Как устроен и работает ядерный реактор. Первый Ядерный реактор — Кто придумал

Открытие нейтрона явилось предвестником атомной эры человечества, поскольку в руках физиков оказалась частица, способная, благодаря отсутствию заряда, проникнуть в любые, даже тяжелые, ядра. В ходе экспериментов по бомбардировке ядер урана нейтронами, проведенных итальянским физиком Э. Ферми, были получены радиоактивные изотопы и трансурановые элементы - нептуний и плутоний. Таким образом, стало возможным создание ядерного реактора - установки, превосходящей по своей энергетической мощи все, что было до того создано человечеством.

Атомный реактор - это аппарат, где происходит контролируемая реакция ядерного распада, основанная на цепном принципе. Данный принцип заключается в следующем. Ядра урана, бомбардируемые нейтронами, распадаются и образуют несколько новых нейтронов, которые, в свою очередь, вызывают деление следующих ядер. При таком процессе количество нейтронов быстро увеличивается. Отношение числа нейтронов в одной фазе деления к количеству нейтронов предыдущей фазы ядерного распада называется коэффициентом размножения.

Чтобы ядерная реакция была подконтрольной, и необходим атомный реактор, который используется на АЭС, подводных лодках, в экспериментальных ядерных установках и т.д. Неконтролируемая ядерная реакция неизбежно приводит к взрыву колоссальной разрушительной силы. Такой тип цепной реакции применяется исключительно в взрыв которых и является целью ядерного распада.

Атомный реактор, в котором высвобождившиеся нейтроны движутся с огромной скоростью, с целью контроля реакции оснащается специальными материалами, поглощающими часть энергии элементарных частиц. Подобные материалы, обладающие способностью снижать скорость и уменьшать инерцию движения нейтронов, называются замедлителями ядерной реакции.

Состоит в следующем. Внутренние полости реактора заполнены дистиллированной водой, циркулирующей внутри специальных трубок. Атомный реактор автоматически включается при удалении из активной зоны графитовых стержней, поглощающих часть энергии нейтронов. С началом цепной реакции происходит высвобождение колоссального количества тепловой энергии, которая, циркулируя в активной зоне реактора, достигает При этом вода нагревается до температуры 320 о С.

Затем вода первого контура, двигаясь внутри по трубкам парогенератора, отдает тепловую энергию, принятую от активной зоны реактора, воде второго контура, при этом не соприкасаясь с ней, что исключает попадание радиоактивных частиц за пределы реакторного зала.

Дальнейший процесс ничем не отличается от происходящего на любой тепловой электростанции - вода второго контура, превратившаяся в пар, придает вращение турбинам. А турбины активируют гигантские электрогенераторы, которые и вырабатывают электрическую энергию.

Атомный реактор не является сугубо человеческим изобретением. Поскольку во всей Вселенной действуют одинаковые законы физики, энергия ядерного распада необходима для поддержания стройной структуры космоса и жизни на Земле. Естественный природный ядерный реактор представляют собой звезды. И одна из них - Солнце, которое своей энергией создало все условия для зарождения жизни на нашей планете.

Цепная реакция деления всегда сопровождается выделением энергии огромной величины. Практическое использование этой энергии – основная задача ядерного реактора.

Ядерный реактор – это устройство, в котором осуществляется контролируемая, или управляемая, ядерная реакция деления .

По принципу работы ядерные реакторы делят на две группы: реакторы на тепловых нейтронах и реакторы на быстрых нейтронах.

Как устроен ядерный реактор на тепловых нейтронах

В типичном ядерном реакторе имеются:

  • Активная зона и замедлитель;
  • Отражатель нейтронов;
  • Теплоноситель;
  • Система регулирования цепной реакции, аварийная защита;
  • Система контроля и радиационной защиты;
  • Система дистанционного управления.

1 - активная зона; 2 - отражатель; 3 - защита; 4 - регулирующие стержни; 5 - теплоноситель; 6 - насосы; 7 - теплообменник; 8 - турбина; 9 - генератор; 10 - конденсатор.

Активная зона и замедлитель

Именно в активной зоне и протекает контролируемая цепная реакция деления.

Большинство ядерных реакторов работает на тяжёлых изотопах урана-235. Но в природных образцах урановой руды его содержание составляет всего лишь 0,72%. Этой концентрации недостаточно для того, чтобы цепная реакция развивалась. Поэтому руду искусственно обогащают, доводя содержание этого изотопа до 3%.

Делящееся вещество, или ядерное топливо, в виде таблеток помещается в герметично закрытые стержни, которые называются ТВЭЛы (тепловыделяющие элементы). Они пронизывают всю активную зону, заполненную замедлителем нейтронов.

Зачем нужен замедлитель нейтронов в ядерном реакторе?

Дело в том, что рождающиеся после распада ядер урана-235 нейтроны имеют очень высокую скорость. Вероятность их захвата другими ядрами урана в сотни раз меньше вероятности захвата медленных нейтронов. И если не уменьшить их скорость, ядерная реакция может затухнуть со временем. Замедлитель и решает задачу снижения скорости нейтронов. Если на пути быстрых нейтронов разместить воду или графит, их скорость можно искусственно снизить и увеличить таким образом число захватываемых атомами частиц. При этом для цепной реакции в реакторе понадобится меньшее количество ядерного топлива.

В результате процесса замедления образуются тепловые нейтроны , скорость которых практически равна скорости теплового движения молекул газа при комнатной температуре.

В качестве замедлителя в ядерных реакторах используется вода, тяжёлая вода (оксид дейтерия D 2 O ), бериллий, графит. Но наилучшим замедлителем является тяжелая вода D 2 O.

Отражатель нейтронов

Чтобы избежать утечки нейтронов в окружающую среду, активную зону ядерного реактора окружают отражателем нейтронов . В качестве материала для отражателей часто используют те же вещества, что и в замедлителях.

Теплоноситель

Тепло, выделяющееся во время ядерной реакции, отводится с помощью теплоносителя. В качестве теплоносителя в ядерных реакторах часто используют обычную природную воду, предварительно очищенную от различных примесей и газов. Но поскольку вода закипает уже при температуре 100 0 С и давлении 1 атм, то для того чтобы повысить температуру кипения, повышают давление в первом контуре теплоносителя. Вода первого контура, циркулирующая через активную зону реактора, омывает ТВЭЛы, нагреваясь при этом до температуры 320 0 С. Далее внутри теплообменника она отдаёт тепло воде второго контура. Обмен проходит через теплообменные трубки, поэтому соприкосновения с водой второго контура не происходит. Это исключает попадание радиоактивных веществ во второй контур теплообменника.

А далее всё происходит так, как на тепловой электростанции. Вода во втором контуре превращается в пар. Пар вращает турбину, которая приводит в движение электрогенератор, который и вырабатывает электрический ток.

В тяжеловодных реакторах теплоносителем служит тяжёлая вода D 2 O, а в реакторах с жидкометаллическими теплоносителями - расплавленный металл.

Система регулирования цепной реакции

Текущее состояние реактора характеризует величина, называемая реактивностью.

ρ = ( k -1)/ k ,

k = n i / n i -1 ,

где k – коэффициент размножения нейтронов,

n i - количество нейтронов следующего поколения в ядерной реакции деления,

n i -1 , - количество нейтронов предыдущего поколения в этой же реакции.

Если k ˃ 1 , цепная реакция нарастает, система называется надкритическо й. Если k < 1 , цепная реакция затухает, а система называется подкритической . При k = 1 реактор находится в стабильном критическом состоянии , так как число делящихся ядер не меняется. В этом состоянии реактивность ρ = 0 .

Критическое состояние реактора (необходимый коэффициент размножения нейтронов в ядерном реакторе) поддерживается перемещением регулирующих стержней . В материал, из которого они изготовлены, входят вещества-поглотители нейтронов. Выдвигая или вдвигая эти стержни в активную зону, контролируют скорость реакции ядерного деления.

Система управления обеспечивает управление реактором при его пуске, плановой остановке, работе на мощности, а также аварийную защиту ядерного реактора. Это достигается изменением положения управляющих стержней.

Если какой-нибудь из параметров реактора (температура, давление, скорость нарастания мощности, расход топлива и др.) отклоняется от нормы, и это может привести к аварии, в центральную часть активной зоны сбрасываются специальные аварийные стержни и происходит быстрое прекращение ядерной реакции.

За тем, чтобы параметры реактора соответствовали нормам, следят системы контроля и радиационной защиты .

Для защиты окружающей среды от радиоактивного излучения реактор помещают в толстый бетонный корпус.

Системы дистанционного управления

Все сигналы о состоянии ядерного реактора (температуре теплоносителя, уровне излучения в разных частях реактора и др.) поступают на пульт управления реактора и обрабатываются в компьютерных системах. Оператор получает всю необходимую информацию и рекомендации по устранению тех или иных отклонений.

Реакторы на быстрых нейтронах

Отличие реакторов этого типа от реакторов на тепловых нейтронах в том, что быстрые нейтроны, возникающие после распада урана-235 не замедляются, а поглощаются ураном-238 с последующим превращением его в плутоний-239. Поэтому реакторы на быстрых нейтронах используют для получения оружейного плутония-239 и тепловой энергии, которую генераторы атомной станции преобразуют в электрическую энергию.

Ядерным топливом в таких реакторах служит уран-238, а сырьём уран-235.

В природной урановой руде 99,2745 % приходятся на долю урана-238. При поглощении теплового нейтрона он не делится, а становится изотопом урана-239.

Через некоторое время после β-распада уран-239 превращается в ядро нептуния-239:

239 92 U → 239 93 Np + 0 -1 e

После второго β-распада образуется делящийся плутоний-239:

239 9 3 Np → 239 94 Pu + 0 -1 e

И, наконец, после альфа-распада ядра плутония-239 получают уран-235:

239 94 Pu → 235 92 U + 4 2 He

ТВЭЛы с сырьём (обогащённым ураном-235) располагаются в активной зоне реактора. Эта зона окружена зоной воспроизводства, которая представляет собой ТВЭЛы с топливом (обедненным ураном-238). Быстрые нейтроны, вылетающие из активной зоны после распада урана-235, захватываются ядрами урана-238. В результате образуется плутоний-239. Таким образом, в реакторах на быстрых нейтронах производится новое ядерное топливо.

В качестве теплоносителей в ядерных реакторах на быстрых нейтронах применяют жидкие металлы или их смеси.

Классификация и применение ядерных реакторов

Основное применение ядерные реакторы нашли на атомных электростанциях. С их помощью получают электрическую и тепловую энергию в промышленных масштабах. Такие реакторы называют энергетическими .

Широко используются ядерные реакторы в двигательных установках современных атомных подводных лодок, надводных кораблей, в космической технике. Они снабжают электрической энергией двигатели и называются транспортными реакторами .

Для научных исследований в области ядерной физики и радиационной химии используют потоки нейтронов, гамма-квантов, которые получают в активной зоне исследовательских реакторов. Энергия, вырабатываемая ими, не превышает 100 Мвт и не используется в промышленных целях.

Мощность экспериментальных реакторов ещё меньше. Она достигает величины лишь нескольких кВт. На этих реакторах изучаются различные физические величины, значение которых важно при проектировании ядерных реакций.

К промышленным реакторам относят реакторы для получения радиоактивных изотопов, используемых для медицинских целей, а также в различных областях промышленности и техники. Реакторы для опреснения морской воды также относятся к промышленным реакторам.

В истории создания ядерных реакторов можно проследить три этапа. На первом этапе определились необходимые и достаточные условия протекания самоподдерживающейся цепной ядерной реакции деления. На втором этапе были установлены все физические эффекты, способствующие и препятствующие протеканию самоподдерживающейся цепной ядерной реакции деления, т.е. ускоряющие и замедляющие этот процесс. И, наконец, были проведены количественные расчеты, касающиеся конструкции реактора и протекающих в нем процессов.

Создание ядерных реакторов было решением одной из составных задач общей атомной проблемы.

Первый в мире реактор СР-1 (Chicago Physics) был спроектирован и сконструирован Э.Ферми в сотрудничестве с Андерсоном, Цинном, Л. Вудс и Дж. Вайлем и размещался в теннисном зале под трибунами стадиона Чикагского университета. Реактор начал работать 2 декабря 1942 г. при расчетной начальной мощности 0,5 Вт. В первый урановый реактор СР-1 было загружено 6 т металлического урана и некоторое количество (точно не известно) окиси урана из-за недостатка урана в чистом виде.

Реактор должен был иметь сферическую форму и составлялся из горизонтальных слоев блочного графита, которые располагались между подобными же слоями из перемежающихся блоков графита и урана, охлаждаемых воздухом. Критическое состояние реактора, при котором потеря нейтронов компенсировалась их производством (созданием), было достигнуто, когда сферу построили на три четверти, в результате чего реактор так и не получил окончательной формы правильного шара.

Через 12 дней мощность была доведена до 200 Вт и дальнейшее повышение мощности сочли рискованным из-за генерированного установкой опасного излучения. Реактор переместили за пределы города в Аргоннскую лабораторию, где он был снова смонтирован и снабжен защитным экраном.

Реактор регулировался вручную при помощи кадмиевых стержней, поглощающих избыток нейтронов и расположенных в специальных каналах. Кроме того, были предусмотрены два аварийных стержня и стержень автоматического управления.

Первая опытная установка позволила провести экспериментальное исследование процесса получения плутония, которое привело к заключению, что этот способ дает реальную возможность его изготовления в количествах, достаточных для создания атомной бомбы. В 1943 г. в Аргоннской национальной лаборатории для экспериментальных исследований был построен точно такой же реактор СР-2 (рис.17.1), но с критическим размером в форме куба, а в 1944 г. – еще один реактор СР-3 (рис. 17.2), в котором замедлителем служила тяжелая вода, что позволило значительно уменьшить размеры реактора по сравнению с предыдущими.

Из-за отсутствия системы охлаждения максимальная безопасная мощность реактора составляла 200 Вт, но на короткое время мощность можно было повышать до 100 кВт. В реакторе использовались пять управляющих стержней длиной 5,6 м из бронзы, покрытые кадмием. Три из этих стержней были аварийными, один стержень служил для грубой регулировки и еще один для точной регулировки потока нейтронов и мощности реактора.

В конце 1945 г. в Москве на территории Лаборатории № 2 АН СССР было начато строительство здания для физического реактора Ф-1, а в начале 1946 г. началось проектирование первого промышленного реактора и связанного с ним плутониевого комбината в Челябинске-40. В декабре 1946 г. на исследовательском уран-графитовом реакторе Ф-1 под руководством И.В. Курчатова была впервые в Европе осуществлена самоподдерживающая цепная реакция. Пуск реактора Ф-1, который до сих пор служит науке, дал возможность измерить необходимые ядерные константы, выбрать оптимальную конструкцию первого промышленного реактора, исследовать вопросы регулирования и радиационной безопасности.

В историю физики ХХ века вошел и первый в Европе ядерный реактор, созданный в СССР и испытанный лично И.В. Курчатовым в декабре 1946 года. Его мощность достигала уже 4000 кВт, что давало возможность на базе полученного опыта создавать промышленные реакторы. Сам реактор располагался в бетонированном котловане, на дно которого были уложены восемь слоев графитовых брусков. Над ними укладывались слои с отверстиями-гнездами, куда были вставлены блоки из урана. Были также сделаны три канала для кадмиевых стержней, обеспечивающих регулирование реакции и ее аварийную остановку, и ряд горизонтальных каналов различной формы и размеров для измерительной аппаратуры и экспериментальных целей. Общее число слоев из графитовых брусков составило шестьдесят два.

В 1947 году на этом реакторе удалось получить первые дозы не встречающегося в природе плутония, являющегося, подобно урану, ядерным горючим, притом в количествах, достаточных для изучения основных физических характеристик его ядра. Первый в СССР промышленный реактор для получения плутония был запущен Курчатовым в июне 1948 года.

В середине 40-х годов ХХ века в Лос-Аламосской научной лаборатории (США) была поставлена задача создания опытного быстрого реактора с плутониевым топливом, демонстрирующего возможность производства электроэнергии. Этот реактор под названием «Клементина» имел объём активной зоны, состоящей из металлического плутония, 2,5 л и охлаждался ртутью. Сборка реактора началась в 1946 г., критичность была достигнута в ноябре 1946 г. Энергетический пуск состоялся в марте 1949 г. Реактор работал на мощности 25 кВт (тепл.).

В рамках Манхэттенского проекта (секретного плана создания американской бомбы) вся работа по разделению изотопов урана была поручена лаборатории известного американского физика Э. Лоуренса. В своем докладе правительству США в июле 1941 г. Лоуренс писал: «Открылась новая чрезвычайно важная возможность для использования цепной реакции с неразделёнными изотопами [урана]. По-видимому, если бы цепная реакция была осуществлена, можно было бы вести её … в течение некоторого периода времени специально для производства элемента с атомным номером 94 [плутония]… Если бы имелись в распоряжении… большие количества этого элемента, то, вероятно, можно было бы осуществить цепную реакцию на быстрых нейтронах. В такой реакции энергия освобождалась бы со скоростью взрыва, и соответствующая система могла бы быть охарактеризована… как «сверхбомба»».

Реактор «Клементина» был первым реактором на быстрых нейтронах, а также первым, в котором в качестве топлива использовался плутоний-239. Активная зона в виде цилиндра высотой 15 см и диаметром 15 см состояла из вертикальных топливных стержней в стальной оболочке. Замедлитель, естественно, отсутствовал. Отражателем служили металлический уран и сталь. Ртутный теплоноситель обладал пренебрежимо малым сечением захвата медленных нейтронов. Управление реактором осуществлялось при помощи стержней, удаляющих некоторое количество урана из отражателя, так как бор или кадмий, используемые в реакторах на тепловых нейтронах, непригодны для реакторов на быстрых нейтронах.

В Аргоннской национальной лаборатории (США) независимо от описанных исследований проводились работы по созданию экспериментального реактора-размножителя EBR-1 на быстрых нейтронах. Главной целью этого проекта была проверка концепции атомной электростанции с реактором на быстрых нейтронах в качестве энергетического блока. К созданию реактора приступили в 1951 г., а критичность была достигнута в августе 1951 г. В декабре 1951 г. впервые за счёт ядерной энергии был получен электрический ток при мощности реактора 200 кВт (эл.). Топливные элементы реактора представляли собой трубки из нержавеющей стали, содержащие высокообогащенный металлический уран, охлаждение активной зоны осуществлялось прокачиванием через нее сплава натрия и калия (рис.17.3). Отражатель состоял из двух частей: нескольких стержней природного металлического урана, окружающих активную зону, и нескольких клинообразных блоков из того же материала. Управление реактором осуществлялось введением стержней металлического урана во внешний отражатель и выведением их из него.

Реактор одновременно вырабатывал энергию, выделяющуюся при делении под действием быстрых нейтронов, и воспроизводил делящийся материал. Строго говоря, реактор-размножитель должен использовать тот же делящийся материал, который в нем производится, например плутоний-239 в реакторах с ураном-238 в качестве сырья для производства вторичного топливного материала (плутония). Однако в настоящее время в качестве делящегося материала во многих реакторах на быстрых нейтронах используют уран-235. В реакторах на быстрых нейтронах теплоноситель не должен содержать элементов с малым массовым числом, так как они будут замедлять нейтроны. Интенсивный отвод тепла из активной зоны малого размера требует теплоносителя с исключительно высокими теплоотводящими свойствами.

Только одно вещество – жидкий натрий – удовлетворяет этим условиям.

Анализ топливных материалов отражателя реактора EBR-1 после его работы в течение некоторого времени показал, что достигнутый коэффициент воспроизводства, т.е. отношение количества полученного плутония-239 к количеству израсходованного урана-235, несколько превышает 100%. Поскольку условия в реакторе не были идеальными, то посчитали, что воспроизводство плутония-239 должно быть практически выгодно. Это было подтверждено в Великобритании экспериментами на реакторе на быстрых нейтронах очень малой мощности (2 Вт), в котором топливом служил плутоний-239. Было обнаружено, что на каждое разделившееся ядро плутония приходится примерно два вновь образовавшихся. Таким образом, выигрыш при воспроизводстве получается довольно значительным. В конечном счете таким реакторам должна принадлежать главная роль в программе развития ядерной энергетики.

В 2017 году Росатом набрал темп, убедительно доказывающий - ядерный ренессанс у нас в стране состоялся.

Мало того, наш атомный проект расширяется на новые и новые страны, заинтересованные в своем развитии, ведь энергия атома - это базовая генерация электроэнергии, это развитие науки, технологии, медицины, и даже сельского хозяйства.

Рассказывать об этом можно и нужно, но все ли помнят, как наша страна стала мировым лидером в этой отрасли? Все ли помнят, как все начиналось, кто именно покорял атом, создавал с нуля невиданные ранее технологии?

Чтобы понимать, куда и как мы движемся, надо помнить начало дороги. Аналитический онлайн-журнал Геоэнергетика.ru уже начал рассказывать об этом, но событий и имен тех, кто были первопроходцами атомной эры в СССР, было намного больше, чем описано в той статье.

25 декабря 1946 года в Лаборатории №2 (будущий Курчатовский институт) началась управляемая цепная реакция в нашем первом атомном реакторе Ф-1 - «физическом первом».

Из него, как из гоголевской «Шинели», выросли все наши реакторы - транспортные и исследовательские, «военные» и совершенно мирные.

Давайте вспомним, кто и как создавал эти технологии, как и кем была обеспечена их эволюция, как именно эволюция шла. Вспомнив, мы научимся лучше понимать свежие новости от Росатома , достигнутый уровень развития и перспективы.

«Атомные принципы»

Для начала напомним основные принципы, постулаты атомной энергетики, которые заданы не технологиями, а физическими законами - вечными и постоянными. Их не так много, их легко запомнить.


  1. Основа атомной энергетики - цепная реакция деления ядер атомов урана и плутония. Масса осколков деления меньше массы материнских ядер, излишек массы превращается в энергию, которую мы и используем для своих целей. Причина начала цепной реакции - первичные свободные нейтроны, сталкивающийся на своем пути с ядрами делящихся элементов. Свободные нейтроны, образующиеся при распаде ядер урана или плутония, называются «вторичными». Чтобы реакция стала цепной, вторичных нейтронов должно быть численно столько же или больше, чем первичных;

  2. Плутония не существует в природе, он образуется только внутри атомного реактора, поэтому основа атомной энергетики на сегодняшний день - уран;

  3. Цепная реакция деления идет только у ядер изотопа урана 235 U, количество которого в природной руде составляет 0,7%, а 99,3% массы руды составляет основной изотоп урана 238 U, в цепной реакции участия не принимающий. Вторичные нейтроны, образующиеся при делении ядер урана-235, имеют самые разные скорости, что в атомной физике означает и «имеющие разную энергию». Аналогия простая: если швырнуть камень в окно, часть осколков стекла летит быстро, часть - медленно, и предсказать, как именно поведет себя каждый осколок - невозможно;

  4. Ядра урана-235 делятся при взаимодействии с нейтронами, движущимися с любой скоростью, но быстрые нейтроны очень активно поглощаются ядрами урана-238, что может вызвать прекращение цепной реакции. При этом на медленные нейтроны уран-238 «не обращает внимания», поэтому одна из главных задач для осуществления цепной реакции - умение замедлить вторичные нейтроны. В качестве замедлителей можно использовать тяжелую или обычную воду и химически чистый графит;

  5. Для того, чтобы цепная реакция была управляемой, вторичных нейтронов должно быть больше, чем первичных, всего на 2%. Если вторичных нейтронов слишком много, реакция нарастает лавинообразно и выходит из-под контроля, крайняя степень ее развития - атомный взрыв. Вторая главная задача для осуществления контролируемой цепной реакции - коэффициент размножения свободных нейтронов не должен превышать 1,02. Для этого нужны системы управления и защиты.

Вот, собственно, и все принципиальные моменты. Чтобы осуществлять цепную реакцию деления, нужно побольше урана-235; чтобы цепная реакция не затухла сама по себе, нужен тот или иной замедлитель; чтобы цепная реакция не стала слишком буйной, нужна система управления и защиты. Три постулата атомной энергетики, заданные законами природы, законами физики.

НИИ-9

Реактор Ф-1 был создан для наработки оружейного плутония, его изотопа 239 Pu - вещества, дающего значительно большую энергию при атомном взрыве, чем уран-235.

Этот изотоп образуется в результате захвата ураном-238 свободного нейтрона, реакции захвата идут постоянно, но плутоний-239 под воздействием свободных нейтронов может начать собственную цепную реакцию деления. Чтобы этого не происходило, нужно научиться определять момент, когда атомов плутония-239 нарабатывается значимое количество, но его цепная реакция еще не успела начаться.

Конструкция Ф-1 такова, что оставляла возможность в буквальном смысле этого слова выхватывать из него урановые блочки в нужное время, после чего их отправляли на «химические процедуры» для отделения плутония-239 от прочих химических веществ.

В декабре 1947 группа Зинаиды Ершовой впервые получила 73 микрограмма плутония-239. Это стало доказательством того, что Ф-1 позволял получать оружейный плутоний, которому предстояло стать зарядом нашей первой атомной бомбы. Но было очевидно, что такого количества плутония-239 слишком мало - для заряда требовалось не менее 6 кг этого грозного элемента.

Пульт управления первого российского ядерного реактора, Фото: ru.wikipedia.org

“В конце 1945 года начали выпускать уран и графит необходимого качества и в необходимых объемах” - мы уже вспоминали эту фразу, и даже начали ее расшифровывать.

Создание атомного реактора было лишь частью огромного объема проблем, которые предстояло решить для создания нашей первой атомной бомбы. В СССР до начала войны не успели изучить все проблемы, связанные с ураном - теперь предстояло сделать это в самые короткие сроки, поскольку сведения от внешней разведки о том, что США готовят все новые планы атомной бомбардировки нашей страны, поступали непрерывно.

Как находить урановые руды, как организовать работу горно-обогатительных комбинатов, как повысить содержание урана-235, как выделить плутоний, как сделать его металлом, каковы свойства этого металла - сотни вопросов, сотни проблем, решать которые предстояло с нуля.

Нам часто приходится слышать «невероятно правдивые» истории о Лаврентии Берии, но факты говорят о совсем другом облике руководителя Спецкомитета.

Зинаида Ершова, «русская мадам Кюри», выступила с инициативой о создании научного центра для решения всех перечисленных проблем - Лаврентий Павлович «взял под козырек». 8 декабря 1944 вышло постановление ГКО (Государственного Комитета Обороны) «О мероприятиях по обеспечению развития добычи и переработки урановых руд», по одному из пунктов которого в структуре НКВД началось создание НИИ по урану.

Название ему дали, разумеется, такое, которое не говорило ни о чем: «институт специальных металлов НКВД», в котором Зинаида Ершова стала начальником лаборатории радиохимии. Руководство новым институтом доверили Виктору Борисовичу Шевченко, инженер-полковнику НКВД.

Сатрап-самодур, злобный надсмотрщик над учеными? Виктор Шевченко - выпускник московского института цветных металлов и сплавов, два года работавший в этом же институте заместителем директора по научной работе, доктор технических наук, в годы войны он был главным инженером Норильского медно-никелевого комбината. Виктор Шевченко «вытащил» всю организационную работу по созданию нового НИИ, но от этого он не перестал быть блестящим профессионалом-металлургом.

Можно ли было в те годы отделить НКВД от научной работы Спецкомитета? На наш взгляд - невозможно.

В конце 1945 года Шевченко организовал при НИИ-9 Лабораторию №12, которой была поручена работа по созданию промышленного производства тяжелой воды. Неожиданное желание руководить ее работой почувствовал Макс Фольмер, который до этого был директором Института физической химии в Берлине.

Узнав об этом решении профессора, выразили активное желание работать вместе с ним доктора наук В.К. Байерль и Г.А. Рихтель.

«Лаборатория трофейных немцев» трудилась успешно, в 1955 году завод по производству тяжелой воды начал работать, а товарищ Макс Фольмер вернулся в Берлин - руководить работой АН Германской Демократической Республики. Вот попробуйте на таком примере самостоятельно разделить НКВД и научную работу, если есть желание.

Андрей Анатольевич Бочвар

Стараниями Виктора Шевченко к концу 1945 закончилось строительство первых корпусов института, 27 декабря - официальный день рождения Высокотехнологического НИИ неорганических материалов, ВНИИНМ, который теперь носит имя Андрея Анатольевича Бовчара.

К середине 1946-го в НИИ-9 было уже более полутора тысяч сотрудников, 13 лабораторий, опытные производства в Москве и в Электростали, филиал в Ленинграде. Можно ли было в таком темпе организовать такой институт без помощи НКВД? Вопрос риторический.

А.А. Бочвар

В 1946 Курчатов пригласил к участию в атомном проекте лучшего в стране металловеда - Андрея Анатольевича Бочвара. Сын создателя московской школы металловедения, первый в Союзе доктор этой науки в его 33 года, Андрей Бовчар к 1946 успел сделать в науке и в развитии цветной металлургии страны столько, что хватило бы на две биографии.

По его учебникам готовились к работе несколько поколений наших металловедов, разработанный им способ фасонного литья с кристаллизацией под давлением был востребован в самолетостроении военной поры, в 1945 Андрей Анатольевич открыл явление сверхпластичности сплавов. Звучит сложно, но объяснить, что это открытие дает - просто.

Из листов бочваровской стали под небольшим давлением можно выдувать детали сложнейших форм - как это делают стеклодувы в своих мастерских. Ни сварочных швов, ни заклепок с болтами - сферы и полусферы, сложнейшие формы, этот метод используется и сейчас.

В 1946 году Бочвар был избран действительным членом АН - с такими регалиями, с такими заслугами он имел полное право заниматься «высокой наукой» и преподавательской работой, но на предложение Курчатова откликнулся мгновенно. Важность работы и одновременно возможность стать родоначальником металловедения ядерных материалов - настоящий ученый не мог не принять участие в нашем атомном проекте.

В 1946 Бочвар возглавил в НИИ-9 лабораторию «В» - название, которое вспоминают нечасто, но ее значение для нашего атомного проекта и особенно для атомной энергетики, трудно переоценить. Список разработок, открытий, которые были сделаны сотрудниками лаборатории «В» под руководством Андрея Бовчара настолько внушителен, что мы не станем размещать его в этой статье.

Если говорить об атомном и термоядерном оружии, то скажем коротко - без работы Андрея Бовчара создать ни то, ни другое было бы невозможно.

Все, что сделано из металлического плутония - его заслуги, отмеченные двумя звездами Героя Социалистического труда и Сталинскими премиями. Cоздание первого промышленного атомного реактора без его участия тоже было бы невозможно.

Проект реактора А-1

Реактор Ф-1 создавался для того, чтобы ученые могли убедиться в самой возможности осуществления контролируемой цепной реакции деления. Ф-1 не имел системы охлаждения, для наработки плутония его выводили на мощность почти в 4 МВт, но в таком режиме он мог работать считанные минуты - реакцию приходилось прекращать, чтобы остудить реактор при помощи вентиляторов.

Ф-1 не имел биологической защиты - им управляли дистанционно, накапливая данные, необходимые для того, чтобы ее разработать. Экспериментально измеренный коэффициент размножения нейтронов для Ф-1 оказался равен 1,00075. Вот, собственно, и сложилось описание проблем, которые предстояло решить при создании промышленного реактора.

Урана требовалось больше - это обеспечивало увеличение количества нарабатываемого плутония-239. Реактору требовалась биологическая защита, гарантирующая полную безопасность персонала. Реактору требовалась система охлаждения, чтобы исчез режим «полчаса работы + несколько часов работы вентиляторов».

Нужна была и промышленная переработка урановых блоков - не лабораторного, а заводского масштаба. Обратите внимание на то, что и в Ф-1 и в А-1 использовался природный уран, не обогащенный по содержанию изотопа-235. Разработка технологии обогащения еще не была закончена, да и не было в этом критической необходимости - целью было получение плутония-239.

Фотографии, рисунки, чертежи атомных реакторов не так уж и редко появляются на страницах СМИ, реакторы становятся «героями» документальных фильмов - наверняка вы, уважаемые читатели, встречались с этими изображениями неоднократно.

На всех реактор имеет вертикальное расположение - сверху вниз направлены ТВС и твэлы, стержни управления и защиты, снизу вверх движется теплоноситель. Простой вопрос: если Ф-1 имел горизонтальную конструкцию, то когда и почему появилась вертикаль?

Это изменение, кажущееся нам сейчас совершенно естественным - «придумка» замечательного ученого, конструктора, Инженера с большой буквы, которому мы во многом обязаны становлением атомной энергетики.

Николай Антонович Доллежаль, которого многие энциклопедии величают «ученым-энергетиком, конструктором ядерных реакторов». Это, конечно, соответствует истине, но это только часть правды - энциклопедии очень лихо пропускают первые 50 лет жизни этого удивительного человека.

Главный конструктор

Николай Антонович родился в 1899 году в семье инженера-путейца Антона Фердинандовича Доллежаля (чеха по происхождению), с 1912 семья обосновалась в Подольске. После реального училища, в 1917 году, Николай поступил на механический факультет МВТУ.

Отец Николая был убежден, что без работы руками, без чувства металла его сын не станет настоящим инженером, потому Николай без отрыва от учебы работал в депо, на паровозо-ремонтном заводе, в КБ при нем же. В 1923 году он получил диплом, следующие пять лет работал в проектных организациях, в 1929-1930 проходил стажировку в европейских странах, после чего полтора года провел под следствием - искали его связи с «Промышленной партией».

Искали, но не нашли, и уже в 1932 Николай Доллежаль занял пост заместителя главного инженера ОКБ №8 технического отдела ОГПУ, в 1933 стал заместителем директора по технической части «Гипроазотмаша» и одновременно - заведующим кафедрой химического машиностроения в Ленинградском политехе.

Так карьера конструктора-проектировщика и шла - Доллежаль был главным инженером завода «Большевик», Главхиммаша, тогда еще только строившегося «Уралмаша». Теплоэнергетика, компрессоростроение, химическая промышленность - такой диапазон был доступен только специалисту с огромным объемом знаний, с мышлением изобретателя, с «встроенным» стремлением к совершенствованию найденных решений.

Николай Антонович Доллежаль, Фото: biblioatom.ru

В 1943 настала пора проявить еще и организаторские способности - Николай Антонович возглавил НИИ химического машиностроения. Этот НИИ стал совершенно нетипичным научным учреждением - под руководством Доллежаля в нем сложился целый комплекс научно-исследовательских и проектно-конструкторских подразделений, да еще и с очень серьезными экспериментальной и производственной базами.

Сами разработали, сами спроектировали, сами проверили первые образцы и сами же наладили промышленное производство - «механизм», который потребовался в 1946 году в нашем атомном проекте. Игорь Курчатов имел хорошее чутье на такого уровня специалистов - именно он пригласил Николая Доллежаля к участию в работах над конструкцией первого промышленного реактора в январе 1946-го:

«Нам необходимо в кратчайший срок создать урановый котел промышленного назначения. Вы умеете работать на уровне молекул - теперь предстоит освоить атомный»

Ровно одного месяца хватило Николаю Доллежалю на то, чтобы полностью войти в курс того, чем занималась лаборатория №2 - уже в феврале 1946-го он предложил «развернуть» реактор из горизонтали в вертикаль, и Игорь Курчатов целиком и полностью согласился с решением «атомного новобранца».

Но, как и при создании любого другого сложного технического оборудования, научный руководитель и конструктор - это еще не все специалисты, которые обеспечивают разработку проекта.

Те из вас, кто связан с промышленным производством, без труда назовут еще одного специалиста, чья компетенция необходима в таких случаях - главный технолог.

Именно ему научный руководитель вручает техническое задание, исходя из требований которого технолог вместе с конструктором и разрабатывают каждый узел комплекса, каждый отдельный его механизм, продумывают их соединение в единое целое. Игорь Курчатов тогда же, в январе 1946-го, принял решение о том, кому можно поручить такую ответственную работу.

Главный технолог

Этим человеком стал Владимир Иосифович Меркин - 32-летний сотрудник Лаборатории №2, который, несмотря на возраст, с 1944 года был заведующим сектором №6, где разрабатывал один из способов перевода плутониевого заряда будущей бомбы в надкритичное состояние.

Взрыв происходит при превышении определенной массы плутония в определенном объеме некоторой критической величины, для чего достаточно приблизить друг к другу нескольких частей боевого заряда, каждая из которых имеет массу меньше критической. Но сближение это должно происходить с максимальной скоростью, чтобы взрыв произошел одновременно во всем объеме заряда.

Один из возможных способов - «пушечный», когда две части плутониевого заряда в буквальном смысле выстреливаются друг на встречу другу при помощи специально рассчитанных взрывов. Сектор №6 должен был решить проблему синхронизации этих двух вспомогательных взрывов с точностью в 0,0001 секунды при начальной скорости летящих частей 1’500 м/с.

Почему такая ответственная работа была поручена именно Владимиру Меркину? В 1939 году Меркин окончил Московский институт химического машиностроения, сразу после этого стал сотрудником ГСПИ-3, в котором занимался усовершенствованием систем дымовых завес для маскировки кораблей ВМФ.

В годы войны Василий Иосифович был переведен в ЦКБ-114, где разрабатывал новые огнеметы для нужд армии. Разработки были удачны - несколько видов огнеметов были запущены в промышленное производство, сыграли определенную роль в первые годы войны, за них в 1942 году Меркин был удостоен Сталинской премии второй степени.

Директор завода синтетического каучука В.В. Гончаров, с которым Меркин весьма тесно сотрудничал, рекомендовал в 1943 году Курчатову молодого талантливого инженера. После собеседования с руководителем Лаборатории №2 Меркина в считанные дни демобилизовали из армии и перевели в распоряжение Игоря Васильевича.

Как и многие специалисты того времени, Владимир Меркин и его сотрудники сумели в очень сжатые сроки переключиться на решение совершенно новых задач.

Проект первого промышленного реактора стал для Меркина началом большого пути - под его руководством были созданы еще несколько реакторов для наработки оружейного плутония, затем последовали проекты первого в СССР исследовательского водно-водяной реактора ВВР-2, реакторов для подводных лодок и первого атомного ледокола «Ленин», создание атомной летающей лаборатории на борту самолета Ту-95М, исследования газоохлаждаемых реакторов.

Но это все было позже, а в 1946 году Меркин стал участником квартета «научный руководитель - главный технолог - генеральный конструктор - металловед»:

Курчатов - Меркин - Доллежаль - Бочвар

«Охлаждать будем при помощи проточной воды, иначе обеспечить время непрерывной работы реактора, требуемое Игорем Васильевичем, невозможно». «Ясно, компрессор смонтируем сами, но уран не должен соприкасаться с водой». «Понятно, вот сплав оболочки, который выдержит температуру и радиацию».

«Владимир Иосифович требует, чтобы вода через активную зону шла со скоростью 2’500 тонн в час». «Понятно - вот сплав, который выдержит радиацию, давление и температуру и не будет подвержен коррозии».

«По техническому заданию будем ставить 26 стержней системы защиты и управления». «Да, вот сплав для технических каналов». «Игорь Васильевич дал сведения по биологической защите, для верхнего, нижнего и бокового защитного слоев будет использоваться вот такой сплав, весит вот столько - Николай, рассчитывайте конструкцию».

«Андрей Анатольевич, если у Николая Антоновича все рассчитано верно, вам предстоит добывать плутоний из 83’000 урановых блоков, рассчитывайте мощности переработки»…

При этом вычислительная аппаратура для решения всех этих задач - бумага в клеточку, логарифмическая линейка и арифмометр. Вопрос для тех, кто обладает развитым воображением - а какие достижения были бы по плечу группам Курчатова, Меркина, Бовчара и Доллежаля, будь в их распоряжении … ну, например, процессоры, стоящие в наших с вами домашних компьютерах и в телефонах?..

Общая схема реактора А-1, Рис.: economics.kiev.ua

Тепловая мощность - 100 Мвт, диаметр и высота активной зоны - 9,2 м, 150 тонн урана, 1’050 тонн графита. Общее количество урановых блоков - 83’000, по 74 блока на один технологический канал, которых в А-1 (такое наименование получил первый промышленный реактор, физики и инженеры ласково называли его «Аннушкой») 1’150 штук.

Отметим существенную деталь — температура воды на выходе из реактора составляла всего 85-90 градусов.

«Маяк»

В конце 1945 года было определено место, в котором предстояло сооружать целый комплекс зданий и сооружений - промышленный реактор, цеха химической переработки облученных урановых блоков, металлургические подразделения, помещения для химической очистки воды, электрическая подстанция, жилые дома для персонала и многое другое.

Место это известно всем, кто знаком с нашим атомным проектом - рядом с озером Кызыл-Таш на Южном Урале, в Челябинской области. Сейчас это город Озерск и промышленное объединение «Маяк», чья история заслуживает не одной, а множества статей.

Ответственным за строительство объекта 817 был назначен НКВД, головной организацией - «Челябметаллургстрой». 24 ноября 1945 года на строительной площадке был забит первый колышек, который стал стартом для грандиозного строительства, а в апреле 1946 был утвержден генеральный план.

Самым сложным оказался этап земляных работ при рытье котлована под реактор - проект еще не был закончен, все приходилось уточнять буквально на ходу. Сказывался и режим сверхсекретности - механизация земляных работ была минимальной, почти все приходилось делать вручную.

В сентябре 1946, когда началось рытье котлована, его планировали размерами 80 х 80 х 8 метров, а после всех уточнений глубина была увеличена до 53 метров. 340 тысяч кубометров грунта почти вручную, в зимний период 1946-47 годов, после 30 метров начался слой скальных пород - титаническая работа, на которой было занято 11’000 землекопов.

В июле 1947 года завершили бетонные работы, при этом впервые в качестве наполнителя бетона использовали железную руду - для повышения уровня биологической защиты.

Тогда же приказом Лаврентия Берии директором создаваемого комбината был назначен Ефим Павлович Славский, будущий глава министерства Среднего машиностроения, на должность главного инженера - Владимир Меркин.

Ефим Славский, который имел возможность напрямую обращаться к Лаврентию Берии, смог увеличить темп работ, для чего пришлось расширять и расширять жилые постройки - к концу 1947 года, когда одновременно шли строительство и монтаж оборудования, на площадке работало 60 тысяч человек.

Старт

Здание реактора закончили в конце 1947 года, монтаж начался сразу же. 1 июня 1948 года строительство реактора А-1, на сооружение которого потребовалось 5’000 тонн металлоконструкций и оборудования, 230 км трубопроводов, 165 км электрокабелей, 5’745 единиц арматуры и 3’800 приборов, было завершено.

Загрузка реактора графитом и ураном началась — да, правильно, 1 июня 1948 года, времени на передышки не было. Загрузку начали в 08:50 первого июня, в 23:15 седьмого июня на свое место лег последний, 36-й по счету, слой графита.

В 00 часов 30 минут 8 июня Игорь Васильевич Курчатов встал к пульту управления и осуществил физический пуск нашего первого промышленного атомного реактора. Реактор начал набирать мощность и хорошо поддавался регулированию, к утру Курчатов передал пульт управления дежурному персоналу, оставив запись в журнале:

«Начальникам смен! Предупреждаю, что в случае останова воды будет взрыв. Поэтому аппарат без воды нельзя оставлять ни при каких обстоятельствах. И.В. Курчатов»

На мощности 10 кВт была проведена проверка физических характеристик реактора, системы управления и защиты. Получив доклады о полной готовности, Курчатов отдал приказ на подъем мощности реактора до проектного уровня, которая была достигнута 19 июля в 12:45.

С этой датой связано начало производственной деятельности комбината 817, затем «Химического завода им. Д.И. Менделеева», затем «Предприятия п/я 21», затем «Химкомбината «Маяк» и только потом - Производственного объединения «Маяк».

Началась непрерывная круглосуточная работа объекта - с большими и малыми проблемами, решать которые приходилось буквально на ходу. Неожиданные явления коррозии, радиационное распухание графита и урановых блоков, сбои в водоснабжении технологических каналов и множество других инцидентов, предвидеть которые было невозможно.

Но персонал комбината раз за разом решал все проблемы, налаживая, модернизируя, исправляя, ремонтируя. Плутоний, наработанный на А-1 и стал в руках специалистов из группы Юлия Харитона боевым зарядом нашей первой атомной бомбы, РДС-1.

Инженеры и конструкторы получили огромный опыт, что позволило строить новые «военные» реакторы. В годы холодной войны и наиболее напряженной работы «Маяка» здесь одновременно работали 10 реакторов, сюда же прибывал на переработку уран из Северска и Железногорска.

Сам реактор А-1, который по плану должен был проработать три года, продержался чуть дольше — 39 лет, в 13 раз превысив любые гарантии, остановлен он был только в 1987 году.

Военные нужды - двигатель прогресса

Атомная энергия покорялась, осваивалась именно в оборонительных целях, но ученые, конструкторы, технологи, инженеры, собранные в огромный коллектив Спецпроекта, никогда не считали, что работают только и исключительно ради этого.

Да, перед ними поставили необходимость решить важнейшую задачу, от скорости и точности решения без всяких натяжек зависело физическое выживание страны. Но, открывая новые и новые тайны атома, его удивительные свойства, наши ученые видели, насколько полезной может стать атомная энергия в совершенно мирных целях.

Прошло совсем немного времени - и те же люди, которые создали самое грозное, самое могущественное оружие, стали создавать мирную атомную энергетику.

Игорь Курчатов стал тем человеком, который протащил, протолкнул через все властные структуры идею о создании АЭС, Владимир Меркин и Николай Доллежаль разрабатывали энергетические реакторы, Андрей Бовчар «сочинял» фантастические по свойствам сплавы, которые требовались для материалов твэлов, ТВС, корпусов реакторов.

Мы вспомнили только часть тех, кого по праву называем творцами нашего мирного атомного проекта, но и рассказали только о самых первых шагах его развития.

Тема следующей статьи будет логическим продолжением этой, если мы присмотримся к тому, что не было реализовано на реакторе А-1.

На выходе из реактора охлаждающая его вода имела совсем небольшую температуру - всего 85-90 градусов, в качестве сырья использовался природный уран, не обогащенный по составу изотопа-235.

Как связаны между собой эти факты, как наши атомщики сумели эту связь найти и реализовать - вот об этом в следующий раз.

Б. Марцинкевич

Сегодня мы совершим небольшое путешествие в мир ядерной физики. Темой нашей экскурсии будет ядерный реактор. Вы узнаете, как он устроен, какие физические принципы лежат в основе его работы и где применяют это устройство.

Зарождение атомной энергетики

Первый в мире ядерный реактор был создан в 1942 году в США экспериментальной группой физиков под руководством лауреата нобелевской премии Энрико Ферми. Тогда же ими была осуществлена самоподдерживающаяся реакция расщепления урана. Атомный джин был выпущен на свободу.

Первый советский ядерный реактор был запущен в 1946 году, а спустя 8 лет дала ток первая в мире АЭС в городе Обнинске. Главным научным руководителем работ в атомной энергетике СССР был выдающийся физик Игорь Васильевич Курчатов.

С тех сменилось несколько поколений ядерных реакторов, но основные элементы его конструкции сохранились неизменными.

Анатомия атомного реактора

Эта ядерная установка представляет собой толстостенный стальной бак с цилиндрической ёмкостью от нескольких кубических сантиметров до многих кубометров.

Внутри этого цилиндра размещается святая святых - активная зона реактора. Именно здесь происходит цепная реакция деления ядерного топлива.

Рассмотрим, как происходит этот процесс.

Ядра тяжелых элементов, в частности Уран-235 (U-235), под действием небольшого энергетического толчка способны разваливаться на 2 осколка приблизительно равной массы. Возбудителем этого процесса является нейтрон.

Осколки чаще всего представляют собой ядра бария и криптона. Каждый из них несет положительный заряд, поэтому силы кулоновского отталкивания вынуждают их разлетаться в разные стороны со скоростью около 1/30 световой скорости. Эти осколки являются носителями колоссальной кинетической энергии.

Для практического использования энергии, необходимо, чтобы её выделение носило самоподдерживающийся характер. Цепная реакция, о которой идёт речь, тем интересна, что каждый акт деления сопровождается испусканием новых нейтронов. На один начальный нейтрон в среднем возникает 2-3 новых нейтрона. Количество делящихся ядер урана лавинообразно нарастает, вызывая выделение огромной энергии. Если этот процесс не контролировать - произойдет ядерный взрыв. Он имеет место в .

Чтобы регулировать число нейтронов в систему вводятся материалы, которые поглощают нейтроны, обеспечивая плавное выделение энергии. В качестве поглотителей нейтронов используют кадмий или бор.

Как же обуздать и использовать громадную кинетическую энергию осколков? Для этих целей служит теплоноситель, т.е. специальная среда, двигаясь в которой осколки тормозятся и нагревают её до чрезвычайно высоких температур. Такой средой может являться обычная или тяжелая вода, жидкие металлы (натрий), а также некоторый газы. Чтобы не вызвать переход теплоносителя в парообразное состояние, в активной зоне поддерживается высокое давление (до 160 атм). По этой причине стенки реактора изготавливают из десятисантиметровой стали специальных сортов.

Если нейтроны вылетят за пределы ядерного топлива, то цепная реакция может прерваться. Поэтому существует критическая масса делящегося вещества, т.е. его минимальная масса, при которой, будет поддерживаться цепная реакция. Она зависит от различных параметров, в том числе и от наличия отражателя, окружающего активную зону реактора. Он служит для предотвращения утечки нейтронов в окружающую среду. Наиболее распространенным материалом для этого конструктивного элемента является графит.

Процессы, происходящие в реакторе, сопровождаются выделением самого опасного вида радиации – гамма излучения. Чтобы минимизировать эту опасность, в нём предусмотрена противорадиационная защита.

Как работает атомный реактор

В активной зоне реактора размещают ядерное горючее, именуемое ТВЭЛами. Они представляют собой таблетки, сформированные из расщепляемого материала и уложенные в тонкие трубки длиной около 3,5 м и диаметром в 10 мм.

Сотни однотипных топливных сборок размещают в активную зону, они и становятся источниками тепловой энергии, выделяемой в процессе цепной реакции. Теплоноситель, омывающий ТВЭЛы, образует первый контур реактора.

Нагретый до высоких параметров, он перекачивается насосом в парогенератор, где передает свою энергию воде второго контура, превращая её в пар. Полученный пар вращает турбогенератор. Вырабатываемая этим агрегатом электроэнергия передается потребителю. А отработанный пар, охлажденный водой из пруда–охладителя, в виде конденсата, возвращается в парогенератор. Цикл замыкается.

Такая двухконтурная схема работа ядерной установки исключает проникновение радиации, сопровождающей процессы, происходящие в активной зоне, за его пределы.

Итак, в реакторе происходит цепочка превращений энергии: ядерная энергия расщепляемого материала → в кинетическую энергию осколков → тепловую энергию теплоносителя → кинетическую энергию турбины → и в электрическую энергию в генераторе.

Неизбежные потери энергии приводят к тому, что КПД атомных электростанций сравнительно не велик 33-34%.

Кроме выработки электрической энергии на АЭС ядерные реакторы используют для получения различных радиоактивных изотопов, для исследований во многих областях промышленности, для изучения допустимых параметров промышленных реакторов. Всё более широкое распространение получают транспортные реакторы, обеспечивающие энергией двигатели транспортных средств.

Типы ядерных реакторов

Как правило, ядерные реакторы работают на уране U-235. Однако его содержание в природном материале чрезвычайно мало, всего 0,7%. Основную же массу природного урана составляет изотоп U-238. Цепную реакцию в U-235 могут вызвать лишь медленные нейтроны, а изотоп U-238 расщепляется только быстрыми нейтронами. В результате же расщепления ядра рождаются как медленные, так и быстрые нейтроны. Быстрые нейтроны, испытывая торможение в теплоносителе (воде), становятся медленным. Но количество изотопа U-235 в природном уране столь мало, что приходится прибегать к его обогащению, доводя его концентрацию до 3-5%. Процесс этот весьма дорогой и экономически невыгоден. Кроме того время исчерпания природных ресурсов этого изотопа оценивается лишь 100-120 годами.

Поэтому в атомной промышленности происходит постепенный переход на реакторы, работающие на быстрых нейтронах.

Основное их отличие - в качестве теплоносителя используют жидкие металлы, которые не замедляют нейтроны, а в роли ядерного горючего используют U-238. Ядра этого изотопа через цепочку ядерных превращений переходят в Плутоний-239, который подвержен цепной реакции так же как и U-235. Т.е имеет место воспроизведение ядерного горючего, причём в количестве, превышающем его расход.

По оценке специалистов запасов изотопа Урана-238 должно хватить на 3000 лет. Этого времени вполне достаточно, чтобы у человечества хватило времени для разработки иных технологий.

Проблемы использования ядерной энергетики

Наряду с очевидными преимуществами ядерной энергетики, нельзя недооценивать масштаб проблем, связанных с эксплуатацией ядерных объектов.

Первая из них - это утилизация радиоактивных отходов и демонтированного оборудования атомной энергетики. Эти элементы обладают активным радиационным фоном, который сохраняется на протяжении длительного периода. Для утилизации этих отходов используют специальные свинцовые контейнеры. Их предполагается хоронить в районах вечной мерзлоты на глубине до 600 метров. Поэтому постоянно ведутся работы по поиску способа переработки радиоактивных отходов, что должно решить проблему утилизации и способствовать сохранению экологии нашей планеты.

Второй не менее тяжелой проблемой является обеспечение безопасности в процессе эксплуатации АЭС. Крупные аварии, подобные Чернобыльской, способны унести множество человеческих жизней и вывести из использования огромные территории.

Авария на японской АЭС «Фукусима-1» лишь подтвердила потенциальную опасность, которая проявляется при возникновении внештатной ситуации на ядерных объектах.

Однако возможности ядерной энергетики столь велики, что экологические проблемы уходят на второй план.

На сегодняшний день у человечества нет иного пути утоления всё нарастающего энергетического голода. Основой ядерной энергетики будущего, вероятно, станут «быстрые» реакторы с функцией воспроизводства ядерного топлива.

Если это сообщение тебе пригодилось, буда рада видеть тебя