Способ электролитического фрезерования соединительных окон внутренних каналов в деталях из алюминия и его сплавов. Энциклопедия технологий и методик Электрохимическое фрезерование металлов

Электрохимическая размерная обработка основана на локальном анодном растворении материала заготовки в растворе электролитов при интенсивном движении электролита между электродами.

Обрабатываемость металлов и сплавов электрохимическим методом зависит от их химического состава и не зависит от их механических свойств и структурного состояния. К преимуществам метода относятся высокое качество поверхности при увеличении производительности обработки, отсутствие теплового воздействия на деталь, а также отсутствие износа электрода-инструмента. Благодаря этому при электрохимической обработке не образуется слоя измененной структуры и исключается образование на поверхности прижогов, трещин, остаточных напряжений и т. д.

Целесообразность применения

Применение электрохимической обработки оказывается высокоэффективным и экономически целесообразным в следующих основных случаях:

  1. для обработки деталей из особо твердых, хрупких или вязких материалов (жаропрочные, твердые и титановые сплавы, нержавеющие и закаленные стали);
  2. для обработки конструктивно сложных узлов и деталей (лопатки газовых турбин, штампы, прессформы, литформы, внутренние каналы и полости и т. п.) даже из материалов, поддающихся резанию;
  3. для замены особо трудоемких (в том числе ручных) операций (удаление заусенцев, скругление кромок и т. п.);
  4. для получения высококачественной, в том числе полированной поверхности без дефектов в поверхностном слое.

Известные разновидности электрохимической обработки целесообразно классифицировать по двум определяющим признакам - механизму самого процесса разрушения металла и способу удаления из рабочей зоны продуктов реакции. Исходя из этого можно назвать три основных направления, по которым идет развитие и внедрение электрохимических методов обработки: электрохимикогидравлическая (анодно-гидравлическая) обработка, электрохимикомеханическая обработка и комбинированные методы обработки.

Электрохимикогидравлическая обработка

Электрохимикогидравлическая обработка (называемая также электрохимической обработкой в проточном электролите) основана на анодном растворении металла и удалении продуктов реакции из рабочей зоны потоком электролита. При этом скорость движения потока электролита в межэлектродном зазоре поддерживается в пределах 5-50 м/сек (при помощи насоса, обеспечивающего давление 5-20 кгс/см2, или благодаря вращению катода-инструмента, непрерывно смачиваемого электролитом). Рабочее напряжение поддерживается в пределах 5-24 в (в зависимости от материала и технологической операции), зазор между электродами от 0,01 до 0,5мм; величина зазора регулируется автоматическими следящими системами. В качестве материала для изготовления электрода-инструмента используют нержавеющую сталь, латунь, графит (последний при обработке на переменном или импульсном напряжении).

Энергоемкость этой группы процессов зависит от химического состава обрабатываемого материала и выхода по току. Для большинства технологических операций она составляет 10-15 квт-час/кг. Наиболее распространенными в настоящее время являются следующие виды электрохимикогидравлической обработки.

Копировально-прошивочные операции, осуществляемые при поступательном движении катода-инструмента, форма которого копируется на изделии одновременно по всей поверхности (рис. 5).

Эти операции применяются при изготовлении лопаток турбин, ковочных штампов и т. д. При скорости удаления металла 0,1-0,5 мм/мин достигается чистота поверхности 6-7; с ростом скорости обработки до 1-2 мм/мин чистота поверхности повышается до 8-9. Наибольшая производительность, получаемая при обработке полостей на станке модели МА-4423, составляет 15000 мм3/мин при токе 5000 а. Скорость подачи инструмента в направлении съема металла составляет 0,3-1,5 мм/мин при обработке штампов, прессформ и лопаток и 5-6 мм/мин при прошивании отверстий. Чистота поверхности 6-9; точность обработки 0,1-0,3 мм. Обработка ведется при минимальных зазорах (0,1-0,15 мм); наибольшие зазоры (5-6 мм) - при одновременной обработке больших поверхностей.

Рис. 5. Схема прошивания отверстия электрохимическим методом

Рис. 6. Обработка вращающимся дисковым инструментом

Обработка вращающимся дисковым инструментом (рис. 6), которая позволяет осуществлять профильное, плоское и круглое наружное шлифование безабразивным инструментом с получением чистоты поверхности 7-9 при производительности по нержавеющим сталям до 150-200 мм3/мин с рабочей площади 1 см2 и 60-80 мм3/мин по твердым сплавам, применяется для получения профиля твердосплавных резьбовых плашек , фасонных резцов , накатных роликов, изготовления наружных шлицевых пазов, прорезания узких щелей, разрезания заготовок (ширина реза 1,5-2,5 мм; чистота поверхности 6-7), а также для обработки постоянных магнитов. Обработка ведется при зазорах в 0,01-0,1 мм; точность обработки 0,01-0,05 мм, чистота поверхности 6-9. Скорость подачи в зависимости от глубины обработки колеблется от 1 до 40 мм/мин, напряжение 6-10 в. При обработке твердого сплава применяется переменный или импульсный ток.

Рис. 7. Схема электрохимического удаления заусенцев: 1 - инструмент; 2 - изолирующая втулка; 3-заготовка (анод); 4 - удаляемый заусенец

Проволочное сложноконтурное вырезание по копиру изделий из закаленных, нержавеющих сталей и других труднообрабатываемых материалов позволяет изготовлять матрицы штампа, шаблоны, сквозные и глухие пазы. Производительность обработки до 40 мм2/мин при чистоте поверхности 8 - 9. Точность обработки при прямолинейном резании 0,02 мм, при резании по контуру 0,06 мм. Максимальная толщина разрезаемой заготовки 20 мм (приведенные данные получены на станке МА-4429).

Удаление заусенцев с шестерен (рис. 7), деталей гидроаппаратуры , мелких радиотехнических изделий и т. п.

Изготовление канавок в специзделиях.

Фигурная обработка тел вращения как по торцу изделия, так и снаружи и внутри. Точность обработки при применении фасонного катода 0,05-0,1 мм.

Электрохимикомеханическая обработка

Электрохимикомеханическая обработка основана на анодном растворении металла и удалении продуктов реакции с обрабатываемой поверхности и из рабочей зоны при помощи абразива и потока электролита. К этому виду обработки относятся электрохимическое шлифование (электроабразивная или электроалмазная обработка), электрохимическая обработка с нейтральным абразивом (шлифование, хонингование и полирование) и анодно-абразивная обработка . При электроабразивной и электроалмазной обработке съем металла осуществляется не только за счет реакции анодного растворения, но также и зернами абразива или алмаза.

Производительность при электроалмазном шлифовании твердых сплавов в 1,5-2 раза выше, чем при алмазном шлифовании, а износ алмазного круга меньше в 1,5-2 раза (при работе кругами на бронзовой связке Ml, на связках М5, МВ1 и МО13Э износ круга приблизительно такой же, как при алмазном шлифовании); чистота поверхности такая же, как при алмазном шлифовании. При электрохимическом шлифовании мощность, расходуемая на привод шлифовального круга , уменьшается в несколько раз. При этом резко понижается температура поверхностного слоя, благодаря чему полностью исключается появление трещин и прижогов. Этот метод широко применяется для затачивания твердосплавного инструмента.

Электрохимическая обработка с нейтральным абразивом находит применение для плоского, круглого и профильного шлифования , хонингования внутренних цилиндрических поверхностей, супер- финишной обработки. Во всех случаях производительность этих операций в четыре - восемь раз больше, чем при механической обработке .

Комбинированные методы обработки

К комбинированным методам обработки относятся электроэрозионнохимический и электрохимический - ультразвуковой.

Электроэрозионнохимический метод обработки основан на одновременном протекании процессов анодного растворения и эрозионного разрушения металла и удалении продуктов реакции из рабочей зоны потоком электролита. При прошивочных операциях скорость подачи катода достигает 50-60 мм/мин для стали, 20- 30 мм/мин для жаропрочных сплавов и 10 мм/мин для твердых сплавов . При этом износ катода-инструмента не превышает 2,5%; точность обработки 0,1-0,4 мм (по экспериментальным данным).

Этот метод может быть использован также для круглого, плоского и профильного шлифования , разрезания заготовок из труднообрабатываемых материалов. При разрезании заготовок из нержавеющей стали производительность составляет 550-800 мм2/мин; износ инструмента при этом достигает 4-5%; точность обработки 0,1-0,3 мм. Станки для этого метода обработки в настоящее время не выпускаются.

Электрохимический способ обработки основан на разрушении металла путем одновременного анодного растворения его и воздействия ультразвуковых колебаний. Этот способ применяется для обработки твердосплавных вытяжных штампов.

Я. М. Я м польский

СПОСОБ ЭЛЕКТРОЛИТИЧЕСКОГО ФРЕЗЕРОВАНИЯ

СОЕДИНИТЕЛЬНЫХ ОКОН ВНУТРЕННИХ

КАНАЛОВ В ДЕТАЛЯХ ИЗ АЛЮМИНИЯ И ЕГО СПЛАВОВ

Заявлено 8 февраля 1957 r. за № 566488 н Комитет ио делам изобретений и открытий ири Сонете Министров СССР

Изобретение относится к способам электролитического фрезерования соединительных окон внутренних каналов в деталях из алюминия н его сплавов.

Известные способы такого рода не дают возможности выполнить внутреннее соединение каналов в труднодоступных местах. Согласно изобретению, для получения таких каналов используются медные трубки, которые служат для подвода н отвода электролита н являются катодом. В качестве электролита используется раствор нейтрал.ной соли, например, раствор технической поваренной соли.

Предлагаемый способ электролитического фрезерования поясняется чертежом.

В изделии 1, снабженном двумя или более каналами 2, требуется выполнить канал 3, соединяющий два первых канала. Для этого в один из каналов 2 вставляется изоляционно-уплот11ительная трубка 4, внутри которой 1расположены медные трубки 5 и 6, служашие для подвода и отвода электролита, Изделие присоединено к положительному полюсу источника тока и служит анодом, а медные трубки — к отрицательному полюсу и служат катодом, По трубке 5 насосом непрерывно подается электролит. Под действием тока и механического воздействия струи электролита происходит анодное растворение металла изделия в направлении струи электролита. По трубке 6 электролит попадает в сборник и затем снова в подаюший насос.

Для обработки алюминиевых изделий в качестве электролита применяется 10 — 20%-HblH раствор технической поваренной соли. Плотность тока должна быть равна 10—

Напряжение источника тока 15—

25 в. При подборе соответствуюших электролитов способ может быть применен для отработки других металлов. № 110679

Предмет изобретения

Отв. редвктор Л. Г. Голаидский

Стандартгиз. Подп. к печ. 14/1Ч 1958 г. Объем О,I25 и. л. Тираж 85О, цеиз 28 иоп.

Типография Комитета по делам изобретений и открытий при Совете Мпиистрои СССР

Москва, Неглинная, д. 23. Зак. 1980

1. Способ электрол итнчес кого фрезерования соединительных окон внутренних каналов в деталях из алюминия и его сплавов, состоящий в том, что на обрабатываемую поверхность направляют струю электролита, а изделие и струю электролита подключают к источнику постоянного тока, о т л и ч а ю ш и йс я т c M, что, с целью создания возможности выполнения отверстий в труднодоступных местах, для подачи н отвода электролита используют медные трубки, соединяемые с отрицательным полюсом источника тока.

2. Способ по и. 1, отлич ающи йся тем, что в качестве электролита используют раствор технической поваренной соли.

Похожие патенты:

Изобретение относится к аппаратуре для электрохимического анализа и может быть использовано в качестве датчика в составе полярографической аппаратуры

Изобретение относится к области гальванотехники и может быть использовано в электротехнической промышленности, в приборостроении и для декоративных целей при производстве товаров народного потребления. Способ характеризуется тем, что анод из серебра и серебряных сплавов и металлический катод погружают в электролитическую ванну и на них подают напряжение 280-370 В при анодной плотности тока 0,4-0,8 A/см2 и при температуре водного раствора электролита 20-40 °С, при этом в качестве электролита используют водный раствор, содержащий хлористый аммоний, аммоний лимоннокислый и винную кислоту при следующем соотношении компонентов, мас.%: хлористый аммоний 3-10; аммоний лимоннокислый 2-6; винная кислота 1-3; вода остальное. Технический результат заключается в полировании серебряной или серебросодержащей детали - анода и получении оксида серебра на поверхности катода.

Изобретение относится к области электрохимической обработки заготовок из цветных металлов, а именно к используемому для обработки водному раствору электролита. Раствор электролита содержит лимонную кислоту с концентрацией в диапазоне от 1,665 г/л до 982 г/л, гидродифторид аммония с концентрацией от 2 г/л до 360 г/л и не более 3,35 г/л сильной кислоты. Обработка поверхности заготовки включает подвергание поверхности воздействию ванны с водным раствором электролита, регулирование температуры ванны меньше или равной 85°C, подключение заготовки к аноду источника питания постоянного тока и погружение катода источника питания постоянного тока в ванну и пропускание через ванну тока менее чем 255000 ампер на квадратный метр. Изобретение позволяет использовать водный раствор электролита для обработки различных цветных металлов, при этом электролит является экологически безопасным и не создает опасных отходов. 6 н. и 23 з.п. ф-лы, 12 ил., 9 табл.

Изобретение относится к области электрохимических методов обработки металлических поверхностей, в том числе декоративной обработки. Способ включает обработку поверхности серебра в водном растворе тиосульфата натрия Na2S2O3×5H2O - 790 г/л при температуре 35±2 °C при использовании импульсных униполярных и биполярных токов прямоугольной формы следующих амплитудно-временных параметров: tимп=0,1-10,0 мс, tотр.имп=0,1-10,0 мс, длительность задержки импульса тока отрицательной полярности tз=0,1-10,0 мс, tпаузы=0,1-10,0 мс, амплитудная плотность тока в импульсе положительной полярности iимп=0-5 А/см2, амплитудная плотность тока в импульсе отрицательной полярности iотр.имп=0-5 А/см2 и продолжительность обработки 0,5-15,0 минут, причем ток является униполярным, когда ioтp.имп=0. Технический результат – формирование устойчивых к внешним воздействиям окружающей среды пассивных декоративных пленок на поверхности сплава серебра 925 пробы. 3 ил.

Прочитал про такой интересный метод обработки. Хочу реализовать на станке с ЧПУ:)

Из книжки "Справочник инженера-технолога в машиностроении" (Бабичев А.П.):

Электрохимическая размерная обработка основана на явлении анодного (электрохимического) растворения металла при прохождении тока через электролит, подаваемый под давлением в зазор между электродами без непосредственного контакта между инструментом и заготовкой. Поэтому другое название этого метода - анодно-химическая обработка.

Электрод-инструмент в процессе обработки является катодом, а обрабатываемая деталь - анодом. Электрод-инструмент поступательно перемещатся со скоростью Vн. Электролит подается в межэлектродный зазор. Интенсивное движение электролита обеспечивает стабильное и высокопроизводительное течение процесса анодного растворения, вынос продуктов растворения из рабочего зазора и отвод тепла, возникающего в процессе обработки. По мере снятия металла с заготовки-анода происходит подача инструмента-катода.

Скорость анодного растворения и точность обработки тем выше, чем меньше межэлектродный зазор. Однако с уменьшением зазора усложняется процесс его регулирования, возрастает сопротивление прокачке электролита, может произойти пробой вызывающий повреждение обрабатываемой поверхности. Из-за увеличения газонаполнения при малых зазорах снижается скорость анодного растворения. Следует выбирать

такой размер зазора, при котором достигаются оптимальные скорость съема металла и точность формообразования.

Для получения высоких технологических показателей ЭХО необходимо, чтобы электролиты соответстввали следующим требованиям: полное или частичное исключение побочных реакций, снижающих выход по току анодное растворение металла заготовки только в зоне обработки, исключая растворение необрабатываемых поверхностей, т.е. наличие высоких локализующих свойств, обеспечение протекания на всех участках обрабатываемой поверхности заготовки электрического тока расчетного значения.

Наиболее распрстраненными электролитами являются нейтральные растворы неорганических солей хлорида, нитраты и сульфаты натрия и калия. Эти соли дешевы и безвредны для обслуживающего персонала. Широкое применение получил водный раствор хлористого натрия (поваренной соли) NaCl из-за его малой стоимости и длительной работоспособности, что обеспечивается непрерывным восстановлением хлористого натрия в растворе.

Установки для ЭХО обязательно должны иметь фильтры для очистки электролита.

Радует сама собой достигнутая круглость отверстия. Но воронкообразность не радует.

Попробую теперь прокачивать электролит через медицинскую иглу.

Изменено 18 апреля 2008 пользователем desti