того, что состояние свободно, 3) вероятности того, что атом примеси находится в состоянии с энергией е. Таким образом,

Вероятность обратного процесса пропорциональна выражению

где - вероятность того, что атом примеси находится в состоянии с энергией, равной нулю.

В силу принципа детального равновесия коэффициент пропорциональности в выражениях (52.1) и (52.2) одинаков.

В равновесном состоянии вероятности переходов должны быть одинаковыми. Следовательно,

(мы учли, что вероятности нахождения атома примеси на уровнях подчиняются закону распределения Больцмана).

Функциональное уравнение (52.3) должно выполняться при любой температуре Т. Это произойдет, если положить

где - величина, не зависящая от Е. Соответственно

Произведение этих двух выражений при любой температуре равно

Решив уравнение (52.4) относительно получим для функции распределения электронов по состояниям с различной энергией выражение

Это выражение называется функцией распределения Ферми - Дирака. Параметр носит название химического потенциала.

В соответствии со смыслом функции (52.5) величина представляет собой среднее число электронов, находящихся в состоянии с энергией Е. Поэтому формуле (52.5) можно придать вид

(ср. с (49.4)). В отличие от (49.4), параметр в распределении (52.6) имеет положительные значенияданном случае это не приводит к отрицательным значениям чисел ). Распределение (52.6) лежит в основе статистики Ферми-Дирака.

Частицы, подчиняющиеся этой статистике, называются фермионами. К их числу относятся все частицы с полуцелым спином.

Для фермионов характерно то, что они никогда не занимают состояния, в котором уже находится одна частица. Таким образом, фермионы являются «индивидуалистами». Напомним, что бозоны, напротив, являются «коллективистами» (см. конец § 49).

Имеющий размерность энергии параметр часто обозначается через и называется уровнем Ферми или энергией Ферми. В этих обозначениях функция (52.5) имеет вид

Исследуем свойства функции (52.7). При абсолютном нуле

Таким образом, при 0 К уровень Ферми ЕР совпадает с верхним заполненным электронами уровнем (см. предыдущий параграф).

Независимо от значения температуры, при функция равна Следовательно, уровень Ферми совпадает с тем энергетическим уровнем, вероятность заполнения которого равна половине.

Значение ЕР можно найти из условия, что полное число электронов, заполняющих уровни, должно равняться числу свободных электронов в кристалле ( - плотность электронов, V - объем кристалла). Количество состояний, приходящееся на интервал энергий , равно где - плотность состояний. Среднее число электронов, находящихся в случае теплового равновесия в этих состояниях, определяется выражением Интеграл от этого выражения даст полное число свободных электронов в кристалле:

Это соотношение представляет собой по существу условие нормировки функции

Подстановка в (52.8) выражений (51.9) и (52.7) дает

Это соотношение позволяет в принципе найти как функцию . Интеграл в выражении (52.9) не берется. При условии, что удается найти приближенное значение интеграла. В результате для уровня Ферми получается выражение

(напомним, что ) зависит от ; см. (51.10)).

Из (52.10) следует, что при низких температурах (для которых только и справедливо это выражение) уровень Ферми хотя и зависит от температуры, но очень слабо. Поэтому во многих случаях можно полагать Однако для понимания, например, термоэлектрических явлений (см. § 63) зависимость от Т имеет принципиальное значение.

При температурах, отличных от абсолютного нуля, график функции (52.7) имеет вид, показанный на рис. 52.2. В случае больших энергий (т. е. при что выполняется в области «хвоста» кривой распределения) единицей в знаменателе функции можно пренебречь. Тогда распределение электронов по состояниям с различной энергией принимает вид

т. е. переходит в функцию распределения Больцмана.

Отметим, что заметное отличие кривой на рис. 52.2 от графика, изображенного на рис. 52.1, наблюдается лишь в области порядка Чем выше температура, тем более полого идет ниспадающий участок кривой.

Поведение электронного газа в сильной степени зависит от соотношения между температурой кристалла и температурой Ферми, равной Различают два предельных случая.

Поэтому уже при комнатной температуре электронный газ во многих полупроводниках является невырожденным и подчиняется классической статистике.

3.1. Статистическое описание коллектива частиц.

Функция распределения частиц по состояниям. Фермионы и бозоны

Согласно результатам зонной теории твердых тел электроны в кристаллах удобно рассматривать как свободные частицы, эффективная масса которых отличается от массы свободного электрона. В полупроводниках, кроме электронов, носителями заряда являются и положительно заряженные частицы - дырки. Таким образом, в явлениях, в которых основную роль играют эти частицы (электропроводность, теплопроводность, взаимодействие со светом и т.д.) твердое тело можно рассматривать как газ электронов и дырок.

Системы, состоящие из большого количества тождественных частиц, являются предметом изучения статистической физики. Основной особенностью статистических закономерностей является их вероятностный характер. Хорошо известен метод статистического описания коллектива молекул идеального газа. Несмотря на то, что скорость отдельной молекулы газа является величиной случайной в газе, состоящем из большого числа одинаковых молекул, наблюдается определенная закономерность в распределении их по скоростям. Используя методы статистической физики, всегда можно указать, какая доля молекул имеет скорость, заключенную в данном интервале значений.

Основная задача статистики состоит в определении числа частиц, энергия которых лежит в заданном интервале. Результатом решения этой статистической задачи является нахождение функции распределения частиц по энергиям , которую обозначают обычно f(E). Если dZ - число возможных состояний ансамбля частиц с энергией, заключенной в интервале от E до E+dE , а dN - число частиц, находящихся в этих состояниях, то по определению

(3.1)

Таким образом, функция распределения частиц по энергиям есть плотность заполнения данных состояний частицами.

Для молекул идеального газа f (E ) известна как функция распределения Максвелла-Больцмана :

(3.2)

где С - параметр, не зависящий от энергии; k - постоянная Больцмана; Т - абсолютная температура.

Формулу (3.2) называют часто также каноническим распределением или распределением Гиббса . Из этого распределения можно легко получить известное из молекулярной физики распределение Максвелла молекул идеального газа по скоростям теплового движения. Статистика молекул идеального газа исходит из следующих основных положений:

1. Молекулы газа подчиняются законам классической механики.

2. Молекулы газа обладают индивидуальностью, позволяющей отличать их друг от друга. Поэтому, когда две молекулы, находящиеся в разных состояниях меняют местами, это приводит к новому распределению их по состояниям (новому микросостоянию).

3. Предполагается, что все способы распределения равновероятны.

Предположение о том, что электронный газ в металлах подчиняется статистике Максвелла-Больцмана, опровергается рядом экспериментальных результатов. Например, из этого предположения следует, что электроны должны давать вклад в теплоемкость металлов, который примерно на два порядка больше экспериментально наблюдаемой величины. Противоречие снимается, если учитывать квантовые свойства частиц в кристаллах.

В отличие от классической статистики Максвелла-Больцмана квантовая статистика стоит на точке зрения принципиальной неразличимости тождественных частиц . Поэтому перестановка местами двух квантовых частиц не приводит к новому микросостоянию. Для электронов и всех частиц с полуцелым спином необходимо учитывать также принцип Паули . Согласно этому принципу в одном квантовом состоянии может находиться только одна частица. Такие частицы называются фермионами и подчиняются квантовой статистике Ферми-Дирака . Иной квантовой статистикой описываются частицы с нулевым и целым спином. Эти частицы не подчиняются принципу Паули и в одном состоянии их может бытьсколько угодно. Такие частицы называются бозонами , квантовая статистика, которая описывает их распределение по энергиям, - статистикой Бозе-Эйнштейна . Сравнение этих трех статистик приведено на рис. 3.1 на примере распределения двух частиц по трем состояниям. Различные состояния частиц на этом рисунке изображены клетками.

Все возможные способы распределения двух частиц, подчиняющихся классической статистике Максвелла-Больцмана, по трем состояниям показаны на рис. 3.1,а. Поскольку частицы в этой статистике различимы, они обозначены разным цветом. Всего возможно девять микросостояний, математическая вероятность каждого из них равна 1/9. В квантовых статистиках Бозе-Эйнштейна и Ферми-Дирака микросостояния 1 и 2, 3 и 4, 5 и 6 принципиально неразличимы и каждая пара таких состояний должна рассматриваться как одно микросостояние. Для бозонов число возможных микросостояний равно 6 (рис. 3.1,б), а вероятность каждого из них - 1/6. Для фермионов микросостояния, в которых в каждом состоянии находятся по две частицы, реализоваться не могут. Остаются в статистике Ферми-Дирака только три возможных микросостояния, изображенные на рис. 3.1,в. Вероятность каждого из них равна 1/3.


Статистике Бозе-Эйнштейна подчиняются фотоны и фононы, играющие важную роль в физических свойствах твердых тел. Функция распределения Бозе-Эйнштейна имеет вид

(3.3)

Здесь Е В - химический потенциал системы бозонов.

Если полное число частиц не фиксировано, а должно определяться из условия термодинамического равновесия, как это имеет место для фотонов при излучении абсолютно черного тела, или фононов в кристалле, химический потенциал равен нулю. В этом случае формула (3.3) совпадает с формулой Планка, определяющей среднее число фотонов в данном типе колебаний теплового излучения абсолютно черного тела.

3.2. Функция распределения Ферми-Дирака. Уровень Ферми.

Энергия Ферми. Влияние температуры на распределение Ферми-Дирака

Функция распределения Ферми-Дирака, описывающая распределение фермионов по состояниям, имеет следующий вид:

, (3.4)

здесь E F - химический потенциал системы фермионов, т.е. работа, которую необходимо затратить, чтобы изменить число частиц в системе на одну. В случае электронов величина E F называется энергией Ферми .

Рассмотрим вид функции Ферми-Дирака при температуре, стремящейся к абсолютному нулю. Как нетрудно видеть из формулы (3.4), для любой энергии частицы, большей энергии Ферми, экспонента в знаменателе стремится к бесконечности при , следовательно f(Е) стремится к нулю. Это значит, что все энергетические состояния с Е > E F совершенно свободны при абсолютном нуле. Если Е < E F при , f(E) стремится к единице. Это значит, что все квантовые состояния с энергией, меньше энергии Ферми, полностью заняты электронами. Отсюда понятен физический смысл энергии Ферми как параметра распределения электронов по состояниям: энергия Ферми есть максимально возможная энергия электронов в металле при температуре абсолютного нуля . Энергетический уровень, соответствующий энергии Ферми, называется уровнем Ферми .

Вид функции распределения Ферми-Дирака при Т = 0К представлен на рис. 3.2,а. На рис. 3.2,б показано распределение электронов по энергетическим уровням в зоне проводимости металла при этой же температуре.

Если Т ¹ , то при энергии частицы, равной энергии Ферми, функция распределения Ферми-Дирака равна 1/2 . Это значит, что при любой температуре, отличающейся от абсолютного нуля, уровень Ферми заполнен наполовину. Вид функции Ферми-Дирака для двух различных температур показан схематически на рис. 3.3. Изменение характера распределения электронов по состояниям связано с тепловым возбуждением электронов. При этом часть электронов переходит в состояния с энергиями, большей энергии Ферми. Соответственно часть состояний ниже уровня Ферми оказывается свободной. В результате функция f(E) "размыта" вблизи энергии Ферми. Тепловому возбуждению подвергается незначительная часть электронов, находящихся вблизи уровня Ферми. Функция Ферми-Дирака заметно отличается от вида, который она имела при абсолютном нуле, лишь при . Величина "размытия" пропорциональна температуре (рис. 3.3). Чем выше температура, тем более существенному изменению подвергается функция распределения.



При условии

(3.5)

экспонента в знаменателе становится значительно больше единицы в формуле (3.4). В этом случае единицей можно пренебречь и распределение Ферми-Дирака преобразуется к виду

(3.6)

Выражение (3.6) совпадает по форме с функцией распределения Максвелла-Больцмана.

Вероятность того, что некоторый энергетический уровень с энергией Е свободен, т.е. занят дыркой, равна

(3.7)

Таким образом, функция распределения Ферми-Дирака для дырок аналогична функции распределения для электронов, если в ней изменить знаки показателей экспонент. Это хорошо согласуется с представлением о том, что дырки являются носителями положительного заряда.

Газ носителей заряда, подчиняющийся статистике Ферми-Дирака, называется вырожденным . Если носители заряда подчиняются статистике Максвелла-Больцмана, то они называются невырожденными .

3.3. Функция плотности состояний электронов и дырок

Для определения числа частиц, имеющих энергию в заданном интервале, необходимо, кроме функции распределения , знать функцию плотности состояний . Эта функция описывает распределение уровней в соответствующих зонах и определяет число уровней, приходящихся на единичный интервал энергии. По определению

(3.8)

Здесь, как и раньше, dZ - число возможных состояний ансамбля частиц (число уровней) с энергией, заключенной в интервале от E до E+dE . Функцию g(E) вычислим для кубического кристалла со стороной L . Энергия электрона у дна зоны проводимости приближенно может быть представлена в виде

(3.9)

здесь энергия дна зоны проводимости, - эффективная масса электрона у дна зоны проводимости, k - квазиимпульс электрона, - его компоненты. Согласно граничным условиям, компоненты квазиимпульса могут принимать только следующие дискретные значения энергии:

Каждому набору чисел n x , n y , n z отвечает некоторое квантовое состояние (квантовый уровень). В пространстве волновых векторов каждому квантовому состоянию соответствует объем , где V - объем кристалла. Эти элементарные кубические ячейки займут в пространстве волновых чисел объем шара радиусом k , соответствующего максимально возможному значению модуля волнового вектора. Выделим шаровой слой, заключенный между двумя поверхностями k = const и k +dk = const . Объем этого слоя составляет . Разделив этот объем на объем элементарной ячейки и умножив на 2, поскольку в каждом состоянии могут находиться по два электрона с противоположно направленными спинами, получим число состояний в объеме шарового слоя:

. (3.10)

Согласно (3.9)

Подставляя значения k 2 и dk в формулу (3.10), получим

Учитывая (3.8), получим окончательное выражение для плотности квантовых состояний электронов у дна зоны проводимости:

(3.11)

Энергию дырок у потолка валентной зоны можно записать также в виде параболического закона:

(3.12)

где E v - энергия потолка валентной зоны, - эффективная масса дырки. Вычисления, аналогичные тем, которые были проведены выше для электронов, приводят к следующему выражению для функции плотности состояний дырок вблизи потолка валентной зоны:

(3.13)

Следует подчеркнуть, что формулы (3.11) и (3.13) справедливы только для состояний вблизи экстремумов энергии, т.е. у дна или потолка энергетической зоны. В средней же части зоны точный вид функции g(E ) неизвестен. На рис. 3.4 схематически представлены зависимости плотности квантовых уровней вблизи дна зоны проводимости и потолка валентной зоны.


3.4. Концентрации электронов и дырок в полупроводнике.

Закон действующих масс. Невырожденный газ электронов и дырок

Вычислим концентрацию электронов в зоне проводимости полупроводника. Число электронов dN , находящихся в dZ состояниях энергетической зоны в соответствии с уравнением (3.1) определяется выражением

Учитывая, что dZ = g(E) dE , получим

. (3.14)

Общее число электронов в зоне проводимости найдем, проинтегрировав выражение (3.14) в пределах зоны

, (3.15)

здесь Е п - энергия потолка зоны проводимости. Поскольку функция распределения Ферми-Дирака очень быстро уменьшается с увеличением энергии, то верхний предел интегрирования можно взять равным бесконечности. Если степень заполнения энергетических состояний электронами в зоне проводимости мала (f(E) << 1), что практически всегда имеет место в полупроводниках, то единицей в знаменателе формулы (3.4) можно пренебречь. При этих условиях подстановка функций f(E) и g(E) в уравнение (3.15) приводит к следующему выражению для концентрации электронов в зоне проводимости:

. (3.16)

Преобразуем теперь выражение (3.16) к виду

Произведем замену переменных в подынтегральном выражении

В результате получим

Интеграл в этом выражении равен . Следовательно

(3.17)

где

. (3.18)

Величину N c называют эффективной плотностью состояний в зоне проводимости . Это название связано с тем, что полная концентрация электронов, распределенных в действительности в определенном энергетическом интервале в зоне проводимости, такая же, как если бы зона была занята N c уровнями, обладающими одной и той же энергией Е c .

Аналогично можно вычислить концентрацию дырок в валентной зоне. Поскольку вакантное состояние в валентной зоне образуется в результате перехода электрона из этого состояния в зону проводимости, то вероятность того, что состояние с энергией Е в валентной зоне не занято, равна .

Тогда концентрация дырок

здесь E v - потолок валентной зоны.

При условии, что газ дырок невырожденный, получим

(3.19)

где эффективная плотность состояний в валентной зоне

. (3.20)

Перемножая выражения (3.17) и (3.19), получим

(3.21)

где n i - концентрация собственных носителей заряда в полупроводнике, E g = E c - E v - ширина запрещенной зоны.

Соотношение (3.21) называется законом действующих масс . При выводе этого закона использовано предположение о том, что степень заполнения энергетических уровней носителями заряда много меньше единицы. Такой газ носителей называется невырожденным , а полупроводники - невырожденными .

В общем случае вырожденным газом в физике называется газ, свойства которого отличаются от свойств классического идеального газа вследствие квантово-механических свойств частиц газа. Вырожденный газ подчиняется квантово-механическим статистикам Ферми-Дирака или Бозе-Эйнштейна, невырожденный газ - статистике Маквелла-Больцмана. Условием перехода газа в невырожденное состояние является выполнение неравенства f(E) << 1. Можно показать, что это условие для электронного газа эквивалентно следующему соотношению:

(3.22)

Аналогичное соотношение справедливо и для дырок с заменой n на p и на .

Вопрос о том, является газ носителей заряда в кристалле вырожденным или невырожденным определяется только его концентрацией и температурой. Подстановка численных значений величин, входящих в неравенство (3.22), приводит к выводу о том, что при комнатной температуре (Т ~ 300К) газ носителей будет невырожденным, если его концентрация значительно меньше 10 25 м -3 . Это условие выполняется практически для всех полупроводников. Поскольку концентрация электронов в зоне проводимости металлов превышает 10 28 м -3 , то электронный газ металлов всегда является вырожденным.

Таким образом, закон действующих масс выполняется для любого невырожденного полупроводника независимо от роли примесей, т.е. в любом невырожденном полупроводнике увеличение концентрации носителей одного знака приводит к уменьшению концентрации носителей противоположного знака. Следует отметить также, что произведение электронной и дырочной концентраций не зависит от положения уровня Ферми.

3.5. Уровень Ферми в полупроводниках

Понятия энергии Ферми и уровня Ферми были введены ранее для металлов. Поскольку в полупроводниках функция распределения электронов по состояниям имеет тот же вид, что и в металлах, то энергия Ферми в полупроводниках имеет тот же физический смысл: энергия Ферми - это максимально допустимая энергия, ниже которой при нулевой абсолютной температуре все энергетические уровни заняты [f(E) = 1], а выше которой все уровни пусты [f(E ) = 0]. Для полупроводников, у которых при абсолютном нуле валентная зона полностью заполнена, а зона проводимости совершенно свободна, функция распределения имеет разрыв. Следовательно, уровень Ферми в полупроводнике должен лежать при абсолютном нуле в запрещенной зоне.

Для собственного полупроводника концентрации электронов и дырок равны (n = p ), т.к. каждый электрон, покинувший валентную зону, создает одну дырку. Приравнивая равенства (3.17) и (3.19), получим

Разрешая последнее равенство относительно Е F , получим

(3.23)

Если эффективные массы электронов и дырок равны [ = , = 0] уровень Ферми собственного полупроводника при любой температуре располагается посередине запрещенной зоны.

Температурная зависимость положения уровня Ферми в собственном полупроводнике определяется третьим слагаемым в уравнении (3.23). Если эффективная масса дырки в валентной зоне больше эффективной массы электрона в зоне проводимости, то уровень Ферми смещается с повышением температуры ближе к дну зоны проводимости. В противоположном случае уровень Ферми смещается к потолку валентной зоны. Положение уровня Ферми в собственном полупроводнике с изменением температуры схематически показано на рис. 3.5.

Для большинства полупроводников эффективная масса дырки не намного превышает эффективную массу электрона и смещение уровня Ферми с изменением температуры незначительно. Однако у антимонида индия (InSb) , а ширина запрещенной зоны невелика (E g = 0,17 эВ), так что при Т > 450 K уровень Ферми входит в зону проводимости. При этой температуре полупроводник переходит в вырожденное состояние.


Положение уровня Ферми в примесных полупроводниках может быть найдено из условия электронейтральности кристалла. Для донорного полупроводника это условие записывается в виде

, (3.24)

здесь N d - концентрация донорных уровней, n d - концентрация электронов на донорных уровнях. Концентрация электронов в зоне проводимости равна сумме концентраций дырок в валентной зоне и концентрации положительно заряженных ионов доноров (последняя, очевидно, равна N d - n d ).

Концентрацию электронов на донорных уровнях можно вычислить, умножив концентрацию этих уровней N d на функцию распределения Ферми-Дирака:

, (3.25)

где Е d - энергия активации донорных уровней.

Подстановка в условие электронейтральности (3.24) концентраций электронов (3.17) и дырок (3.19), а также концентрации электронов на донорных уровнях (3.25) приводит к следующему уравнению относительно положения уровня Ферми Е F :

. (3.26)

При подстановке концентрации электронов на донорных уровнях в уравнение (3.24) было сделано предположение, что газ электронов примесных атомов невырожденный, что позволило пренебречь единицей в знаменателе формулы (3.25).

Уравнение (3.26) ввиду его сложности обычно в общем виде не решают, а ограничиваются рассмотрением частных случаев. Например, при низких температурах, когда электроны в зоне проводимости появляются в основном за счет переходов с примесных уровней, а концентрация дырок близка к нулю, решение уравнения (3.26) имеет вид

. (3.27)

Из уравнения (3.27) следует, что при абсолютном нуле температуры энергия Ферми донорного полупроводника находится строго посередине между дном зоны проводимости и донорными уровнями. Температурная зависимость положения уровня Ферми определяется третьим членом в уравнении (3.27), который меняет знак с изменением температуры. Поэтому уровень Ферми с повышением температуры сначала смещается к зоне проводимости, а затем - к валентной зоне (рис. 3.6,а).


Аналогично можно получить выражение для температурной зависимости уровня Ферми в акцепторном полупроводнике. График этой зависимости схематически приведен на рис. 3.6,б.


3.6. Равновесные и неравновесные носители заряда. Квазиуровни Ферми

Положение уровня Ферми в собственных и примесных полупроводниках связано с концентрацией носителей заряда, установившейсяпри данной температуре в состоянии термодинамического равновесия. Переброс электронов в зону проводимости за счет температурного возбуждения и возникновение в результате этого процесса дырок в валентной зоне называется термической генерацией свободных носителей заряда . Одновременно происходит и обратный процесс: электроны возвращаются в валентную зону, в результате чего исчезают электрон и дырка. Этот процесс называется рекомбинацией носителей заряда . Для количественного описания процессов генерации и рекомбинации носителей заряда в полупроводниках используют понятия скорости генерации , скорости рекомбинации и времени жизни носителей заряда.

Скорость генерации носителей - это число носителей, возбуждаемых в единичном объеме полупроводника за единицу времени.

Скорость рекомбинации носителей - это число носителей, рекомбинирующих в единице объема полупроводника за единицу времени.

Время жизни носителeй t - это среднее время от генерации носителя до его рекомбинации.

Из приведенных выше определений непосредственно следуют следующие соотношения между скоростями рекомбинации электронов R n и дырок R p и их временами жизни t n и t p соответственно:

(3.28)

Здесь учтено, что 1/ t - вероятность рекомбинации носителя за единицу времени.

При фиксированной температуре устанавливается термодинамическое равновесие, при котором процессы генерации и рекомбинации взаимно уравновешиваются. Такие носители, находящиеся в тепловом равновесии с кристаллической решеткой, называются равновесными .

Электропроводность полупроводника может быть возбуждена и другими способами, например, облучением светом, действием ионизирующих частиц, электрическим полем, инжекцией носителей через контакт и др. Во всех этих случаях дополнительно к равновесным носителям в полупроводнике возникают носители заряда, которые не будут находиться в состоянии теплового равновесия с кристаллом. Такие носители называются неравновесными .

Общую концентрацию электронов в зоне проводимости n в случае равновесных и неравновесных носителей можно представить в виде

, (3.29)

где n 0 – концентрация равновесных электронов; D n - концентрация неравновесных электронов.

Общая концентрация дырок

, (3.30)

где p 0 и D p - равновесная и неравновесная концентрации дырок соответственно.

Поскольку распределение Ферми-Дирака справедливо только для состояния термодинамического равновесия, то понятно, что статистика неравновесных носителей должна быть иной. В отсутствие термодинамического равновесия принято вводить два новых параметра распределения E Fn для электронов и E Fp для дырок. Эти параметры выбираюттаким образом, чтобы для концентраций электронов и дырок при наличии неравновесныхносителей выполнялись уравнения (3.17) и (3.19) соответственно при условии замены E F на E Fn для электронов и на E Fp для дырок. Величины E Fn и E Fp называют квазиуровнями Ферми электронов и дырок соответственно. Таким образом, в невырожденных полупроводниках справедливы уравнения

, (3.31)

В состоянии термодинамического равновесия квазиуровни Ферми совпадают с равновесным уровнем Ферми E F . Чем выше концентрация неравновесных носителей заряда, тем дальше отстоят квазиуровниФерми от уровня Ферми. Из уравнений (3.31), (3.32), (3.17) и (3.19) следует

. (3.33)

Это соотношение выражает связь между концентрациями электронов и дырок в неравновесном состоянии. Разность энергий характеризует отклонение от состояния термодинамического равновесия. Если np > n 0 · p 0 , то . Это условие соответствует инжекции (вбрасыванию) избыточных носителей. Если np < n 0 p 0 , то говорят об экстракции (обеднении) носителей.

Неравновесные носители играют важную роль в работе полупроводниковых приборов.

Энергия Ферми. Влияние температуры на распределение Ферми-Дирака

Функция распределения Ферми-Дирака, описывающая распределение фермионов по состояниям, имеет следующий вид:

здесь E F - химический потенциал системы фермионов, т.е. работа, которую необходимо затратить, чтобы изменить число частиц в системе на одну. В случае электронов величина E F называется энергией Ферми .

Рассмотрим вид функции Ферми-Дирака при температуре, стремящейся к абсолютному нулю. Как нетрудно видеть из формулы (3.4), для любой энергии частицы, большей энергии Ферми, экспонента в знаменателе стремится к бесконечности при , следовательно f(Е) стремится к нулю. Это значит, что все энергетические состояния с Е > E F совершенно свободны при абсолютном нуле. Если Е < E F при , f(E) стремится к единице. Это значит, что все квантовые состояния с энергией, меньше энергии Ферми, полностью заняты электронами. Отсюда понятен физический смысл энергии Ферми как параметра распределения электронов по состояниям: энергия Ферми есть максимально возможная энергия электронов в металле при температуре абсолютного нуля . Энергетический уровень, соответствующий энергии Ферми, называется уровнем Ферми .

Вид функции распределения Ферми-Дирака при Т = 0К представлен на рис. 3.2,а. На рис. 3.2,б показано распределение электронов по энергетическим уровням в зоне проводимости металла при этой же температуре.

Если Т , то при энергии частицы, равной энергии Ферми, функция распределения Ферми-Дирака равна 1/2 . Это значит, что при любой температуре, отличающейся от абсолютного нуля, уровень Ферми заполнен наполовину. Вид функции Ферми-Дирака для двух различных температур показан схематически на рис. 3.3. Изменение характера распределения электронов по состояниям связано с тепловым возбуждением электронов. При этом часть электронов переходит в состояния с энергиями, большей энергии Ферми. Соответственно часть состояний ниже уровня Ферми оказывается свободной. В результате функция f(E) "размыта" вблизи энергии Ферми. Тепловому возбуждению подвергается незначительная часть электронов, находящихся вблизи уровня Ферми. Функция Ферми-Дирака заметно отличается от вида, который она имела при абсолютном нуле, лишь при . Величина "размытия" пропорциональна температуре (рис. 3.3). Чем выше температура, тем более существенному изменению подвергается функция распределения.

При условии

(3.5)

экспонента в знаменателе становится значительно больше единицы в формуле (3.4). В этом случае единицей можно пренебречь и распределение Ферми-Дирака преобразуется к виду

Выражение (3.6) совпадает по форме с функцией распределения Максвелла-Больцмана.

Вероятность того, что некоторый энергетический уровень с энергией Е свободен, т.е. занят дыркой, равна

Уровень Ферми . Несмотря на огромное количество свободных электронов в металле, располагаются они по энергетическим уровням потенциальной ямы в строгом порядке. Каждый из электронов занимает вакантное место на возможно более низком уровне. И это вполне естественно, так как всякая система, будучи предоставлена самой себе, то есть в отсутствие внешнего воздействия, всегда стремится перейти в состояние с наименьшей энергией. Распределение электронов по уровням подчинено принципу Паули, согласно которому никакие две частицы не могут находиться в совершенно одинаковых состояниях. В силу этого на каждом энергетическом уровне может расположиться не более двух электронов, да и то имеющих различные направления спинов. По мере укомплектования нижних уровней происходит заселение все более высоко расположенных уровней. Если в рассматриваемом образце металла имеется N свободных электронов, то в отсутствие теплового возбуждения, то есть при абсолютном нуле температуры (T = 0), все свободные электроны разместятся попарно на N/2 нижних уровнях (рис. 47). Самый высокий энергетический уровень потенциальной ямы металла, занятый электронами при Т = 0, называется уровнем Ферми * и обозначается буквой μ или W F . Энергия электрона, находящегося на этом уровне, называется энергией Ферми. Все энергетические уровни, расположенные выше уровня Ферми, при Т = 0 оказываются абсолютно пустыми.

* (Свое название этот уровень получил в честь выдающегося итальянского физика Э. Ферми, разработавшего совместно с известным английским физиком П. Дираком теорию поведения коллективов частиц, ведущих себя как электроны в металле. )

Вполне очевидно, что для выхода электронов, находящихся на уровне Ферми, за пределы металла должна быть совершена работа


Величина А, равная энергетическому расстоянию между уровнем удаленного электрона ВВ и уровнем Ферми, называется термодинамической работой выхода или просто работой выхода. Именно эта величина определяет поведение различных металлов при установлении контакта между ними или при создании контакта металл - полупроводник.

Функция распределения Ферми - Дирака . Характер распределения частиц по разным уровням или состояниям в тех или иных условиях определяется так называемой функцией распределения. В общем случае функция распределения описывает вероятность занятости того или иного уровня частицами. Если достоверно известно, что данный уровень заселен частицей, то говорят, что вероятность обнаружения частицы на этом уровне равна 1. Если же с полной достоверностью можно сказать, что на рассматриваемом уровне нет частиц, то говорят, что вероятность обнаружения частиц в рассматриваемом состоянии равна 0. Однако во многих случаях нельзя достоверно утверждать, что уровень заполнен или пуст. Тогда вероятность нахождения частицы на рассматриваемом уровне отлична от нуля, но меньше единицы. При этом чем больше вероятность обнаружить частицу на рассматриваемом уровне, тем ближе к единице оказывается значение функции распределения для соответствующего состояния.

Если по оси абсцисс откладывать значения энергии, соответствующей разным уровням, от дна потенциальной ямы до ее потолка, а по оси ординат - вероятность заполнения электронами соответствующих уровней, то мы получим график функции распределения Ферми - Дирака При Т = 0 он имеет вид, приведенный на рисунке 48. Часто этот график называют ступенькой Ферми. Из него видно, что при Т = 0 все уровни, вплоть до уровня Ферми, оказываются занятыми электронами. В точке W = μ функция распределения скачкообразно падает до нуля; это значит, что все уровни, расположенные выше уровня Ферми, пусты.

Влияние температуры . При температурах, отличных от нуля, вид графика зависимости отличается от приведенного на рисунке 48. Повышение температуры приводит к появлению теплового возбуждения электронов, которое они получают от тепловых колебаний кристаллической решетки. Благодаря этому возбуждению часть электронов, расположенных на наиболее высоких заполненных уровнях, переходит на пустые уровни, лежащие выше уровня Ферми (рис. 49). Вероятность обнаружения электронов на этих уровня становится уже отличной от нуля. Одновременно с этим из-за ухода части электронов с некоторых уровней, расположенных непосредственно под уровнем Ферми, вероятность заполнения их окажется меньше единицы. Таким образом, повышение температуры приводит к некоторому "размытию" границы ступеньки Ферми: вместо скачкообразного изменения от 1 к 0 функция распределения совершает плавный переход. На рисунке 50 пунктиром показан вид графика функции распределения электронов по уровням при Т = 0, а сплошными линиями отражены распределения электронов при температурах, отличных от нуля. Площадь криволинейного треугольника, расположенного под кривой распределения правее значения W F (площадка 2), пропорциональна числу электронов, перешедших на возбужденные уровни, а площадь такого же треугольника, расположенного слева от значения W F над кривой распределения (площадка 1), пропорциональна числу электронов, ушедших с уровней, которые ранее были заполненными, то есть числу освободившихся под уровнем Ферми мест. Понятно, что площади этих двух треугольников одинаковы, так как с разных позиций они выражают одно и то же число электронов.

Следует отметить, что в диапазоне рабочих температур степень размытия кривой распределения электронов в металле очень невелика. Объясняется это тем, что тепловому возбуждению подвергаются только те электроны, которые расположены на энергетических уровнях, непосредственно примыкающих к уровню Ферми. Можно качественно оценить энергетическую глубину залегания уровней, подвергающихся возбуждению. Из молекулярной физики известно, что кинетическая энергия частиц, обусловленная тепловым движением, выражается так:


Следовательно, значение энергии, которую могут передать электронам испытывающие тепловые колебания атомы кристаллической решетки, по порядку величины равно kT. При комнатной температуре в то время как энергия Ферми для металлов при этой температуре лежит в диапазоне от 3 до 10 эВ. Поэтому оказывается, что в обычных условиях в переходах на более высокие энергетические уровни могут принимать участие не более 1% всех свободных электронов. Причем это как раз те электроны, энергия которых близка к энергии Ферми. Что же касается электронов, заселяющих энергетические уровни, расположенные в глубине потенциальной ямы и удаленные от уровня Ферми больше чем на kT, то они не принимают участия в тепловом возбуждении, из-за чего распределение этих электронов остается таким же, как и при абсолютном нуле.

Физический смысл уровня Ферми . Обсуждая в §6 способность твердых тел проводить электрический ток, мы пришли к выводу, что проводимость связана с возможностью перехода электронов на более высокие энергетические уровни, то есть определяется возможностью получения электронами ускорения во внешнем электрическом поле. В металлах при Т > 0 такая возможность имеется только у электронов, находящихся в области размытия функции распределения, так как реальные электрические поля не в состоянии вырвать электроны из глубины потенциальной ямы и перевести их на свободные уровни, энергия которых выше W F (перейти же на соседние, более высоко расположенные уровни глубинные электроны не могут, потому что все эти уровни заняты). Следовательно, при Т > 0 энергия Ферми имеет смысл наиболее вероятной или средней энергии электронов металла, могущих принять участие в проводимости при данной температуре. Эти электроны ответственны не только за создание электрической проводимости. Именно они определяют вклад электронной теплоемкости в общую теплоемкость кристалла и в значительной степени определяют теплопроводность кристалла.

Уровень Ферми в металлах практически не изменяет своего положения по мере повышения температуры. С ростом температуры степень возбуждения электронов растет, и они переходят на более высоко расположенные уровни. Одновременно с этим возбуждению подвергаются и все более глубоко расположенные уровни, имеющие меньшую энергию. Кривая распределения при Т 2 > Т 1 (см. рис. 50) "размывается" более сильно, чем при T 1 , но в равной степени вправо и влево. Поэтому средняя энергия электронов, принимающих участие в проводимости, остается практически неизменной. Это тем более справедливо, что между возбужденными уровнями идет постоянный обмен электронами.

  • 1.8. Атом водорода в квантовой механике. Квантовые числа
  • Состояния электрона в атоме водорода
  • 1.9. 1S– состояние электрона в атоме водорода
  • 1.10. Спин электрона. Принцип Паули
  • 1.11. Спектр атома водорода
  • 1.12. Поглощение света, спонтанное и вынужденное излучения
  • 1.13. Лазеры
  • 1.13.1. Инверсия населенностей
  • 1.13.2. Способы создания инверсии населенностей
  • 1.13.3. Положительная обратная связь. Резонатор
  • 1.13.4. Принципиальная схема лазера.
  • 1.14. Уравнение Дирака. Спин.
  • 2. Зонная теория твердых тел.
  • 2.1. Понятие о квантовых статистиках. Фазовое пространство
  • 2.2. Энергетические зоны кристаллов. Металлы. Полупроводники. Диэлектрики
  • Удельное сопротивление твердых тел
  • 2.3. Метод эффективной массы
  • 3. Металлы
  • 3.1. Модель свободных электронов
  • При переходе из вакуума в металл
  • 3.2. Распределение электронов проводимости в металле по энергиям. Уровень и энергия Ферми. Вырождение электронного газа в металлах
  • Энергия Ферми и температура вырождения
  • 3.3. Понятие о квантовой теории электропроводности металлов
  • 3.4. Явление сверхпроводимости. Свойства сверхпроводников. Применение сверхпроводимости
  • 3.5. Понятие об эффектах Джозефсона
  • 4. Полупроводники
  • 4.1. Основные сведения о полупроводниках. Классификация полупроводников
  • 4.2. Собственные полупроводники
  • 4.3.Примесные полупроводники
  • 4.3.1.Электронный полупроводник (полупроводник n-типа)
  • 4.3.2. Дырочный полупроводник (полупроводник р-типа)
  • 4.3.3.Компенсированный полупроводник. Частично компенсированный полупроводник
  • 4.3.4.Элементарная теория примесных состояний. Водородоподобная модель примесного центра
  • 4.4. Температурная зависимость удельной проводимости примесных полупроводников
  • 4.4.1.Температурная зависимость концентрации носителей заряда
  • 4.4.2.Температурная зависимость подвижности носителей заряда
  • 4.4.3. Температурная зависимость удельной проводимости полупроводникаn-типа
  • 4.4.5. Термисторы и болометры
  • 4.5. Рекомбинация неравновесных носителей заряда в полупроводниках
  • 4.6. Диффузия носителей заряда.
  • 4.6.1. Диффузионная длина
  • 4.6.2. Соотношение Эйнштейна между подвижностью и коэффициентом диффузии носителей заряда
  • 4.7. Эффект Холла в полупроводниках
  • 4.7.1. Возникновение поперечного электрического поля
  • 4.7.2. Применение эффекта Холла для исследования полупроводниковых материалов
  • 4.7.3. Преобразователи Холла
  • 4.8. Магниторезистивный эффект
  • 5. Электронно-дырочный переход
  • 5.1.Образование электронно-дырочного перехода
  • 5.1.1. Электронно-дырочный переход в условиях равновесия (при отсутствии внешнего напряжения)
  • 5.1.2.Прямое включение
  • 5.1.3.Обратное включение
  • 5.2.КласСификация полупроводниковых диодов
  • 5.3. Вольт-амперная характеристика электроннно-дырочного перехода. Выпрямительные, детекторные и преобразовательные диоды
  • 5.3.1.Уравнение вольт-амперной характеристики
  • Классификация полупроводниковых диодов
  • 5.3.2.Принцип действия и назначение выпрямительных, детекторных и преобразовательных диодов
  • 5.4. Барьерная емкость. Варикапы
  • 5.5.Пробой электронно-дырочного перехода
  • 5.6. Туннельный эффект в вырожденном электронно-дырочном переходе. Туннельные и обращенные диоды
  • 6.Внутренний фотоэффект в полупроводниках.
  • 6.1.Фоторезистивный эффект. Фоторезисторы
  • 6.1.1.Воздействие излучения на полупроводник
  • 5.1.2.Устройство и характеристики фоторезисторов
  • 6.2.Фотоэффект в электронно-дырочном переходе. Полупроводниковые фотодиоды и фотоэлементы.
  • 6.2.1.Воздействие света наp-n-переход
  • 7.Люминесценция твердых тел
  • 7.1.Виды люминесценции
  • 7.2.Электролюминесценция кристаллофосфоров
  • 7.2.1. Механизм свечения кристаллофосфоров
  • 7.2.2. Основные характеристики электролюминесценции кристаллофосфоров
  • 7.3.Инжекционная электролюминесценция. Устройство и характеристики светодиодных структур
  • 7.3.1.Возникновение излучения в диодной структуре
  • 7.3.2.Конструкция светодиода
  • 7.3.3.Основные характеристики светодиодов
  • 7.3.4.Некоторые применения светодиодов
  • 7.4 Понятие об инжекционных лазерах
  • 8. Транзисторы
  • 8.1.Назначение и виды транзисторов
  • 8.2.Биполярные транзисторы
  • 8.2.1 Структура и режимы работы биполярного транзистора
  • 8.2.2.Схемы включения биполярных транзисторов
  • 8.2.3.Физические процессы в транзисторе
  • 8.3.Полевые транзисторы
  • 8.3.1.Разновидности полевых транзисторов
  • 8.3.2.Полевые транзисторы с управляющим переходом
  • 8.3.3. Полевые транзисторы с изолированным затвором. Структуры мдп-транзисторов
  • 8.3.4.Принцип действия мдп-транзисторов с индуцированным каналом
  • 8.3.5. Мдп-транзисторы со встроенным каналом
  • 8.4. Сравнение полевых транзисторов с биполярными
  • Заключение
  • 1.Элементы квантовой механики 4
  • 2. Зонная теория твердых тел. 42
  • 3. Металлы 50
  • 4. Полупроводники 66
  • 5. Электронно-дырочный переход 98
  • 6.Внутренний фотоэффект в полупроводниках. 109
  • 7.Люминесценция твердых тел 114
  • 8. Транзисторы 123
  • Энергия Ферми и температура вырождения

    Средняя энергия классического (невырожденного) газа составляет величину порядка ~ kT . При комнатных температурах (T ≈300 K ) kT ≈ 0,025 эВ. Сравнение этой величины с энергией Ферми показывает, чтоkT << E F . Это означает, чтоэлектронный газ в металлах всегда вырожден , то есть проявляет чисто квантовые свойства.

    Одним из критериев вырождения является температура вырождения , равная

    При T < T F система вырождена и подчиняется квантовым статистикам. ПриT > T F система не вырождена, и ее поведение подчиняется классической статистике Максвелла-Больцмана.

    В таблице 3.1 приведены также температуры вырождения электронного газа. Они составляют по порядку величины десятки и сотни тысяч градусов. Значит электронный газ является вырожденным при всех температурах, при которых металл находится в твердом состоянии. Вырождению газа способствуют малое значение массы электронов m и их высокая концентрацияn .

    Рассмотрим поведение функции распределения f F приТ>0

    .(3.2.8)

    С повышением температуры электроны приобретают тепловую энергию порядка k Т и переходят на более высокие энергетические уровни (выше уровня Ферми), вследствие чего меняется характер распределения их по энергетическим состояниям (рис.3.3, б). По сравнению с нулевой температурой спад кривойf F (E ) происходит не скачком до нуля приE = E F , а происходит плавно в полосе шириной порядка~ 2 kT . Так как энергия теплового движенияk Т значительно меньше энергии Ферми, то тепловому возбуждению могут подвергаться лишь электроны узкой энергетической полосы порядкаk Т ,непосредственно расположенной вблизи уровня Ферми (рис.3.5).

    Электроны, находящиеся на более глубоких энергетических уровнях, остаются практически незатронутыми, так как энергии теплового движенияk Т недостаточно для их возбуждения (для перевода за уровень Ферми). ЭнергииE = E F , соответствует значение функции распределения
    . Поэтому приТ > 0 уровень Ферми - это уровень энергии, вероятность заполнения которого равна .

    На рис.3.3,б заштрихованные площади пропорциональны числу электронов, покидающих состояние с энергией
    , (площадка АДВ) и переходящих на уровни, расположенные выше уровня Ферми
    (площадка ВМС). По величине эти площади равны друг другу. Доля электронов, приходящих в состояние теплового возбуждения, равна

    , (3.2.9)

    При комнатной температуре эта доля незначительна и составляет менее 1% от общего числа электронов проводимости.

    Данным обстоятельством объясняется тот факт, что теплоемкость электронного газа оказывается чрезвычайно малой по сравнению с теплоемкостью решетки. Молярная теплоемкость его
    , а по классической теории
    . (ЗдесьR- универсальная газовая постоянная). Этот результат хорошо согласуется с опытом и снимает одно из затруднений классической электронной теории металлов.

    3.3. Понятие о квантовой теории электропроводности металлов

    Теория электропроводности металлов, построенная на основе квантовой механики и квантовой статистики Ферми-Дирака, называется квантовой теорией электропроводности металла.

    Расчет электропроводимости металлов в квантовой теории был произведен Зоммерфельдом. Был выведен закон Ома в дифференциальной форме

    , (3.3.1)

    где - удельная проводимость;- плотность тока в данной точке;- напряженность электрического поля.

    Для удельной проводимости было получено следующее выражение:

    ; (3.3.2)

    где
    - средняя длина свободного пробега электрона, обладающего энергией Ферми,
    - скорость такого электрона,m - его масса.

    Сравним (3.12) с выражением, полученным из классической электронной теории металлов

    . (3.3.3)

    В этом выражении < λ > - средняя длина свободного пробега электрона,
    - средняя скорость его теплового движения.

    Несмотря на то, что выражения (3.12) и (3.13) по внешнему виду похожи, их содержание различно. Средняя скорость теплового движения
    зависит от температуры, как
    , а
    практически не зависит от температуры, так как с изменением температуры энергия Ферми, а, следовательно, и скорость, остаются практически неизменными.

    Наиболее существенное различие формул (3.3.2) и (3.3.3) состоит в том, какой смысл вкладывается в понятие длины свободного пробега электрона < λ > в классической и квантовой теории металлов.

    Классическая электронная теория рассматривает электроны как обычные частицы и причиной электрического сопротивления металлов считает столкновения электронов с узлами кристаллической решетки. Полагая, что электроны сталкиваются почти со всеми узлами решетки, встречающимися на их пути, классическая теория принимает < λ > равной параметру решеткиd (d 10 -10 м ).

    Квантовая теория рассматривает электрон как частицу, обладающую волновыми свойствами, а электрический ток в металле - как процесс распространения электронных волн, длина волны которых определяется формулой де Бройля

    . (3.3.4)

    Такие представления позволяют объяснить наблюдаемую экспериментально температурную зависимость удельной проводимости и удельного сопротивления. Рассмотрим идеальную кристаллическую решетку металла, в узлах которой находятся неподвижные ионы, а примеси и дефекты отсутствуют. Такая идеальная решетка не рассеивает электронные волны, и электрическое сопротивление такого металла должно быть равно нулю.

    В реальных кристаллах при T > 0 ионы совершают тепловые колебания около положения равновесия, нарушая строгую периодичность решетки. Кроме того, в таких решетках обычно присутствуют структурные дефекты: примеси, вакансии, дислокации и так далее. Все эти неоднородности играют роль центров рассеивания для электронных волн и являются причиной электрического сопротивления. Расчет показывает, что средняя длина свободного пробега< λ F > зависит от температуры по закону

    , (3.3.5)

    где
    - модуль упругости;d - параметр решетки.

    С учетом (3.15) удельная проводимость ,определяемая формулой (3.12), будет иметь вид

    , (3.3.6)

    то есть , а, что хорошо согласуется с опытом в области не слишком низких температур.

    При очень низких температурах формула (3.3.5) не выполняется. При этом длина свободного пробега оказывается обратно пропорциональной не первой, а пятой степени температуры, поэтому и удельное сопротивлениеρ будет пропорционально пятой степени абсолютной температуры.

    На рис.3.7 изображена зависимость удельного электрического сопротивления металла от температуры. При Т=0 удельное сопротивление металла равно не нулю, а остаточному сопротивлению ост , обусловленному рассеиванием электронных волн на структурных дефектах решетки металла.