अभिव्यक्ति में कौन सी क्रिया सबसे अंत में की जानी चाहिए। पाठ "कार्यों का क्रम"

पाँचवीं शताब्दी ईसा पूर्व में प्राचीन यूनानी दार्शनिकएलिया के ज़ेनो ने अपना प्रसिद्ध एपोरिया तैयार किया, जिनमें से सबसे प्रसिद्ध एपोरिया "अकिलीज़ एंड द टोर्टोइज़" है। यहाँ यह कैसा लगता है:

मान लीजिए कि अकिलिस कछुए से दस गुना तेज दौड़ता है और उससे एक हजार कदम पीछे है। अकिलिस को इस दूरी तक दौड़ने में जितना समय लगेगा, कछुआ उसी दिशा में सौ कदम रेंगेगा। जब अकिलिस सौ कदम दौड़ता है, तो कछुआ दस कदम और रेंगता है, इत्यादि। यह प्रक्रिया अनंत काल तक जारी रहेगी, अकिलिस कछुए को कभी नहीं पकड़ पाएगा।

यह तर्क बाद की सभी पीढ़ियों के लिए एक तार्किक झटका बन गया। अरस्तू, डायोजनीज, कांट, हेगेल, हिल्बर्ट... वे सभी किसी न किसी रूप में ज़ेनो के एपोरिया पर विचार करते थे। झटका इतना जोरदार था कि " ...चर्चाएं आज भी जारी हैं; वैज्ञानिक समुदाय अभी तक विरोधाभासों के सार पर एक आम राय नहीं बना सका है...इस मुद्दे के अध्ययन में शामिल थे गणितीय विश्लेषण, सेट सिद्धांत, नए भौतिक और दार्शनिक दृष्टिकोण; उनमें से कोई भी समस्या का आम तौर पर स्वीकृत समाधान नहीं बन सका..."[विकिपीडिया, "ज़ेनो'स अपोरिया"। हर कोई समझता है कि उन्हें मूर्ख बनाया जा रहा है, लेकिन कोई नहीं समझता कि धोखे में क्या शामिल है।

गणितीय दृष्टिकोण से, ज़ेनो ने अपने एपोरिया में स्पष्ट रूप से मात्रा से संक्रमण का प्रदर्शन किया। इस परिवर्तन का तात्पर्य स्थायी के बजाय अनुप्रयोग से है। जहां तक ​​मैं समझता हूं, माप की परिवर्तनीय इकाइयों का उपयोग करने के लिए गणितीय उपकरण या तो अभी तक विकसित नहीं हुआ है, या इसे ज़ेनो के एपोरिया पर लागू नहीं किया गया है। अपने सामान्य तर्क को लागू करने से हम एक जाल में फंस जाते हैं। हम, सोच की जड़ता के कारण, समय की निरंतर इकाइयों को पारस्परिक मूल्य पर लागू करते हैं। भौतिक दृष्टिकोण से, ऐसा लगता है कि समय धीमा हो रहा है जब तक कि यह उस समय पूरी तरह से बंद न हो जाए जब अकिलिस कछुए को पकड़ लेता है। यदि समय रुक जाता है, तो अकिलिस कछुए से आगे नहीं निकल सकता।

यदि हम अपने सामान्य तर्क को पलट दें, तो सब कुछ ठीक हो जाता है। अकिलिस स्थिर गति से दौड़ता है। उसके पथ का प्रत्येक आगामी खंड पिछले वाले से दस गुना छोटा है। तदनुसार, इस पर काबू पाने में लगने वाला समय पिछले वाले की तुलना में दस गुना कम है। यदि हम इस स्थिति में "अनंत" की अवधारणा को लागू करते हैं, तो यह कहना सही होगा कि "अकिलिस कछुए को असीम रूप से जल्दी पकड़ लेगा।"

इस तार्किक जाल से कैसे बचें? समय की स्थिर इकाइयों में रहें और पारस्परिक इकाइयों पर स्विच न करें। ज़ेनो की भाषा में यह इस तरह दिखता है:

अकिलिस को एक हजार कदम चलने में जितना समय लगता है, कछुआ उसी दिशा में सौ कदम रेंगता है। पहले के बराबर अगले समय अंतराल के दौरान, अकिलिस एक हजार कदम और दौड़ेगा, और कछुआ सौ कदम रेंगेगा। अब अकिलिस कछुए से आठ सौ कदम आगे है।

यह दृष्टिकोण बिना किसी तार्किक विरोधाभास के वास्तविकता का पर्याप्त रूप से वर्णन करता है। लेकिन यह नहीं है संपूर्ण समाधानसमस्या। प्रकाश की गति की अप्रतिरोध्यता के बारे में आइंस्टीन का कथन ज़ेनो के एपोरिया "अकिलीज़ एंड द टोर्टोइज़" के समान है। हमें अभी भी इस समस्या का अध्ययन, पुनर्विचार और समाधान करना होगा। और समाधान असीमित बड़ी संख्या में नहीं, बल्कि माप की इकाइयों में खोजा जाना चाहिए।

ज़ेनो का एक और दिलचस्प एपोरिया एक उड़ने वाले तीर के बारे में बताता है:

एक उड़ता हुआ तीर गतिहीन होता है, क्योंकि समय के प्रत्येक क्षण में वह विश्राम में होता है, और चूँकि वह समय के प्रत्येक क्षण में विश्राम में होता है, इसलिए वह सदैव विश्राम में ही रहता है।

इस एपोरिया में तार्किक विरोधाभासइसे बहुत सरलता से दूर किया जा सकता है - यह स्पष्ट करने के लिए पर्याप्त है कि समय के प्रत्येक क्षण में एक उड़ता हुआ तीर अंतरिक्ष में विभिन्न बिंदुओं पर आराम कर रहा है, जो वास्तव में गति है। यहां एक और बात पर ध्यान देने की जरूरत है. सड़क पर किसी कार की एक तस्वीर से उसकी गति के तथ्य या उससे दूरी का पता लगाना असंभव है। यह निर्धारित करने के लिए कि कोई कार चल रही है, आपको अलग-अलग समय पर एक ही बिंदु से ली गई दो तस्वीरों की आवश्यकता होगी, लेकिन आप उनसे दूरी निर्धारित नहीं कर सकते। किसी कार की दूरी निर्धारित करने के लिए, आपको एक ही समय में अंतरिक्ष में विभिन्न बिंदुओं से ली गई दो तस्वीरों की आवश्यकता होगी, लेकिन आप उनसे गति के तथ्य का निर्धारण नहीं कर सकते (बेशक, आपको अभी भी गणना के लिए अतिरिक्त डेटा की आवश्यकता है, त्रिकोणमिति आपकी मदद करेगी) ). मैं क्या कहना चाहता हूँ विशेष ध्यान, यह है कि समय में दो बिंदु और अंतरिक्ष में दो बिंदु अलग-अलग चीजें हैं जिन्हें भ्रमित नहीं किया जाना चाहिए, क्योंकि वे अनुसंधान के लिए अलग-अलग अवसर प्रदान करते हैं।

बुधवार, 4 जुलाई 2018

विकिपीडिया पर सेट और मल्टीसेट के बीच अंतर को बहुत अच्छी तरह से वर्णित किया गया है। चलो देखते हैं।

जैसा कि आप देख सकते हैं, "एक सेट में दो समान तत्व नहीं हो सकते," लेकिन यदि किसी सेट में समान तत्व हैं, तो ऐसे सेट को "मल्टीसेट" कहा जाता है। समझदार प्राणी ऐसे बेतुके तर्क को कभी नहीं समझ पाएंगे। यह बोलने वाले तोतों और प्रशिक्षित बंदरों का स्तर है, जिनके पास "पूरी तरह से" शब्द से कोई बुद्धि नहीं है। गणितज्ञ सामान्य प्रशिक्षकों के रूप में कार्य करते हैं, और हमें अपने बेतुके विचारों का उपदेश देते हैं।

एक बार की बात है, पुल बनाने वाले इंजीनियर पुल का परीक्षण करते समय पुल के नीचे एक नाव में थे। यदि पुल ढह गया, तो औसत दर्जे का इंजीनियर अपनी रचना के मलबे के नीचे दबकर मर गया। यदि पुल भार सहन कर सका, तो प्रतिभाशाली इंजीनियर ने अन्य पुल बनाए।

इससे कोई फर्क नहीं पड़ता कि गणितज्ञ "मेरा ध्यान रखें, मैं घर में हूं" वाक्यांश के पीछे कैसे छिपते हैं, या बल्कि, "गणित अमूर्त अवधारणाओं का अध्ययन करता है," एक गर्भनाल है जो उन्हें वास्तविकता से जोड़ती है। यह नाल ही धन है। आइए हम गणितीय समुच्चय सिद्धांत को स्वयं गणितज्ञों पर लागू करें।

हमने गणित का बहुत अच्छा अध्ययन किया और अब हम कैश रजिस्टर पर बैठकर वेतन दे रहे हैं। तो एक गणितज्ञ अपने पैसे के लिए हमारे पास आता है। हम उसे पूरी राशि गिनते हैं और उसे अलग-अलग ढेरों में अपनी मेज पर रखते हैं, जिसमें हम एक ही मूल्यवर्ग के बिल डालते हैं। फिर हम प्रत्येक ढेर से एक बिल लेते हैं और गणितज्ञ को उसका "वेतन का गणितीय सेट" देते हैं। आइए गणितज्ञ को समझाएं कि उसे शेष बिल तभी प्राप्त होंगे जब वह यह साबित कर देगा कि समान तत्वों के बिना एक सेट समान तत्वों वाले सेट के बराबर नहीं है। मज़ा यहां शुरू होता है।

सबसे पहले, प्रतिनिधियों का तर्क काम करेगा: "यह दूसरों पर लागू किया जा सकता है, लेकिन मुझ पर नहीं!" फिर वे हमें आश्वस्त करना शुरू कर देंगे कि एक ही मूल्यवर्ग के बिलों में अलग-अलग बिल संख्याएँ होती हैं, जिसका अर्थ है कि उन्हें एक ही तत्व नहीं माना जा सकता है। ठीक है, आइए वेतन को सिक्कों में गिनें - सिक्कों पर कोई संख्या नहीं है। यहां गणितज्ञ भौतिकी को पागलपन से याद करना शुरू कर देगा: विभिन्न सिक्कों पर है अलग-अलग मात्राप्रत्येक सिक्के की गंदगी, क्रिस्टल संरचना और परमाणु व्यवस्था अद्वितीय है...

और अब मेरे पास सबसे ज्यादा है रुचि पूछो: वह रेखा कहां है जिसके आगे एक मल्टीसेट के तत्व एक सेट के तत्वों में बदल जाते हैं और इसके विपरीत? ऐसी कोई रेखा मौजूद नहीं है - सब कुछ जादूगरों द्वारा तय किया जाता है, विज्ञान यहां झूठ बोलने के करीब भी नहीं है।

यहाँ देखो। हम समान फ़ील्ड क्षेत्र वाले फ़ुटबॉल स्टेडियमों का चयन करते हैं। फ़ील्ड का क्षेत्रफल समान है - जिसका अर्थ है कि हमारे पास एक मल्टीसेट है। लेकिन अगर हम इन्हीं स्टेडियमों के नाम देखें तो हमें कई मिलते हैं, क्योंकि नाम अलग-अलग हैं। जैसा कि आप देख सकते हैं, तत्वों का एक ही सेट एक सेट और मल्टीसेट दोनों है। कौन सा सही है? और यहां गणितज्ञ-शमन-शार्पिस्ट अपनी आस्तीन से तुरुप का इक्का निकालता है और हमें सेट या मल्टीसेट के बारे में बताना शुरू करता है। किसी भी स्थिति में, वह हमें विश्वास दिलाएगा कि वह सही है।

यह समझने के लिए कि आधुनिक जादूगर सेट सिद्धांत के साथ कैसे काम करते हैं, इसे वास्तविकता से जोड़ते हुए, एक प्रश्न का उत्तर देना पर्याप्त है: एक सेट के तत्व दूसरे सेट के तत्वों से कैसे भिन्न होते हैं? मैं आपको दिखाऊंगा, बिना किसी "एक पूरे के रूप में कल्पनीय" या "एक पूरे के रूप में कल्पनीय नहीं।"

रविवार, 18 मार्च 2018

किसी संख्या के अंकों का योग डफ के साथ जादूगरों का नृत्य है, जिसका गणित से कोई लेना-देना नहीं है। हां, गणित के पाठों में हमें किसी संख्या के अंकों का योग ज्ञात करना और उसका उपयोग करना सिखाया जाता है, लेकिन यही कारण है कि वे जादूगर हैं, अपने वंशजों को अपने कौशल और ज्ञान सिखाएं, अन्यथा जादूगर बस खत्म हो जाएंगे।

क्या आपको सबूत चाहिए? विकिपीडिया खोलें और "किसी संख्या के अंकों का योग" पृष्ठ ढूंढने का प्रयास करें। वह अस्तित्व में नहीं है. गणित में ऐसा कोई सूत्र नहीं है जिसका उपयोग किसी संख्या के अंकों का योग ज्ञात करने के लिए किया जा सके। आख़िरकार, संख्याएँ हैं ग्राफिक प्रतीक, जिसकी सहायता से हम संख्याएँ लिखते हैं और गणित की भाषा में कार्य इस प्रकार लगता है: "किसी भी संख्या का प्रतिनिधित्व करने वाले ग्राफिक प्रतीकों का योग ज्ञात करें।" गणितज्ञ इस समस्या को हल नहीं कर सकते, लेकिन जादूगर इसे आसानी से कर सकते हैं।

आइए जानें कि किसी दी गई संख्या के अंकों का योग ज्ञात करने के लिए हम क्या और कैसे करते हैं। और इसलिए, आइए हमारे पास संख्या 12345 है। इस संख्या के अंकों का योग ज्ञात करने के लिए क्या करने की आवश्यकता है? आइए क्रम से सभी चरणों पर विचार करें।

1. कागज के एक टुकड़े पर संख्या लिख ​​लें। हमने क्या किया है? हमने संख्या को ग्राफिकल संख्या प्रतीक में बदल दिया है। यह कोई गणितीय संक्रिया नहीं है.

2. हमने एक परिणामी चित्र को अलग-अलग संख्याओं वाले कई चित्रों में काटा। किसी चित्र को काटना कोई गणितीय क्रिया नहीं है।

3. व्यक्तिगत ग्राफ़िक प्रतीकों को संख्याओं में बदलें। यह कोई गणितीय संक्रिया नहीं है.

4. परिणामी संख्याएँ जोड़ें। अब ये गणित है.

संख्या 12345 के अंकों का योग 15 है। ये जादूगरों द्वारा पढ़ाए जाने वाले "काटने और सिलाई के पाठ्यक्रम" हैं जिनका उपयोग गणितज्ञ करते हैं। लेकिन यह बिलकुल भी नहीं है।

गणितीय दृष्टिकोण से, इससे कोई फर्क नहीं पड़ता कि हम किस संख्या प्रणाली में कोई संख्या लिखते हैं। इसलिए, अलग-अलग संख्या प्रणालियों में एक ही संख्या के अंकों का योग अलग-अलग होगा। गणित में, संख्या प्रणाली को संख्या के दाईं ओर एक सबस्क्रिप्ट के रूप में दर्शाया जाता है। साथ एक लंबी संख्या 12345 मैं अपने सिर को मूर्ख नहीं बनाना चाहता, आइए इसके बारे में लेख से संख्या 26 को देखें। आइए इस संख्या को बाइनरी, ऑक्टल, दशमलव और हेक्साडेसिमल संख्या प्रणालियों में लिखें। हम हर कदम को माइक्रोस्कोप के नीचे नहीं देखेंगे; हम पहले ही ऐसा कर चुके हैं। आइये परिणाम पर नजर डालते हैं.

जैसा कि आप देख सकते हैं, विभिन्न संख्या प्रणालियों में एक ही संख्या के अंकों का योग अलग-अलग होता है। इस परिणाम का गणित से कोई लेना-देना नहीं है। यह वैसा ही है जैसे यदि आपने किसी आयत का क्षेत्रफल मीटर और सेंटीमीटर में निर्धारित किया है, तो आपको पूरी तरह से अलग परिणाम मिलेंगे।

शून्य सभी संख्या प्रणालियों में एक जैसा दिखता है और इसमें अंकों का कोई योग नहीं होता है। यह इस तथ्य के पक्ष में एक और तर्क है। गणितज्ञों के लिए प्रश्न: वह चीज़ कैसी है जो गणित में निर्दिष्ट संख्या नहीं है? क्या, गणितज्ञों के लिए संख्याओं के अलावा कुछ भी मौजूद नहीं है? मैं ओझाओं के लिए इसकी अनुमति दे सकता हूं, लेकिन वैज्ञानिकों के लिए नहीं। वास्तविकता सिर्फ संख्या के बारे में नहीं है.

प्राप्त परिणाम को इस बात का प्रमाण माना जाना चाहिए कि संख्या प्रणालियाँ संख्याओं के माप की इकाइयाँ हैं। आख़िरकार, हम संख्याओं की तुलना नहीं कर सकते विभिन्न इकाइयाँमाप. यदि एक ही मात्रा की माप की विभिन्न इकाइयों के साथ समान क्रियाओं की तुलना करने पर अलग-अलग परिणाम मिलते हैं, तो इसका गणित से कोई लेना-देना नहीं है।

वास्तविक गणित क्या है? ऐसा तब होता है जब गणितीय ऑपरेशन का परिणाम संख्या के आकार, उपयोग की गई माप की इकाई और इस क्रिया को करने वाले पर निर्भर नहीं करता है।

दरवाजे पर हस्ताक्षर करें वह दरवाज़ा खोलता है और कहता है:

ओह! क्या यह महिला शौचालय नहीं है?
- युवती! यह स्वर्ग में आरोहण के दौरान आत्माओं की अनिश्चित पवित्रता के अध्ययन के लिए एक प्रयोगशाला है! शीर्ष पर हेलो और ऊपर तीर. और कौन सा शौचालय?

महिला... शीर्ष पर प्रभामंडल और नीचे तीर पुरुष हैं।

यदि डिजाइन कला का ऐसा कोई काम आपकी आंखों के सामने दिन में कई बार चमकता है,

फिर यह आश्चर्य की बात नहीं है कि आपको अचानक अपनी कार में एक अजीब आइकन मिले:

व्यक्तिगत रूप से, मैं शौच कर रहे व्यक्ति (एक चित्र) में माइनस चार डिग्री देखने का प्रयास करता हूं (कई चित्रों की एक रचना: एक माइनस चिह्न, संख्या चार, डिग्री का एक पदनाम)। और मुझे नहीं लगता कि यह लड़की मूर्ख है जो भौतिकी नहीं जानती। उसके पास ग्राफिक छवियों को समझने की एक मजबूत रूढ़ि है। और गणितज्ञ हमें हर समय यही सिखाते हैं। यहाँ एक उदाहरण है.

1ए "शून्य से चार डिग्री" या "एक ए" नहीं है। यह हेक्साडेसिमल नोटेशन में "पूपिंग मैन" या संख्या "छब्बीस" है। जो लोग लगातार इस संख्या प्रणाली में काम करते हैं वे स्वचालित रूप से एक संख्या और एक अक्षर को एक ग्राफिक प्रतीक के रूप में समझते हैं।

ईसा पूर्व पाँचवीं शताब्दी में, प्राचीन यूनानी दार्शनिक ज़ेनो ऑफ़ एलिया ने अपना प्रसिद्ध एपोरिया तैयार किया, जिनमें से सबसे प्रसिद्ध "अकिलीज़ एंड द टोर्टोइज़" एपोरिया है। यहाँ यह कैसा लगता है:

मान लीजिए कि अकिलिस कछुए से दस गुना तेज दौड़ता है और उससे एक हजार कदम पीछे है। अकिलिस को इस दूरी तक दौड़ने में जितना समय लगेगा, कछुआ उसी दिशा में सौ कदम रेंगेगा। जब अकिलिस सौ कदम दौड़ता है, तो कछुआ दस कदम और रेंगता है, इत्यादि। यह प्रक्रिया अनंत काल तक जारी रहेगी, अकिलिस कछुए को कभी नहीं पकड़ पाएगा।

यह तर्क बाद की सभी पीढ़ियों के लिए एक तार्किक झटका बन गया। अरस्तू, डायोजनीज, कांट, हेगेल, हिल्बर्ट... वे सभी किसी न किसी रूप में ज़ेनो के एपोरिया पर विचार करते थे। झटका इतना जोरदार था कि " ... चर्चा आज भी जारी है; वैज्ञानिक समुदाय अभी तक विरोधाभासों के सार पर एक आम राय नहीं बना सका है ... मुद्दे के अध्ययन में गणितीय विश्लेषण, सेट सिद्धांत, नए भौतिक और दार्शनिक दृष्टिकोण शामिल थे; ; उनमें से कोई भी समस्या का आम तौर पर स्वीकृत समाधान नहीं बन सका..."[विकिपीडिया, "ज़ेनो'स अपोरिया"। हर कोई समझता है कि उन्हें मूर्ख बनाया जा रहा है, लेकिन कोई नहीं समझता कि धोखे में क्या शामिल है।

गणितीय दृष्टिकोण से, ज़ेनो ने अपने एपोरिया में स्पष्ट रूप से मात्रा से संक्रमण का प्रदर्शन किया। इस परिवर्तन का तात्पर्य स्थायी के बजाय अनुप्रयोग से है। जहां तक ​​मैं समझता हूं, माप की परिवर्तनीय इकाइयों का उपयोग करने के लिए गणितीय उपकरण या तो अभी तक विकसित नहीं हुआ है, या इसे ज़ेनो के एपोरिया पर लागू नहीं किया गया है। अपने सामान्य तर्क को लागू करने से हम एक जाल में फंस जाते हैं। हम, सोच की जड़ता के कारण, समय की निरंतर इकाइयों को पारस्परिक मूल्य पर लागू करते हैं। भौतिक दृष्टिकोण से, ऐसा लगता है कि समय धीमा हो रहा है जब तक कि यह उस समय पूरी तरह से बंद न हो जाए जब अकिलिस कछुए को पकड़ लेता है। यदि समय रुक जाता है, तो अकिलिस कछुए से आगे नहीं निकल सकता।

यदि हम अपने सामान्य तर्क को पलट दें, तो सब कुछ ठीक हो जाता है। अकिलिस स्थिर गति से दौड़ता है। उसके पथ का प्रत्येक आगामी खंड पिछले वाले से दस गुना छोटा है। तदनुसार, इस पर काबू पाने में लगने वाला समय पिछले वाले की तुलना में दस गुना कम है। यदि हम इस स्थिति में "अनंत" की अवधारणा को लागू करते हैं, तो यह कहना सही होगा कि "अकिलिस कछुए को असीम रूप से जल्दी पकड़ लेगा।"

इस तार्किक जाल से कैसे बचें? समय की स्थिर इकाइयों में रहें और पारस्परिक इकाइयों पर स्विच न करें। ज़ेनो की भाषा में यह इस तरह दिखता है:

अकिलिस को एक हजार कदम चलने में जितना समय लगता है, कछुआ उसी दिशा में सौ कदम रेंगता है। पहले के बराबर अगले समय अंतराल के दौरान, अकिलिस एक हजार कदम और दौड़ेगा, और कछुआ सौ कदम रेंगेगा। अब अकिलिस कछुए से आठ सौ कदम आगे है।

यह दृष्टिकोण बिना किसी तार्किक विरोधाभास के वास्तविकता का पर्याप्त रूप से वर्णन करता है। लेकिन यह समस्या का पूर्ण समाधान नहीं है. प्रकाश की गति की अप्रतिरोध्यता के बारे में आइंस्टीन का कथन ज़ेनो के एपोरिया "अकिलीज़ एंड द टोर्टोइज़" के समान है। हमें अभी भी इस समस्या का अध्ययन, पुनर्विचार और समाधान करना होगा। और समाधान असीमित बड़ी संख्या में नहीं, बल्कि माप की इकाइयों में खोजा जाना चाहिए।

ज़ेनो का एक और दिलचस्प एपोरिया एक उड़ने वाले तीर के बारे में बताता है:

एक उड़ता हुआ तीर गतिहीन होता है, क्योंकि समय के प्रत्येक क्षण में वह विश्राम में होता है, और चूँकि वह समय के प्रत्येक क्षण में विश्राम में होता है, इसलिए वह सदैव विश्राम में ही रहता है।

इस एपोरिया में, तार्किक विरोधाभास को बहुत सरलता से दूर किया जाता है - यह स्पष्ट करने के लिए पर्याप्त है कि समय के प्रत्येक क्षण में एक उड़ता हुआ तीर अंतरिक्ष में विभिन्न बिंदुओं पर आराम कर रहा है, जो वास्तव में गति है। यहां एक और बात पर ध्यान देने की जरूरत है. सड़क पर किसी कार की एक तस्वीर से उसकी गति के तथ्य या उससे दूरी का पता लगाना असंभव है। यह निर्धारित करने के लिए कि कोई कार चल रही है, आपको अलग-अलग समय पर एक ही बिंदु से ली गई दो तस्वीरों की आवश्यकता होगी, लेकिन आप उनसे दूरी निर्धारित नहीं कर सकते। किसी कार की दूरी निर्धारित करने के लिए, आपको एक ही समय में अंतरिक्ष में विभिन्न बिंदुओं से ली गई दो तस्वीरों की आवश्यकता होगी, लेकिन आप उनसे गति के तथ्य का निर्धारण नहीं कर सकते (बेशक, आपको अभी भी गणना के लिए अतिरिक्त डेटा की आवश्यकता है, त्रिकोणमिति आपकी मदद करेगी) ). मैं जिस बात पर विशेष ध्यान आकर्षित करना चाहता हूं वह यह है कि समय में दो बिंदु और अंतरिक्ष में दो बिंदु अलग-अलग चीजें हैं जिन्हें भ्रमित नहीं किया जाना चाहिए, क्योंकि वे अनुसंधान के लिए अलग-अलग अवसर प्रदान करते हैं।

बुधवार, 4 जुलाई 2018

विकिपीडिया पर सेट और मल्टीसेट के बीच अंतर को बहुत अच्छी तरह से वर्णित किया गया है। चलो देखते हैं।

जैसा कि आप देख सकते हैं, "एक सेट में दो समान तत्व नहीं हो सकते," लेकिन यदि किसी सेट में समान तत्व हैं, तो ऐसे सेट को "मल्टीसेट" कहा जाता है। समझदार प्राणी ऐसे बेतुके तर्क को कभी नहीं समझ पाएंगे। यह बोलने वाले तोतों और प्रशिक्षित बंदरों का स्तर है, जिनके पास "पूरी तरह से" शब्द से कोई बुद्धि नहीं है। गणितज्ञ सामान्य प्रशिक्षकों के रूप में कार्य करते हैं, और हमें अपने बेतुके विचारों का उपदेश देते हैं।

एक बार की बात है, पुल बनाने वाले इंजीनियर पुल का परीक्षण करते समय पुल के नीचे एक नाव में थे। यदि पुल ढह गया, तो औसत दर्जे का इंजीनियर अपनी रचना के मलबे के नीचे दबकर मर गया। यदि पुल भार सहन कर सका, तो प्रतिभाशाली इंजीनियर ने अन्य पुल बनाए।

इससे कोई फर्क नहीं पड़ता कि गणितज्ञ "मेरा ध्यान रखें, मैं घर में हूं" वाक्यांश के पीछे कैसे छिपते हैं, या बल्कि, "गणित अमूर्त अवधारणाओं का अध्ययन करता है," एक गर्भनाल है जो उन्हें वास्तविकता से जोड़ती है। यह नाल ही धन है। आइए हम गणितीय समुच्चय सिद्धांत को स्वयं गणितज्ञों पर लागू करें।

हमने गणित का बहुत अच्छा अध्ययन किया और अब हम कैश रजिस्टर पर बैठकर वेतन दे रहे हैं। तो एक गणितज्ञ अपने पैसे के लिए हमारे पास आता है। हम उसे पूरी राशि गिनते हैं और उसे अलग-अलग ढेरों में अपनी मेज पर रखते हैं, जिसमें हम एक ही मूल्यवर्ग के बिल डालते हैं। फिर हम प्रत्येक ढेर से एक बिल लेते हैं और गणितज्ञ को उसका "वेतन का गणितीय सेट" देते हैं। आइए गणितज्ञ को समझाएं कि उसे शेष बिल तभी प्राप्त होंगे जब वह यह साबित कर देगा कि समान तत्वों के बिना एक सेट समान तत्वों वाले सेट के बराबर नहीं है। मज़ा यहां शुरू होता है।

सबसे पहले, प्रतिनिधियों का तर्क काम करेगा: "यह दूसरों पर लागू किया जा सकता है, लेकिन मुझ पर नहीं!" फिर वे हमें आश्वस्त करना शुरू कर देंगे कि एक ही मूल्यवर्ग के बिलों में अलग-अलग बिल संख्याएँ होती हैं, जिसका अर्थ है कि उन्हें एक ही तत्व नहीं माना जा सकता है। ठीक है, आइए वेतन को सिक्कों में गिनें - सिक्कों पर कोई संख्या नहीं है। यहां गणितज्ञ भौतिकी को पागलपन से याद करना शुरू कर देगा: अलग-अलग सिक्कों में अलग-अलग मात्रा में गंदगी होती है, क्रिस्टल संरचना और परमाणुओं की व्यवस्था प्रत्येक सिक्के के लिए अद्वितीय होती है...

और अब मेरे पास सबसे दिलचस्प सवाल है: वह रेखा कहां है जिसके आगे एक मल्टीसेट के तत्व एक सेट के तत्वों में बदल जाते हैं और इसके विपरीत? ऐसी कोई रेखा मौजूद नहीं है - सब कुछ जादूगरों द्वारा तय किया जाता है, विज्ञान यहां झूठ बोलने के करीब भी नहीं है।

यहाँ देखो। हम समान फ़ील्ड क्षेत्र वाले फ़ुटबॉल स्टेडियमों का चयन करते हैं। फ़ील्ड का क्षेत्रफल समान है - जिसका अर्थ है कि हमारे पास एक मल्टीसेट है। लेकिन अगर हम इन्हीं स्टेडियमों के नाम देखें तो हमें कई मिलते हैं, क्योंकि नाम अलग-अलग हैं। जैसा कि आप देख सकते हैं, तत्वों का एक ही सेट एक सेट और मल्टीसेट दोनों है। कौन सा सही है? और यहां गणितज्ञ-शमन-शार्पिस्ट अपनी आस्तीन से तुरुप का इक्का निकालता है और हमें सेट या मल्टीसेट के बारे में बताना शुरू करता है। किसी भी स्थिति में, वह हमें विश्वास दिलाएगा कि वह सही है।

यह समझने के लिए कि आधुनिक जादूगर सेट सिद्धांत के साथ कैसे काम करते हैं, इसे वास्तविकता से जोड़ते हुए, एक प्रश्न का उत्तर देना पर्याप्त है: एक सेट के तत्व दूसरे सेट के तत्वों से कैसे भिन्न होते हैं? मैं आपको दिखाऊंगा, बिना किसी "एक पूरे के रूप में कल्पनीय" या "एक पूरे के रूप में कल्पनीय नहीं।"

रविवार, 18 मार्च 2018

किसी संख्या के अंकों का योग डफ के साथ जादूगरों का नृत्य है, जिसका गणित से कोई लेना-देना नहीं है। हां, गणित के पाठों में हमें किसी संख्या के अंकों का योग ज्ञात करना और उसका उपयोग करना सिखाया जाता है, लेकिन यही कारण है कि वे जादूगर हैं, अपने वंशजों को अपने कौशल और ज्ञान सिखाएं, अन्यथा जादूगर बस खत्म हो जाएंगे।

क्या आपको सबूत चाहिए? विकिपीडिया खोलें और "किसी संख्या के अंकों का योग" पृष्ठ ढूंढने का प्रयास करें। वह अस्तित्व में नहीं है. गणित में ऐसा कोई सूत्र नहीं है जिसका उपयोग किसी संख्या के अंकों का योग ज्ञात करने के लिए किया जा सके। आख़िरकार, संख्याएँ ग्राफिक प्रतीक हैं जिनके साथ हम संख्याएँ लिखते हैं, और गणित की भाषा में कार्य इस तरह लगता है: "किसी भी संख्या का प्रतिनिधित्व करने वाले ग्राफिक प्रतीकों का योग ज्ञात करें।" गणितज्ञ इस समस्या को हल नहीं कर सकते, लेकिन जादूगर इसे आसानी से कर सकते हैं।

आइए जानें कि किसी दी गई संख्या के अंकों का योग ज्ञात करने के लिए हम क्या और कैसे करते हैं। और इसलिए, आइए हमारे पास संख्या 12345 है। इस संख्या के अंकों का योग ज्ञात करने के लिए क्या करने की आवश्यकता है? आइए क्रम से सभी चरणों पर विचार करें।

1. कागज के एक टुकड़े पर संख्या लिख ​​लें। हमने क्या किया है? हमने संख्या को ग्राफिकल संख्या प्रतीक में बदल दिया है। यह कोई गणितीय संक्रिया नहीं है.

2. हमने एक परिणामी चित्र को अलग-अलग संख्याओं वाले कई चित्रों में काटा। किसी चित्र को काटना कोई गणितीय क्रिया नहीं है।

3. व्यक्तिगत ग्राफ़िक प्रतीकों को संख्याओं में बदलें। यह कोई गणितीय संक्रिया नहीं है.

4. परिणामी संख्याएँ जोड़ें। अब ये गणित है.

संख्या 12345 के अंकों का योग 15 है। ये जादूगरों द्वारा पढ़ाए जाने वाले "काटने और सिलाई के पाठ्यक्रम" हैं जिनका उपयोग गणितज्ञ करते हैं। लेकिन यह बिलकुल भी नहीं है।

गणितीय दृष्टिकोण से, इससे कोई फर्क नहीं पड़ता कि हम किस संख्या प्रणाली में कोई संख्या लिखते हैं। इसलिए, अलग-अलग संख्या प्रणालियों में एक ही संख्या के अंकों का योग अलग-अलग होगा। गणित में, संख्या प्रणाली को संख्या के दाईं ओर एक सबस्क्रिप्ट के रूप में दर्शाया जाता है। बड़ी संख्या 12345 के साथ, मैं अपना सिर मूर्ख नहीं बनाना चाहता, आइए लेख से संख्या 26 पर विचार करें। आइए इस संख्या को बाइनरी, ऑक्टल, दशमलव और हेक्साडेसिमल संख्या प्रणालियों में लिखें। हम हर कदम को माइक्रोस्कोप के नीचे नहीं देखेंगे; हम पहले ही ऐसा कर चुके हैं। आइये परिणाम पर नजर डालते हैं.

जैसा कि आप देख सकते हैं, विभिन्न संख्या प्रणालियों में एक ही संख्या के अंकों का योग अलग-अलग होता है। इस परिणाम का गणित से कोई लेना-देना नहीं है। यह वैसा ही है जैसे यदि आपने किसी आयत का क्षेत्रफल मीटर और सेंटीमीटर में निर्धारित किया है, तो आपको पूरी तरह से अलग परिणाम मिलेंगे।

शून्य सभी संख्या प्रणालियों में एक जैसा दिखता है और इसमें अंकों का कोई योग नहीं होता है। यह इस तथ्य के पक्ष में एक और तर्क है। गणितज्ञों के लिए प्रश्न: वह चीज़ कैसी है जो गणित में निर्दिष्ट संख्या नहीं है? क्या, गणितज्ञों के लिए संख्याओं के अलावा कुछ भी मौजूद नहीं है? मैं ओझाओं के लिए इसकी अनुमति दे सकता हूं, लेकिन वैज्ञानिकों के लिए नहीं। वास्तविकता सिर्फ संख्या के बारे में नहीं है.

प्राप्त परिणाम को इस बात का प्रमाण माना जाना चाहिए कि संख्या प्रणालियाँ संख्याओं के माप की इकाइयाँ हैं। आख़िरकार, हम संख्याओं की तुलना माप की विभिन्न इकाइयों से नहीं कर सकते। यदि एक ही मात्रा की माप की विभिन्न इकाइयों के साथ समान क्रियाओं की तुलना करने पर अलग-अलग परिणाम मिलते हैं, तो इसका गणित से कोई लेना-देना नहीं है।

वास्तविक गणित क्या है? ऐसा तब होता है जब गणितीय ऑपरेशन का परिणाम संख्या के आकार, उपयोग की गई माप की इकाई और इस क्रिया को करने वाले पर निर्भर नहीं करता है।

दरवाजे पर हस्ताक्षर करें वह दरवाज़ा खोलता है और कहता है:

ओह! क्या यह महिला शौचालय नहीं है?
- युवती! यह स्वर्ग में आरोहण के दौरान आत्माओं की अनिश्चित पवित्रता के अध्ययन के लिए एक प्रयोगशाला है! शीर्ष पर हेलो और ऊपर तीर. और कौन सा शौचालय?

महिला... शीर्ष पर प्रभामंडल और नीचे तीर पुरुष हैं।

यदि डिजाइन कला का ऐसा कोई काम आपकी आंखों के सामने दिन में कई बार चमकता है,

फिर यह आश्चर्य की बात नहीं है कि आपको अचानक अपनी कार में एक अजीब आइकन मिले:

व्यक्तिगत रूप से, मैं शौच कर रहे व्यक्ति (एक चित्र) में माइनस चार डिग्री देखने का प्रयास करता हूं (कई चित्रों की एक रचना: एक माइनस चिह्न, संख्या चार, डिग्री का एक पदनाम)। और मुझे नहीं लगता कि यह लड़की मूर्ख है जो भौतिकी नहीं जानती। उसके पास ग्राफिक छवियों को समझने की एक मजबूत रूढ़ि है। और गणितज्ञ हमें हर समय यही सिखाते हैं। यहाँ एक उदाहरण है.

1ए "शून्य से चार डिग्री" या "एक ए" नहीं है। यह हेक्साडेसिमल नोटेशन में "पूपिंग मैन" या संख्या "छब्बीस" है। जो लोग लगातार इस संख्या प्रणाली में काम करते हैं वे स्वचालित रूप से एक संख्या और एक अक्षर को एक ग्राफिक प्रतीक के रूप में समझते हैं।

जब हम विभिन्न अभिव्यक्तियों के साथ काम करते हैं जिनमें संख्याएं, अक्षर और चर शामिल होते हैं, तो हमें प्रदर्शन करना होता है एक बड़ी संख्या कीअंकगणितीय आपरेशनस। जब हम कोई रूपांतरण करते हैं या किसी मूल्य की गणना करते हैं, तो इन क्रियाओं के सही क्रम का पालन करना बहुत महत्वपूर्ण है। दूसरे शब्दों में, अंकगणितीय संक्रियाओं के निष्पादन का अपना विशेष क्रम होता है।

Yandex.RTB R-A-339285-1

इस लेख में हम आपको बताएंगे कि कौन से कार्य पहले करने चाहिए और कौन से बाद में। सबसे पहले, आइए कुछ पर नजर डालें सरल भाव, जिसमें केवल चर या संख्यात्मक मान, साथ ही विभाजन, गुणा, घटाव और जोड़ चिह्न शामिल हैं। तो आइए कोष्ठकों के साथ उदाहरण लें और विचार करें कि उनकी गणना किस क्रम में की जानी चाहिए। तीसरे भाग में हम उन उदाहरणों में परिवर्तनों और गणनाओं का आवश्यक क्रम देंगे जिनमें जड़ों, शक्तियों और अन्य कार्यों के संकेत शामिल हैं।

परिभाषा 1

कोष्ठक के बिना अभिव्यक्तियों के मामले में, क्रियाओं का क्रम स्पष्ट रूप से निर्धारित किया जाता है:

  1. सभी क्रियाएँ बाएँ से दाएँ की ओर की जाती हैं।
  2. हम भाग और गुणा पहले करते हैं, और घटाव और जोड़ बाद में करते हैं।

इन नियमों का मतलब समझना आसान है. पारंपरिक बाएँ से दाएँ लेखन क्रम गणनाओं के मूल अनुक्रम को परिभाषित करता है, और पहले गुणा या भाग करने की आवश्यकता को इन कार्यों के सार द्वारा समझाया गया है।

आइए स्पष्टता के लिए कुछ कार्य करें। हमने केवल सबसे सरल संख्यात्मक अभिव्यक्तियों का उपयोग किया ताकि सभी गणनाएँ मानसिक रूप से की जा सकें। इस तरह आप वांछित आदेश को तुरंत याद कर सकते हैं और परिणामों की तुरंत जांच कर सकते हैं।

उदाहरण 1

स्थिति:गणना करें कि यह कितना होगा 7 − 3 + 6 .

समाधान

हमारी अभिव्यक्ति में कोई कोष्ठक नहीं है, गुणा-भाग भी नहीं है, इसलिए हम सभी क्रियाएं निर्दिष्ट क्रम में करते हैं। पहले हम सात में से तीन घटाते हैं, फिर शेष में छह जोड़ते हैं और दस पर समाप्त होते हैं। यहां संपूर्ण समाधान का एक प्रतिलेख है:

7 − 3 + 6 = 4 + 6 = 10

उत्तर: 7 − 3 + 6 = 10 .

उदाहरण 2

स्थिति:अभिव्यक्ति में गणना किस क्रम में की जानी चाहिए? 6:2 8:3?

समाधान

इस प्रश्न का उत्तर देने के लिए, आइए बिना कोष्ठक वाले व्यंजकों के नियम को दोबारा पढ़ें जिसे हमने पहले तैयार किया था। हमारे यहाँ केवल गुणा और भाग है, जिसका अर्थ है कि हम गणनाओं का लिखित क्रम रखते हैं और क्रमिक रूप से बाएँ से दाएँ गिनती करते हैं।

उत्तर:पहले हम छह को दो से विभाजित करते हैं, परिणाम को आठ से गुणा करते हैं और परिणामी संख्या को तीन से विभाजित करते हैं।

उदाहरण 3

स्थिति:गणना करें कि यह कितना होगा 17 − 5 · 6: 3 − 2 + 4: 2.

समाधान

सबसे पहले, आइए संक्रियाओं का सही क्रम निर्धारित करें, क्योंकि हमारे यहां सभी बुनियादी प्रकार के अंकगणितीय संक्रियाएं हैं - जोड़, घटाव, गुणा, भाग। पहली चीज़ जो हमें करने की ज़रूरत है वह है विभाजित करना और गुणा करना। इन क्रियाओं की एक-दूसरे पर प्राथमिकता नहीं होती, इसलिए हम इन्हें दाएँ से बाएँ लिखित क्रम में करते हैं। अर्थात्, 30 प्राप्त करने के लिए 5 को 6 से गुणा करना होगा, फिर 10 प्राप्त करने के लिए 30 को 3 से विभाजित करना होगा। इसके बाद 4 को 2 से भाग दें तो 2 आता है. आइए पाए गए मानों को मूल अभिव्यक्ति में प्रतिस्थापित करें:

17 − 5 6: 3 − 2 + 4: 2 = 17 − 10 − 2 + 2

यहां अब कोई भाग या गुणा नहीं है, इसलिए हम शेष गणना क्रम में करते हैं और उत्तर प्राप्त करते हैं:

17 − 10 − 2 + 2 = 7 − 2 + 2 = 5 + 2 = 7

उत्तर:17 − 5 6: 3 − 2 + 4: 2 = 7.

जब तक कार्यों को करने का क्रम दृढ़ता से याद नहीं हो जाता, तब तक आप गणना के क्रम को इंगित करने वाले अंकगणितीय संक्रियाओं के संकेतों के ऊपर संख्याएँ रख सकते हैं। उदाहरण के लिए, उपरोक्त समस्या के लिए हम इसे इस प्रकार लिख सकते हैं:

यदि हमारे पास अक्षर अभिव्यक्तियाँ हैं, तो हम उनके साथ भी ऐसा ही करते हैं: पहले हम गुणा और भाग करते हैं, फिर हम जोड़ते और घटाते हैं।

प्रथम और द्वितीय चरण की क्रियाएँ क्या हैं?

कभी-कभी संदर्भ पुस्तकों में सभी अंकगणितीय संक्रियाओं को पहले और दूसरे चरण की क्रियाओं में विभाजित किया जाता है। आइए हम आवश्यक परिभाषा तैयार करें।

पहले चरण के संचालन में घटाव और जोड़ शामिल हैं, दूसरे में - गुणा और भाग।

इन नामों को जानकर हम क्रियाओं के क्रम के संबंध में पहले दिए गए नियम को इस प्रकार लिख सकते हैं:

परिभाषा 2

ऐसे अभिव्यक्ति में जिसमें कोष्ठक नहीं हैं, आपको पहले दूसरे चरण की क्रियाएं बाएं से दाएं दिशा में करनी होंगी, फिर पहले चरण की क्रियाएं (उसी दिशा में) करनी होंगी।

कोष्ठक सहित भावों में गणना का क्रम

कोष्ठक स्वयं एक संकेत है जो हमें कार्यों का वांछित क्रम बताता है। इस मामले में सही नियमइस प्रकार लिखा जा सकता है:

परिभाषा 3

यदि अभिव्यक्ति में कोष्ठक हैं, तो पहला कदम उनमें ऑपरेशन करना है, जिसके बाद हम गुणा और भाग करते हैं, और फिर बाएं से दाएं जोड़ते और घटाते हैं।

जहां तक ​​कोष्ठक अभिव्यक्ति का प्रश्न है, इसे मुख्य अभिव्यक्ति का अभिन्न अंग माना जा सकता है। कोष्ठक में व्यंजक के मान की गणना करते समय, हम वही प्रक्रिया अपनाते हैं जो हमें ज्ञात है। आइए अपने विचार को एक उदाहरण से स्पष्ट करें।

उदाहरण 4

स्थिति:गणना करें कि यह कितना होगा 5 + (7 − 2 3) (6 − 4) : 2.

समाधान

इस अभिव्यक्ति में कोष्ठक हैं, तो चलिए उनसे शुरू करते हैं। सबसे पहले, आइए गणना करें कि 7 - 2 · 3 कितना होगा। यहां हमें 2 को 3 से गुणा करना होगा और परिणाम को 7 से घटाना होगा:

7 − 2 3 = 7 − 6 = 1

हम दूसरे कोष्ठक में परिणाम की गणना करते हैं। वहां हमारी केवल एक ही क्रिया है: 6 − 4 = 2 .

अब हमें परिणामी मानों को मूल अभिव्यक्ति में प्रतिस्थापित करने की आवश्यकता है:

5 + (7 − 2 3) (6 − 4) : 2 = 5 + 1 2: 2

आइए गुणा और भाग से शुरू करें, फिर घटाव करें और प्राप्त करें:

5 + 1 2: 2 = 5 + 2: 2 = 5 + 1 = 6

इससे गणना समाप्त होती है।

उत्तर: 5 + (7 − 2 3) (6 − 4) : 2 = 6.

अगर हमारी स्थिति में कोई अभिव्यक्ति शामिल है जिसमें कुछ कोष्ठक दूसरों को संलग्न करते हैं, तो चिंतित न हों। हमें केवल उपरोक्त नियम को कोष्ठक में सभी अभिव्यक्तियों पर लगातार लागू करने की आवश्यकता है। आइए इस समस्या को लें।

उदाहरण 5

स्थिति:गणना करें कि यह कितना होगा 4 + (3 + 1 + 4 (2 + 3)).

समाधान

हमारे पास कोष्ठकों के भीतर कोष्ठक हैं। हम 3 + 1 + 4 · (2 ​​+ 3), यानी 2 + 3 से शुरू करते हैं। 5 बजे होंगे. मान को अभिव्यक्ति में प्रतिस्थापित करने और गणना करने की आवश्यकता होगी कि 3 + 1 + 4 · 5। हमें याद है कि हमें पहले गुणा करना होगा और फिर जोड़ना होगा: 3 + 1 + 4 5 = 3 + 1 + 20 = 24. पाए गए मानों को मूल अभिव्यक्ति में प्रतिस्थापित करते हुए, हम उत्तर की गणना करते हैं: 4 + 24 = 28 .

उत्तर: 4 + (3 + 1 + 4 · (2 ​​+ 3)) = 28.

दूसरे शब्दों में, किसी अभिव्यक्ति के मूल्य की गणना करते समय जिसमें कोष्ठक के भीतर कोष्ठक शामिल होते हैं, हम आंतरिक कोष्ठक से शुरू करते हैं और बाहरी कोष्ठक की ओर अपना काम करते हैं।

मान लीजिए कि हमें यह पता लगाना है कि (4 + (4 + (4 − 6: 2)) − 1) − 1 कितना होगा। हम आंतरिक कोष्ठक में अभिव्यक्ति से शुरू करते हैं। चूँकि 4 - 6: 2 = 4 - 3 = 1, मूल अभिव्यक्ति को (4 + (4 + 1) - 1) - 1 के रूप में लिखा जा सकता है। आंतरिक कोष्ठकों को फिर से देखें: 4 + 1 = 5। हम अभिव्यक्ति पर आ गये हैं (4 + 5 − 1) − 1 . हम गिनते है 4 + 5 − 1 = 8 और परिणामस्वरूप हमें अंतर 8 - 1 मिलता है, जिसका परिणाम 7 होगा।

घातों, मूलों, लघुगणक और अन्य कार्यों के साथ अभिव्यक्तियों में गणना का क्रम

यदि हमारी स्थिति में डिग्री, मूल, लघुगणक या के साथ एक अभिव्यक्ति शामिल है त्रिकोणमितीय फलन(sine, cosine, tangent और cotangent) या अन्य फ़ंक्शन, तो सबसे पहले हम फ़ंक्शन के मान की गणना करते हैं। इसके बाद, हम पिछले पैराग्राफ में निर्दिष्ट नियमों के अनुसार कार्य करते हैं। दूसरे शब्दों में, फ़ंक्शन कोष्ठक में संलग्न अभिव्यक्ति के महत्व के बराबर हैं।

आइए ऐसी गणना का एक उदाहरण देखें।

उदाहरण 6

स्थिति:ज्ञात कीजिए कि (3 + 1) · 2 + 6 2: 3 − 7 कितना है।

समाधान

हमारे पास एक डिग्री के साथ एक अभिव्यक्ति है, जिसका मूल्य पहले पाया जाना चाहिए। हम गिनते हैं: 6 2 = 36। अब परिणाम को अभिव्यक्ति में प्रतिस्थापित करते हैं, जिसके बाद यह (3 + 1) · 2 + 36: 3 − 7 का रूप ले लेगा।

(3 + 1) 2 + 36: 3 - 7 = 4 2 + 36: 3 - 7 = 8 + 12 - 7 = 13

उत्तर: (3 + 1) 2 + 6 2: 3 − 7 = 13.

भावों के मूल्यों की गणना के लिए समर्पित एक अलग लेख में, हम अन्य, और भी बहुत कुछ प्रदान करते हैं जटिल उदाहरणमूल, डिग्री आदि वाले भावों के मामले में गणना। हम अनुशंसा करते हैं कि आप स्वयं को इससे परिचित कर लें।

यदि आपको पाठ में कोई त्रुटि दिखाई देती है, तो कृपया उसे हाइलाइट करें और Ctrl+Enter दबाएँ

प्राथमिक विद्यालय ख़त्म होने वाला है, और जल्द ही बच्चा गणित की उन्नत दुनिया में कदम रखेगा। लेकिन इस अवधि के दौरान पहले से ही छात्र को विज्ञान की कठिनाइयों का सामना करना पड़ता है। एक साधारण कार्य करते समय, बच्चा भ्रमित हो जाता है और खो जाता है, जिसके परिणामस्वरूप अंततः किए गए कार्य के लिए नकारात्मक अंक प्राप्त होता है। ऐसी परेशानियों से बचने के लिए, उदाहरणों को हल करते समय, आपको उस क्रम में नेविगेट करने में सक्षम होना चाहिए जिसमें आपको उदाहरण को हल करने की आवश्यकता है। कार्यों को गलत तरीके से वितरित करने के कारण, बच्चा कार्य को सही ढंग से पूरा नहीं करता है। लेख उदाहरणों को हल करने के लिए बुनियादी नियमों का खुलासा करता है जिसमें कोष्ठक सहित गणितीय गणनाओं की पूरी श्रृंखला शामिल है। चौथी कक्षा के गणित में प्रक्रिया के नियम और उदाहरण।

कार्य पूरा करने से पहले, अपने बच्चे से उन कार्यों को गिनने के लिए कहें जो वह करने जा रहा है। यदि आपको कोई कठिनाई हो तो कृपया सहायता करें।

कोष्ठक के बिना उदाहरणों को हल करते समय पालन करने योग्य कुछ नियम:

यदि किसी कार्य को करने के लिए कई क्रियाओं की आवश्यकता होती है, तो आपको पहले भाग या गुणा करना होगा, फिर। पत्र की प्रगति के अनुसार सभी क्रियाएं की जाती हैं। अन्यथा निर्णय का परिणाम सही नहीं होगा.

यदि उदाहरण में आपको निष्पादित करने की आवश्यकता है, तो हम इसे बाएं से दाएं क्रम में करते हैं।

27-5+15=37 (किसी उदाहरण को हल करते समय, हम नियम द्वारा निर्देशित होते हैं। पहले हम घटाव करते हैं, फिर जोड़)।

अपने बच्चे को हमेशा किए गए कार्यों की योजना बनाना और उन्हें गिनना सिखाएं।

प्रत्येक हल की गई कार्रवाई के उत्तर उदाहरण के ऊपर लिखे गए हैं। इससे बच्चे के लिए गतिविधियों को नेविगेट करना बहुत आसान हो जाएगा।

आइए एक अन्य विकल्प पर विचार करें जहां क्रियाओं को क्रम में वितरित करना आवश्यक है:

जैसा कि आप देख सकते हैं, समाधान करते समय नियम का पालन किया जाता है: पहले हम उत्पाद की तलाश करते हैं, फिर हम अंतर की तलाश करते हैं।

यह सरल उदाहरणजिसका समाधान करते समय सावधानी बरतने की आवश्यकता है। कई बच्चे तब दंग रह जाते हैं जब वे कोई ऐसा कार्य देखते हैं जिसमें न केवल गुणा और भाग होता है, बल्कि कोष्ठक भी होता है। एक छात्र जो कार्य करने की प्रक्रिया नहीं जानता, उसके मन में ऐसे प्रश्न होते हैं जो उसे कार्य पूरा करने से रोकते हैं।

जैसा कि नियम में कहा गया है, पहले हम उत्पाद या भागफल ढूंढते हैं, और फिर बाकी सब कुछ। लेकिन कोष्ठक हैं! ऐसे में क्या करें?

उदाहरणों को कोष्ठक सहित हल करना

आइए एक विशिष्ट उदाहरण देखें:

  • इस कार्य को निष्पादित करते समय, हम सबसे पहले कोष्ठक में संलग्न अभिव्यक्ति का मान ज्ञात करते हैं।
  • आपको गुणा से शुरुआत करनी चाहिए, फिर जोड़ से।
  • कोष्ठक में अभिव्यक्ति हल होने के बाद, हम उनके बाहर की कार्रवाइयों के लिए आगे बढ़ते हैं।
  • प्रक्रिया के नियमों के अनुसार अगला चरण गुणन है।
  • अंतिम चरण होगा.

जैसा कि हम आगे देखते हैं स्पष्ट उदाहरण, सभी क्रियाएँ क्रमांकित हैं। विषय को सुदृढ़ करने के लिए, अपने बच्चे को स्वयं कई उदाहरण हल करने के लिए आमंत्रित करें:

जिस क्रम में अभिव्यक्ति के मूल्य की गणना की जानी चाहिए उसे पहले ही व्यवस्थित किया जा चुका है। बच्चे को केवल सीधे निर्णय लेना होगा।

आइए कार्य को जटिल बनाएं। बच्चे को स्वयं भावों का अर्थ ढूंढने दें।

7*3-5*4+(20-19) 14+2*3-(13-9)
17+2*5+(28-2) 5*3+15-(2-1*2)
24-3*2-(56-4*3) 14+12-3*(21-7)

अपने बच्चे को सभी कार्यों को हल करना सिखाएं मसौदा. इस मामले में, छात्र को सही करने का अवसर मिलेगा सही निर्णयया दाग. में कार्यपुस्तिकासुधार की अनुमति नहीं है. कार्यों को स्वयं पूरा करने से बच्चों को अपनी गलतियाँ नजर आने लगती हैं।

बदले में, माता-पिता को गलतियों पर ध्यान देना चाहिए, बच्चे को उन्हें समझने और सुधारने में मदद करनी चाहिए। आपको किसी छात्र के दिमाग पर बड़ी मात्रा में काम का बोझ नहीं डालना चाहिए। ऐसे कार्यों से आप बच्चे की ज्ञान की इच्छा को हतोत्साहित करेंगे। हर चीज़ में अनुपात का भाव होना चाहिए.

एक ब्रेक ले लो। बच्चे का ध्यान भटकना चाहिए और कक्षाओं से छुट्टी लेनी चाहिए। याद रखने वाली मुख्य बात यह है कि हर किसी के पास गणितीय दिमाग नहीं होता है। हो सकता है कि आपका बच्चा बड़ा होकर एक प्रसिद्ध दार्शनिक बने।

और अभिव्यक्तियों के मूल्यों की गणना करते समय, क्रियाएं एक निश्चित क्रम में की जाती हैं, दूसरे शब्दों में, आपको निरीक्षण करना चाहिए क्रियाओं का क्रम.

इस लेख में, हम यह पता लगाएंगे कि कौन से कार्य पहले किए जाने चाहिए और कौन से बाद में। आइए सबसे से शुरुआत करें साधारण मामले, जब अभिव्यक्ति में केवल प्लस, माइनस, गुणा और भाग चिह्नों से जुड़े संख्याएं या चर होते हैं। आगे, हम बताएंगे कि कोष्ठक वाले भावों में क्रियाओं के किस क्रम का पालन किया जाना चाहिए। अंत में, आइए उस क्रम को देखें जिसमें शक्तियों, जड़ों और अन्य कार्यों वाले अभिव्यक्तियों में क्रियाएं की जाती हैं।

पेज नेविगेशन.

पहले गुणा और भाग, फिर जोड़ और घटाव

स्कूल निम्नलिखित देता है एक नियम जो उस क्रम को निर्धारित करता है जिसमें कोष्ठक के बिना अभिव्यक्तियों में क्रियाएं की जाती हैं:

  • क्रियाएँ बाएँ से दाएँ क्रम में की जाती हैं,
  • इसके अलावा, गुणा और भाग पहले किया जाता है, और फिर जोड़ और घटाव किया जाता है।

बताया गया नियम काफी स्वाभाविक रूप से माना जाता है। बाएँ से दाएँ क्रम में कार्य करना इस तथ्य से समझाया गया है कि हमारे लिए बाएँ से दाएँ रिकॉर्ड रखना प्रथागत है। और तथ्य यह है कि जोड़ और घटाव से पहले गुणा और भाग किया जाता है, इन क्रियाओं के अर्थ से समझाया जाता है।

आइए कुछ उदाहरण देखें कि यह नियम कैसे लागू होता है। उदाहरण के लिए, हम सबसे सरल संख्यात्मक अभिव्यक्तियाँ लेंगे ताकि गणनाओं से विचलित न हों, बल्कि कार्यों के क्रम पर विशेष रूप से ध्यान केंद्रित करें।

उदाहरण।

चरण 7−3+6 का पालन करें.

समाधान।

मूल अभिव्यक्ति में कोष्ठक नहीं है, और इसमें गुणा या भाग नहीं है। इसलिए, हमें सभी क्रियाएं बाएं से दाएं क्रम में करनी चाहिए, यानी, पहले हम 7 में से 3 घटाते हैं, हमें 4 मिलता है, जिसके बाद हम 4 के परिणामी अंतर में 6 जोड़ते हैं, हमें 10 मिलता है।

संक्षेप में, समाधान इस प्रकार लिखा जा सकता है: 7−3+6=4+6=10.

उत्तर:

7−3+6=10 .

उदाहरण।

अभिव्यक्ति 6:2·8:3 में क्रियाओं के क्रम को इंगित करें।

समाधान।

समस्या के प्रश्न का उत्तर देने के लिए, आइए बिना कोष्ठक वाले भावों में क्रियाओं के निष्पादन के क्रम को दर्शाने वाले नियम की ओर मुड़ें। मूल अभिव्यक्ति में केवल गुणा और भाग की संक्रियाएँ शामिल हैं, और नियम के अनुसार, उन्हें बाएँ से दाएँ क्रम में निष्पादित किया जाना चाहिए।

उत्तर:

सर्वप्रथम हम 6 को 2 से विभाजित करते हैं, इस भागफल को 8 से गुणा करते हैं, और अंत में परिणाम को 3 से विभाजित करते हैं।

उदाहरण।

व्यंजक 17−5·6:3−2+4:2 का मान परिकलित करें.

समाधान।

सबसे पहले, आइए यह निर्धारित करें कि मूल अभिव्यक्ति में क्रियाएं किस क्रम में की जानी चाहिए। इसमें गुणा और भाग तथा जोड़ और घटाव दोनों शामिल हैं। सबसे पहले, बाएं से दाएं, आपको गुणा और भाग करना होगा। तो हम 5 को 6 से गुणा करते हैं, हमें 30 मिलता है, हम इस संख्या को 3 से विभाजित करते हैं, हमें 10 मिलता है। अब हम 4 को 2 से विभाजित करते हैं, हमें 2 प्राप्त होता है। हम पाए गए मान 10 को 5·6:3 के बजाय मूल अभिव्यक्ति में प्रतिस्थापित करते हैं, और 4:2 के बजाय - मान 2, हमारे पास है 17−5·6:3−2+4:2=17−10−2+2.

परिणामी अभिव्यक्ति में अब गुणा और भाग शामिल नहीं है, इसलिए यह बाएं से दाएं क्रम में शेष क्रियाएं करना बाकी है: 17−10−2+2=7−2+2=5+2=7 .

उत्तर:

17−5·6:3−2+4:2=7.

सबसे पहले, किसी अभिव्यक्ति के मूल्य की गणना करते समय कार्यों को करने के क्रम को भ्रमित न करने के लिए, कार्रवाई के संकेतों के ऊपर संख्याओं को रखना सुविधाजनक होता है जो उस क्रम के अनुरूप होते हैं जिसमें वे किए जाते हैं। पिछले उदाहरण के लिए यह इस तरह दिखेगा: .

शाब्दिक अभिव्यक्तियों के साथ काम करते समय संचालन का वही क्रम - पहले गुणा और भाग, फिर जोड़ और घटाव - का पालन किया जाना चाहिए।

प्रथम एवं द्वितीय चरण की कार्यवाही

कुछ गणित पाठ्यपुस्तकों में अंकगणितीय संक्रियाओं को पहले और दूसरे चरण की संक्रियाओं में विभाजित किया गया है। आइए इसका पता लगाएं।

परिभाषा।

प्रथम चरण की कार्यवाहीजोड़ और घटाव को कहा जाता है, और गुणा और भाग को कहा जाता है दूसरे चरण की कार्रवाई.

इन शर्तों में, पिछले पैराग्राफ का नियम, जो क्रियाओं के निष्पादन का क्रम निर्धारित करता है, इस प्रकार लिखा जाएगा: यदि अभिव्यक्ति में कोष्ठक नहीं हैं, तो बाएं से दाएं क्रम में, पहले दूसरे चरण की क्रियाएं ( गुणा और भाग) किया जाता है, फिर पहले चरण की क्रियाएं (जोड़ और घटाव) की जाती हैं।

कोष्ठक वाले भावों में अंकगणितीय संक्रियाओं का क्रम

अभिव्यक्तियों में अक्सर उस क्रम को इंगित करने के लिए कोष्ठक होते हैं जिसमें क्रियाएं की जानी चाहिए। इस मामले में एक नियम जो कोष्ठक वाले भावों में क्रियाओं के निष्पादन के क्रम को निर्दिष्ट करता है, निम्नानुसार तैयार किया गया है: सबसे पहले, कोष्ठक में क्रियाएं की जाती हैं, जबकि गुणा और भाग भी बाएं से दाएं क्रम में किया जाता है, फिर जोड़ और घटाव किया जाता है।

इसलिए, कोष्ठक में दिए गए भावों को मूल अभिव्यक्ति के घटकों के रूप में माना जाता है, और वे हमें पहले से ज्ञात क्रियाओं के क्रम को बनाए रखते हैं। आइए अधिक स्पष्टता के लिए उदाहरणों के समाधान देखें।

उदाहरण।

इन चरणों का पालन करें 5+(7−2·3)·(6−4):2.

समाधान।

अभिव्यक्ति में कोष्ठक शामिल हैं, तो आइए पहले इन कोष्ठकों में संलग्न अभिव्यक्तियों में क्रियाएं करें। आइए अभिव्यक्ति 7−2·3 से शुरू करें। इसमें आपको पहले गुणा करना होगा, और उसके बाद ही घटाना होगा, हमारे पास 7−2·3=7−6=1 है। आइए कोष्ठक 6−4 में दूसरे व्यंजक पर चलते हैं। यहां केवल एक ही क्रिया है - घटाव, हम इसे 6−4 = 2 करते हैं।

हम प्राप्त मूल्यों को मूल अभिव्यक्ति में प्रतिस्थापित करते हैं: 5+(7−2·3)·(6−4):2=5+1·2:2. परिणामी अभिव्यक्ति में, हम पहले बाएं से दाएं गुणा और भाग करते हैं, फिर घटाव करते हैं, हमें 5+1·2:2=5+2:2=5+1=6 मिलता है। इस बिंदु पर, सभी क्रियाएं पूरी हो गई हैं, हमने उनके कार्यान्वयन के निम्नलिखित क्रम का पालन किया है: 5+(7−2·3)·(6−4):2.

आइए एक संक्षिप्त समाधान लिखें: 5+(7−2·3)·(6−4):2=5+1·2:2=5+1=6.

उत्तर:

5+(7−2·3)·(6−4):2=6.

ऐसा होता है कि किसी अभिव्यक्ति में कोष्ठक के भीतर कोष्ठक होते हैं। इससे डरने की कोई जरूरत नहीं है, आपको बस कोष्ठक वाले भावों में क्रियाएं करने के लिए बताए गए नियम को लगातार लागू करने की जरूरत है। आइए उदाहरण का समाधान दिखाएं।

उदाहरण।

अभिव्यक्ति 4+(3+1+4·(2+3)) में संचालन करें।

समाधान।

यह कोष्ठक के साथ एक अभिव्यक्ति है, जिसका अर्थ है कि क्रियाओं का निष्पादन कोष्ठक में अभिव्यक्ति के साथ शुरू होना चाहिए, अर्थात 3+1+4·(2+3) के साथ। इस अभिव्यक्ति में कोष्ठक भी शामिल हैं, इसलिए आपको पहले उनमें क्रियाएं करनी होंगी। आइए ऐसा करें: 2+3=5. प्राप्त मान को प्रतिस्थापित करने पर, हमें 3+1+4·5 प्राप्त होता है। इस अभिव्यक्ति में, हम पहले गुणा करते हैं, फिर जोड़ते हैं, हमारे पास 3+1+4·5=3+1+20=24 होता है। प्रारंभिक मान, इस मान को प्रतिस्थापित करने के बाद, 4+24 का रूप लेता है, और जो कुछ बचता है वह क्रियाओं को पूरा करना है: 4+24=28।

उत्तर:

4+(3+1+4·(2+3))=28.

सामान्य तौर पर, जब किसी अभिव्यक्ति में कोष्ठक के भीतर कोष्ठक होते हैं, तो आंतरिक कोष्ठक से शुरू करके बाहरी कोष्ठक की ओर बढ़ना अक्सर सुविधाजनक होता है।

उदाहरण के लिए, मान लें कि हमें अभिव्यक्ति (4+(4+(4−6:2))−1)−1 में क्रियाएं करने की आवश्यकता है। सबसे पहले, हम आंतरिक कोष्ठक में क्रियाएं करते हैं, क्योंकि 4−6:2=4−3=1, फिर इसके बाद मूल अभिव्यक्ति (4+(4+1)−1)−1 का रूप ले लेगी। हम फिर से आंतरिक कोष्ठक में कार्रवाई करते हैं, क्योंकि 4+1=5, हम निम्नलिखित अभिव्यक्ति (4+5−1)−1 पर पहुंचते हैं। फिर से हम कोष्ठक में क्रियाएं करते हैं: 4+5−1=8, और हम अंतर 8−1 पर पहुंचते हैं, जो 7 के बराबर है।