Как производят солнечные батареи? Солнечные панели российского производства.

Уже не одно десятилетие человечество ищет альтернативные источники энергии, способные хотя бы частично заменить существующие. И самыми перспективными из всех на сегодняшний день представляются два: ветро‑ и солнечная энергетика.

Правда, ни тот ни другой не могут предоставить непрерывного производства. Это связано с непостоянством розы ветров и суточно‑погодно‑сезонными колебаниями интенсивности солнечного потока.

Сегодняшняя энергетика предлагает три основных метода получения электрической энергии, но все они тем или иным образом вредны для окружающей среды:

  • Топливная электроэнергетика — самая экологически грязная, сопровождается значительными выбросами в атмосферу углекислого газа, сажи и бесполезной теплоты, вызывая сокращение озонового слоя. Добыча топливных ресурсов для нее также наносит значительный вред природе.
  • Гидроэнергетика связана с очень значительными ландшафтными изменениями, затоплением полезных земель, причиняет ущерб рыбным ресурсам.
  • Атомная энергетика — самая экологически чистая из трёх, но требует очень значительных расходов на поддержание безопасности. Любая авария может быть связана с нанесением непоправимого долголетнего вреда природе. К тому же требует специальных мер по утилизации отходов использованного топлива.

Строго говоря, получить электроэнергию от солнечного излучения можно несколькими способами, но большинство из них используют промежуточное её преобразование в механическую, вращающую вал генератора и только затем в электрическую.

Такие электростанции существуют, они используют в работе двигатели внешнего сгорания Стирлинга, имеют неплохой КПД, но у них есть и существенный недостаток: чтобы собрать как можно больше энергии солнечного излучения, требуется изготовление огромных параболических зеркал с системами слежения за положением солнца.

Надо сказать, что существуют решения, позволяющие улучшить ситуацию, но все они достаточно дорогостоящие.

Есть методы, дающие возможность прямого преобразования энергии света в электрический ток. И хотя явление фотоэффекта в полупроводнике селене было открыто уже в 1876 году, но только в 1953 году, с изобретением кремниевого фотоэлемента, появилась реальная возможность создания солнечных батарей для получения электроэнергии.

В это время уже появляется теория, позволившая объяснить свойства полупроводников, и создать практическую технологию их промышленного производства. К сегодняшнему дню это вылилось в настоящую полупроводниковую революцию.

Работа солнечной батареи основана на явлении фотоэффекта полупроводникового p-n перехода, по сути представляющего собой обычный кремниевый диод. На его выводах при освещении возникает фото‑эдс величиной 0,5~0,55 В.

При использовании электрических генераторов и батарей необходимо учитывать различия, которые существуют между . Подключая трехфазный электродвигатель в соответствующую сеть, можно в три раза увеличить его выходную мощность.

Следуя определенным рекомендациям, с минимальными затратами по ресурсам и времени можно изготовить силовую часть высокочастотного импульсного преобразователя для бытовых нужд. Изучить структурные и принципиальные схемы таких блоков питания можно .

Конструктивно каждый элемент солнечной батареи выполнен в виде кремниевой пластины площадью в несколько см 2 , на которой сформировано множество соединённых в единую цепь таких фотодиодов. Каждая такая пластина является отдельным модулем, дающим при солнечном освещении определённое напряжение и ток.

Соединяя такие модули в батарею и комбинируя параллельно‑последовательное их подключение, можно получить широкий диапазон значений выходной мощности.

Основные недостатки солнечных батарей:

  • Большая неравномерность и нерегулярность энергоотдачи в зависимости от погоды, и сезонной высоты солнца.
  • Ограничение мощности всей батареи, если затенена хотя бы одна её часть.
  • Зависимость от направления на солнце в различное время суток. Для максимально эффективного использования батареи нужно обеспечивать её постоянную направленность на солнце.
  • В связи с вышесказанным, необходимость аккумулирования энергии. Наибольшее потребление энергии приходится на то время, когда выработка её минимальна.
  • Большая площадь, требующаяся для конструкции достаточной мощности.
  • Хрупкость конструкции батареи, необходимость постоянной очистки её поверхности от загрязнений, снега и т. п.
  • Модули солнечной батареи работают наиболее эффективно при 25°C. Во время работы же они нагреваются солнцем до значительно более высокой температуры, сильно снижающей их эффективность. Чтобы поддерживать КПД на оптимальном уровне, необходимо обеспечивать охлаждение батареи.

Следует заметить, что постоянно появляются разработки солнечных элементов, использующих новейшие материалы и технологии. Это позволяет постепенно устранять недостатки, присущие солнечным батареям или уменьшать их влияние. Так, КПД новейших элементов, использующих органические и полимерные модули, достигает уже 35% и есть ожидания достижения 90%, а это делает возможным при тех же размерах батареи получить много бòльшую мощность, либо, сохранив энергоотдачу, значительно уменьшить габариты батареи.

Кстати, средний КПД автомобильного двигателя не превышает 35%, что позволяет говорить о достаточно серьёзной эффективности солнечных панелей.

Появляются разработки элементов на основе нанотехнологий, одинаково эффективно работающих под разными углами падающего света, что избавляет от необходимости их позиционирования.

Таким образом, уже сегодня можно говорить о преимуществах солнечных батарей по сравнению с другими источниками энергии:

  • Отсутствие механических преобразований энергии и движущихся частей.
  • Минимальные расходы на эксплуатацию.
  • Долговечность 30~50 лет.
  • Тишина при работе, отсутствие вредных выбросов. Экологичность.
  • Мобильность. Батарея для питания ноутбука и зарядки аккумулятора для светодиодного фонарика вполне поместится в небольшом рюкзаке.
  • Независимость от наличия постоянных источников тока. Возможность подзарядки аккумуляторов современных гаджетов в полевых условиях.
  • Нетребовательность к внешним факторам. Солнечные элементы можно разместить в любом месте, на любом ландшафте, лишь бы они достаточно освещались солнечным светом.

В приэкваториальных районах Земли средний поток солнечной энергии составляет в среднем 1,9 кВт/м 2 . В средней полосе России он находится в пределах 0,7~1,0 кВт/м 2 . КПД классического кремниевого фотоэлемента не превышает 13%.

Как показывают опытные данные, если прямоугольную пластину направить своей плоскостью на юг, в точку солнечного максимума, то за 12‑часовой солнечный день она получит не более 42% суммарного светового потока из‑за изменения угла его падения.

Это означает, что при среднем солнечном потоке 1 кВт/м 2 , 13% КПД батареи и её суммарной эффективности 42% удастся получить за 12 часов не более 1000 x 12 x 0,13 x 0,42 = 622,2 Втч, или 0,6 кВтч за день с 1 м 2 . Это при условии полного солнечного дня, в облачную погоду — значительно меньше, а в зимние месяцы эту величину нужно разделить ещё на 3.

Учитывая потери на преобразование напряжения, схему автоматики, обеспечивающую оптимальный зарядный ток аккумуляторов и предохраняющую их от перезаряда, и прочие элементы можно принять за основу цифру 0,5 кВтч/м 2 . Этой энергией можно в течение 12 часов поддерживать ток заряда аккумулятора 3 А при напряжении 13,8 В.

То есть для заряда полностью разряженной автомобильной батареи ёмкостью 60 Ач потребуется солнечная панель в 2 м 2 , а для 50 Ач — примерно 1,5 м 2 .

Для того чтобы получить такую мощность можно приобрести готовые панели, выпускающиеся в диапазоне электрических мощностей 10~300 Вт. Например, одна 100 Вт панель за 12‑ти часовой световой день с учётом коэффициента 42% как раз обеспечит 0,5 кВтч.

Такая панель китайского производства из монокристаллического кремния с очень неплохими характеристиками стоит сейчас на рынке около 6400 р. Менее эффективная на открытом солнце, но имеющая лучшую отдачу в пасмурную погоду поликристаллическая — 5000 р.

При наличии определённых навыков в монтаже и пайке радиоэлектронной аппаратуры можно попробовать собрать подобную солнечную батарею и самому. При этом не стоит рассчитывать на очень большой выигрыш в цене, кроме того, готовые панели имеют заводское качество как самих элементов, так и их сборки.

Но продажа таких панелей организована далеко не везде, а их транспортировка требует очень жёстких условий и обойдётся достаточно дорого. Кроме того, при самостоятельном изготовлении появляется возможность, начав с малого, постепенно добавлять модули и наращивать выходную мощность.

Подбор материалов для создания панели

В китайских интернет‑магазинах, а также на аукционе eBay предлагается широчайший выбор элементов для самостоятельного изготовления солнечных батарей с любыми параметрами.

Ещё в недалёком прошлом самодельщики приобретали пластины, отбракованные при производстве, имеющие сколы или другие дефекты, но существенно более дешёвые. Они вполне работоспособны, но имеют немного пониженную отдачу по мощности. Учитывая постоянное снижение цен, сейчас это уже вряд ли целесообразно. Ведь теряя в среднем 10% мощности, мы теряем и в эффективной площади панели. Да и внешний вид батареи, состоящей из пластин с отколотыми кусочками выглядит довольно кустарно.

Можно приобрести такие модули и в российских онлайн‑магазинах, например, molotok.ru предлагает поликристаллические элементы с рабочими параметрами при световом потоке 1,0 кВт/м 2:

  • Напряжение: холостого хода — 0,55 В, рабочее — 0,5 В.
  • Ток: КЗ — 1,5 А, рабочий — 1,2 А.
  • Рабочая мощность — 0,62 Вт.
  • Габариты — 52х77 мм.
  • Цена 29 р.

Совет: Надо учитывать, что элементы очень хрупкие и при транспортировке часть из них может быть повреждена, поэтому при заказе следует предусмотреть некоторый запас по их количеству.

Изготовление солнечной батареи для дома своими руками

Для изготовления солнечной панели нам понадобится подходящая рама, которую можно сделать самостоятельно или подобрать готовую. Из материалов для нее лучше всего использовать дюралюминий, он не подвержен коррозии, не боится сырости, долговечен. При соответствующей обработке и покраске для защиты от атмосферных осадков подойдёт и стальная, и даже деревянная.

Совет: Не стоит делать панель очень больших размеров: она будет неудобна в монтаже элементов, установке и обслуживании. К тому же маленькие панели имеют низкую парусность, их можно удобнее разместить под требуемыми углами.

Рассчитываем комплектующие

Определимся с размерами нашей рамы. Для зарядки 12-ти вольтового кислотного аккумулятора требуется рабочее напряжение не ниже 13,8 В. Примем за основу 15 В. Для этого нам придётся соединить последовательно 15 В / 0,5 В = 30 элементов.

Совет: Выход солнечной панели следует подключать к аккумулятору через защитный диод во избежание его саморазряда в темное время суток через солнечные элементы. Так что на выходе нашей панели будет: 15 В – 0,7 В = 14,3 В.

Чтобы получить зарядный ток 3,6 А, нам необходимо соединить в параллель три таких цепочки, или 30 x 3 = 90 элементов. Это будет нам стоить 90 x 29 р. = 2610 р.

Совет: Элементы солнечной панели соединяются параллельно‑последовательно. Необходимо соблюдать равенство количества элементов в каждой последовательной цепочке.

Таким током мы можем обеспечить стандартный режим заряда для полностью разряженного аккумулятора ёмкостью 3,6 x 10 = 36 Ач.

Реально эта цифра будет меньше из‑за неравномерности солнечного освещения в течение дня. Таким образом, для заряда стандартной автомобильной батареи 60 Ач, нам нужно будет соединить параллельно две таких панели.

Эта панель может нам обеспечить электрическую мощность 90 x 0,62 Вт ≈ 56 Вт.

Или в течение 12‑часового солнечного дня с учётом поправочного коэффициента 42% 56 x 12 x 0,42 ≈ 0,28 кВтч.

Разместим наши элементы в 6 рядов по 15 штук. Для установки всех элементов нам потребуется поверхность:

  • Длина — 15 x 52 = 780 мм.
  • Ширина — 77 x 6 = 462 мм.

Для свободного размещения всех пластин примем габариты нашей рамы: 900×500 мм.

Совет: Если есть готовые рамы с другими габаритами, можно пересчитать количество элементов в соответствии с приведёнными выше намётками, подобрать элементы других типоразмеров, попробовать разместить их, комбинируя длину и ширину рядов.

Также нам потребуются:

  • Паяльник электрический 40 Вт.
  • Припой, канифоль.
  • Монтажный провод.
  • Силиконовый герметик.
  • Двусторонний скотч.

Этапы изготовления

Для монтажа панели необходимо подготовить ровное рабочее место достаточной площади с удобным подходом со всех сторон. Сами пластины элементов лучше разместить отдельно в стороне, где они будут защищены от случайных ударов и падений. Брать их следует аккуратно, по одной.

Устройства защитного выключения повышают безопасность домашней электросети, снижая вероятность поражения электричеством и возникновения пожаров. Детальное ознакомление с характерными особенностями разных видов выключателей дифференциального тока подскажет, для квартиры и дома.

При эксплуатации электросчетчика возникают ситуации, когда его надо заменить и заново подключить — об этом можно прочитать .

Обычно для изготовления панели используют способ приклеивания предварительно распаянных в единую цепь пластин элементов на плоскую основу‑подложку. Мы предлагаем другой вариант:

  1. Вставляем в раму, хорошо закрепляем и герметизируем по краям стекло или кусок плексигласа.
  2. Раскладываем на нем в соответствующем порядке, приклеивая их двусторонним скотчем, пластины элементов: рабочей стороной к стеклу, выводами для пайки — к задней стороне рамы.
  3. Положив раму на стол стеклом вниз, мы сможем удобно распаивать выводы элементов. Выполняем электрический монтаж в соответствии с выбранной принципиальной схемой включения.
  4. Склеиваем окончательно пластины с задней стороны скотчем.
  5. Подкладываем какую‑либо демпфирующую прокладку: листовую резину, картон, ДВП и т. п.
  6. Вставляем в раму заднюю стенку и герметизируем её.

При желании вместо задней стенки можно залить раму сзади каким‑нибудь компаундом, например, эпоксидкой. Правда, это уже исключит возможность разборки и ремонта панели.

Конечно, одной батареи в 50 Вт не хватит для обеспечения энергией даже небольшого домика. Но с её помощью уже можно реализовать в нем освещение, используя современные светодиодные светильники.

Для комфортного существования городского жителя сейчас в сутки требуется не менее 4 кВтч электроэнергии. Для семьи — соответственно количеству её членов.

Следовательно, солнечная батарея частного дома для семьи из трёх человек должна обеспечивать 12 кВтч. Если предполагается электроснабжение жилища только от солнечной энергии нам нужна будет солнечная батарея площадью, не менее 12 кВтч / 0,6 кВтч/м 2 = 20 м 2 .

Эту энергию необходимо запасти в аккумуляторных батареях, ёмкостью 12 кВтч / 12 В = 1000 Ач, или примерно 16 батарей по 60 Ач.

Для нормальной работы аккумуляторной батареи с солнечной панелью и её защиты потребуется контроллер заряда.

Чтобы преобразовать 12 В постоянного тока в 220 В переменного, нужен будет инвертор. Хотя сейчас на рынке уже в достаточном количестве представлено электрооборудование на напряжения 12 или 24 В.

Совет: В низковольтных сетях электроснабжения действуют токи значительно более высоких значений, поэтому для выполнения проводки к мощному оборудованию следует выбирать провод соответствующего сечения. Проводка для сетей с инвертором выполняется по обычной схеме 220 В.

Делаем выводы

При условии аккумулирования и рационального использования энергии, уже сегодня нетрадиционные виды электроэнергетики начинают создавать солидную прибавку в общем объёме её выработки. Можно даже утверждать, что они постепенно становятся традиционными.

Учитывая значительно снизившийся в последнее время уровень энергопотребления современной бытовой техники, применение энергосберегающих осветительных приборов и значительно увеличившийся КПД солнечных батарей новых технологий, можно сказать, что уже сейчас они способны обеспечивать электроэнергией небольшой частный дом в южных странах с большим количество солнечных дней в году.

В России же они вполне могут применяться, как резервные или дополнительные источники энергии в комбинированных системах электроснабжения, а если эффективность их удастся повысить хотя бы до 70%, то вполне реально будет и их использование в качестве основных поставщиков электроэнергии.

Видео о том, как изготовить прибор для сбора солнечной энергии самому

Альтернативные источники энергии все больше завоевывают отечественный рынок. Объясняется это высокими ценами на электричество, поставляемое по центральным сетям, а еще частыми скачками напряжения в них и даже отключением. Чтобы сделать свой дом полностью автономным многие выбирают солнечные панели производства Россия. Почему выбор падает именно на эти устройства? Возможно потому, что отечественная продукция является одной из самых дешевых на рынке.

Где применяются солнечные преобразователи

С каждым годом сфера их использования становится все шире. Если первоначально они использовались для обеспечения энергией жилых помещений, то сегодня находят применение повсеместно.

Смотрим видео, область применения и как работает солнечная панель:

Наиболее часто можно увидеть отечественные солнечные панели в удаленных районах, где нет централизованного электроснабжения. Именно в таких населенных пунктах нужны надежные и в то же время рентабельные источники энергии. Они с успехом применяются для:

  • Индивидуальных строений;
  • Небольших предприятий;
  • На сельскохозяйственных объектах.

Что же касается крупных населенных пунктов, то в них уже давно используются солнечные батареи. Они обеспечивают энергией жилые здания, офисы, промышленные предприятия. Чаще всего им отводится роль резервных источников энергии. Поэтому производство солнечных панелей в России развивается достаточно быстро.

Самым главным достоинством таких установок является их абсолютная экологическая чистота. Только фотоэлектрические системы способны обеспечивать человека чистой энергией и не наносят вреда окружающей среде, как тепловые электростанции.

Секреты производства

Основным компонентом устройства служат кремниевые фотопреобразователи или пластины. Они бывают двух типов:

  • Монокристаллические;
  • Мультикристаллические.

Первые изготавливаются путем нарезки из одного кристалла пластин конкретных размеров. Обычно он представляет собой слиток, из него вырезаются псевдоквадратные детали. Такая форма выбрана не случайно. Они обеспечивают более плотное заполнение поверхности устройства.

Мультикристаллические пластины выполняют в виде правильных квадратов.

Но как же работают солнечные батареи российского производства? Прежде чем рассматривать принцип работы следует уяснить, что основу кристаллических пластин составляет p-n переход. Его главное свойство – это возможность перемещения носителей в одном направлении. На этом принципе базируется работа фотоэлектрических элементов. Солнечные лучи падая на панель приводят к образованию электронов и дырок. И пропуская лучи p-n переход разделяет их. После этого они передаются во внешнюю цепь, создавая тем самым напряжение на нагрузке.

Далее пластины проходят плазмохимическое травление. Оно заключается в следующем. В каждом элементе есть лицевая и рабочая сторона. На первой находится токосъемная решетка, а на второй – сплошной контакт. Но поскольку n-слой имеет большое количество примесей, то он является хорошим проводником тока. Причем в процессе изготовления пластины он образуется на торцах пластины по периметру тыльной стороны. Это часто приводит к электрическому замыканию, избежать его появления можно при его физическом удалении. Для этого потребуется лазер или травление. Последний способ считается наиболее рациональным.

Смотрим видео, этапы изготовления:

Производители солнечных пластин учли и тот факт, что использование текстуры позволяет снизить отражение до 11%. При этом на поверхность деталей наносится специальное покрытие.

Далее следуют процессы лицевой и тыльной металлизации. Первый способ предполагает выполнение лицевого контакта в виде решетки и расположение его на рабочей стороне солнечной пластины. Однако высокая стоимость этого процесса привела к выполнению металлизации с использованием пасты, содержащей в своем составе шарики из металла, флюс и специальные добавки.

После выполнения всех необходимых этапов создания солнечных батарей они подвергаются обязательному тестированию с проверкой их параметров.

Обзор российских производителей фотоэлектрических элементов

ООО Хевел, проект реализован в г. АНапа

Комплектующие для солнечных систем выпускаются многими компаниями. Среди отечественных предприятий наибольшим спросом пользуется продукция выпускаемая:

  • Заводом в Рязани;
  • ООО Хевел в Новочебоксарске;
  • Компаниями Сатурн и Солнечный ветер Краснодара.

В ассортимент рязанского предприятия, работающего с 1963 года, входят различные элементы, необходимые для создания таких систем:

  • Инверторы;
  • Контроллеры;
  • Монокристаллические модули;
  • Крохотные панели для портативных устройств.

Вся продукция предприятия отличается высоким качеством и надежностью, а кроме того имеет приемлемые цены. Например, солнечная панель российского производства в 120 Вт будет иметь цену около 20 тысяч рублей. Производимые на заводе изделия проходят обязательный контроль, а их качество подтверждено соответствующими сертификатами.

Смотрим видео о продукции компании Солнечный Ветер:

Крупнейшее производство солнечных батарей находится в Новочебоксарске. Эта компания не только поставляет свою продукцию на отечественные рынки, но и планирует выход с ней на мировой уровень. Основной специализацией компании является изготовление тонкопленочных модулей. Причем для их производства используются передовые технологии, запатентованные швейцарской компанией Solar.

Реализованные проекты, компанией Солнечный Ветер

Несмотря на свой еще достаточно молодой возраст предприятие Хевел успело зарекомендовать себя как надежного производителя, у которого можно купить солнечные панели производства Россия.

В Краснодаре производство освоили две компании Солнечный ветер и Сатурн. Они выпускают не только сами модули, но и оборудование для их производства. Продукция предприятия Солнечный ветер установлена на базовой станции МТС, где сумела доказать свои уникальные возможности.

Компания Сатурн также занимается производством солнечных батарей. Причем для этого здесь используются различные виды каркасов:

  1. Сетчатый;
  2. Из пленки;
  3. Струнный.

Фотоэлементы из кремния, играющие ключевую роль в солнечных панелях, производятся на предприятии по собственной технологии. При этом продукция компании выпускается с использованием германиевых подложек и многопереходных элементов, что позволило увеличить КПД батарей.

Заключение

Исходя только из вышеизложенных фактов можно сказать, что у альтернативной энергетики большое будущее. И даже в России она постепенно становится популярной не только у владельцев загородного жилья, но и в промышленном секторе. Благодаря стремлению отечественных компаний к развитию собственной деятельности, связанной с разработкой прогрессивных технологий, новых материалов, солнечные батареи становятся все более популярным и доступными для широкого круга потребителей.

Обзор российского производства солнечных панелей

Из всех известных человеку альтернативных источников энергии самыми востребованными на сегодняшний день являются солнечные батареи, коллектор и другие устройства, работающие от энергии солнца. Альтернативная энергетика развивается очень активно во всём мире и в России начинаются определённые подвижки в этом направлении. В европейских странах на домах можно часто видеть солнечные коллекторы и панели. У нас их используют единицы, даже в южных регионах. При этом есть несколько крупных и мелких российских производителей панелей для гелиосистем. Всё больше людей интересуются тем, где можно купить гелиопанели и сколько они позволяют они вырабатывают электроэнергии. При этом колебания курса валют поднимают спрос на солнечные панели российского производства. С китайским производством по себестоимости соревноваться сложно. Но по сравнению с европейскими гелиосистемами, продукция российского производства выигрывает в цене. Сегодня мы посмотрим, какие в России есть предприятия по выпуску солнечных панелей.

В последние десятилетия солнечная энергетика ускорила своё развитие. С 1990 по 2010 год объём производства солнечных панелей вырос в несколько сотен раз. В ближайшие десять лет использование энергии солнца вырастет в 5 раз по сравнению с сегодняшними показателями. Но при этом доля гелиосистем в общей энергетике пока ещё небольшая (примерно 5%). Между тем, солнечные панели используются для получения энергии в различных космических программах. В тех регионах планеты, где высокая солнечная инсоляция, появляются новые солнечные электростанций. Постепенно они наращивают свою мощность и уже могут обеспечивать электричеством небольшие населённые пункты.

Солнечные панели являются одним из двух вариантов преобразования . Они преобразуют её в электричество. Второй вариант преобразования – это коллекторы, которые собирают солнечное тепло. Вместе с использованием солнечных панелей увеличивается использование экономичных осветительных приборов. В основном осветительных приборов на светодиодах. Кроме солнечных электростанций и батарей для выработки электричества в частных домах, панели также применяются в различных бытовых приборах. Это калькуляторы, автомобили, автономные светильники и так далее. Подробнее можете прочитать по указанной ссылке.

Отношение государственной власти к солнечной энергетике также меняется. Устанавливаются льготы для тех, кто использует альтернативные источники энергии. Кстати, к возобновляемым источникам энергии относятся гидроэлектростанции. К сожалению, части они тоже наносят вред окружающей среде.

Как дела с альтернативной энергетикой в России?

Гидроэлектростанции в России вырабатывают 15% всей электроэнергии, а остальные альтернативные источники имеют долю менее 1%. При этом у нас в стране есть довольно крупные производства солнечных панелей. На них выпускаются солнечные модули для различных устройств. Выпускаются одно и двухсторонние панели, складные, гибкие, тонкоплёночные.

В основном все российские производства солнечных батарей выпускают панели с КПД до 20%. Но некоторые фирмы в небольших объёмах выпускают солнечные модули с большим КПД. Подробнее о читайте по указанной ссылке. В большинстве случаев КПД выпускаемых на сегодняшний день панелей составляет 12─17 процентов.

Российские производители солнечных батарей

Ниже представлен перечень компаний, которые выпускают солнечные панели российского производства. Данные были взяты из открытых источников. Вполне возможно, что некоторые из них меняли названия или реорганизовывались. Если вы нашли неправильную информацию, просьба отписать в комментариях к статье. Цены на продукцию приводятся примерные и на момент прочтения вами статьи могут отличаться.

ЗАО «Телеком-СТВ»

Российская компания ЗАО «Телеком-СТВ» находится в Зеленограде. Стоимость панелей в среднем составляет около 6 тысяч рублей за панель мощностью 100 ватт. Это дешевле немецких аналогов примерно на треть. Заявленный КПД составляет около 20 процентов. На этом производстве используется технология выпуска пластин кремния и создания панелей на их основе.



Один из наиболее популярных продуктов компании имеет в названии ТСМ. Маркировка различных моделей зависит от ёмкости, значения которой лежат в интервале 15─230 ватт. К примеру, ТСМ-110А – это панель мощностью 115 ватт. Солнечные панели в основном выпускаются из монокристаллических фотоэлементов, но также используются и поликристаллы.

Производство в Зеленограде было основано в 1991 году. За эти годы предприятие «Телеком-СТВ» накопило богатый опыт в производстве солнечных панелей.

Рязанский завод металлокерамических приборов начал свою работу ещё в 1963 году. В начале «нулевых» российское предприятие переходит на ISO 9001. Это международная система контроля качества. На производстве выпускаются солнечные панели по нормам ГОСТ 12.2.007─75.

Предприятие предлагает достаточно широкий ассортимент продукции:

  • Фотоэлектрические солнечные панели;
  • Контроллеры, инверторы для гелио систем;
  • Монокристаллические модули мощностью от 8 до 100 ватт. Они используются для обеспечения электричеством жилых домов, освещения улиц, для зарядки аккумуляторов автомобилей, питания радиотехники;
  • Панели небольшой ёмкости. Их мощность от 3,5 до 5 ватт. Используются в мобильных гаджетах, power bank и прочей портативной электронике.


В качестве примера продукции ЗМКП можно привести солнечные панели RZMP. Они имеют разную мощность и КПД 12─17%. Эти панели делают путём последовательного соединения фотоэлементов и наклеивания их на основу из алюминия. Модели RZMP используются в системах энергоснабжения частных домов и отдельных помещений. Модели мощностью примерно 240 ватт стоят примерно 14─15 тысяч рублей.

Технология этого российского производства включает в себя строгий контроль качества на предмет соответствия сертификатам.

Производство батарей Hevel в Новочебоксарске

Это инновационное российское производство в Чувашии было организовано компанией Hevel. Здесь выпускаются тонкоплёночные микроморфные батареи. Эта разновидность панелей может улавливать рассеянное освещение более эффективно, чем фотоэлементы на моно и поликристаллах. Кроме того, такие батареи производства Hevel имеют небольшую толщину и эстетичны внешний вид. Их часто устанавливают на фасадах домов для обеспечения их резервным источника электроэнергии.

Среди продуктов производства можно привести пример популярной панели под названием Hevel Solar HVL. Она имеет мощность 100─105 ватт. Цены на солнечные панели начинаются от 9 тысяч рублей. На производстве выпускаются модули из поликристаллических фотоэлементов. У них ниже стоимость и КПД. В компании Hevel рекомендуют использовать их для использования в гелиосистемах для частных домов в регионах, где больше 300 солнечных дней в году.

20 лет назад электричество, добытое из солнечной энергии, казалось нам просто фантастикой. Но уже сегодня уже никого не удивишь.

Жители стран Европы давно поняли все преимущества солнечной энергии, и теперь освещают улицы, обогревают дома, заряжают различные приборы и т.д. В этом обзоре речь пойдет солнечных батареях нового поколения, созданных для облегчения нашей жизни и сохранения окружающей среды.

Типы СБ

Принцип работы солнечной батареи. (Для увеличения нажмите) Сегодня насчитывается более десяти видов солнечных устройств, которые используются в той или иной отрасли. Каждый вид имеет свои характеристики и эксплуатационные особенности.

Принцип работы кремниевых солнечных батарей: на кремниевую (кремниево-водородную) панель попадает солнечный свет. В свою очередь, материал пластины изменяет направление орбит электронов, после чего преобразователи дают электрический ток.

Эти устройства можно условно поделить на четыре вида. Ниже рассмотрим их подробнее.

Монокристаллические пластины

Монокристаллическая СБ Отличие этих преобразователей в том, что светочувствительные ячейки направлены только в одну сторону.

Это дает возможность получать самый высокий КПД - до 26%. Но при этом панель должна все время быть направлена на источник света (Солнце), иначе мощность отдачи существенно снижается.

Другими словами, такая панель хороша только в солнечную погоду. Вечером и в пасмурный день такой вид панелей дает немного энергии. Такая батарея станет оптимальной для южных районов нашей страны.

Поликристаллические солнечные панели

Поликристаллическая СБ Пластины солнечных панелей содержат кристаллы кремния, которые направлены в разные стороны, что дает относительно низкий КПД (16-18%).

Однако главным преимуществом этого вида солнечных панелей - в отличной эффективности при плохом и рассеянном свете. Такая батарея все равно будет питать аккумуляторы в пасмурную погоду.

Аморфные панели

Аморфная СБ Аморфные пластины получают путем напыления кремния и примесей в вакууме. Слой кремния наносится на прочный слой специальной фольги. КПД подобных устройств достаточно низкий, не более 8-9%.

Низкая «отдача» объясняется тем, что под действием солнечных лучей тонкий слой кремния выгорает.

Практика показывает, что после двух-трех месяцев активной эксплуатации аморфной солнечной панели эффективность падает на 12-16%, в зависимости от производителя. Срок службы таких панелей не более трех лет.

Преимущество их в низкой стоимости и возможности преобразовывать энергию даже в дождливую погоду и туман.

Гибридные солнечные панели

Гибридные СБ Особенность таких блоков в том, что в них объединены аморфный кремний и монокристаллы. По параметрам панели похожи на поликристаллические аналоги.

Особенность таких преобразователей в лучшем преобразовании солнечной энергии в условиях рассеянного света.

Полимерные батареи

Полимерная СБ Многие пользователи считают, что это перспективная альтернатива сегодняшним панелям из кремния. Это пленка, состоящая из полимерного напыления, алюминиевых проводников и защитного слоя.

Особенность ее в том, что она легкая, удобно гнется, скручивается и не ломается. КПД такой батареи составляет всего 4-6%, однако низкая стоимость и удобное использование делает такой вид солнечной батареи очень популярной.

Совет специалистов: чтобы сэкономить время, нервы и деньги, покупайте солнечное оборудование в специализированных магазинах и на проверенных сайтах.

Новые разработки

С каждым днем технологии стремительно развиваются, и производство солнечных моделей не стоит на месте. Предлагаем ознакомиться с последними новинками на рынке солнечных систем.

Солнечная черепица

Солнечная черепица Дабы не испортить эстетику кровли дома и при этом получать бесплатную энергию солнца, можно рассмотреть вариант с покупкой солнечной черепицы. Этот отделочный материал состоит из достаточно прочного корпуса и встроенных фотоэлементов.

Кровельное покрытие вырабатывает достаточно энергии, которую можно использовать в бытовых условиях. При использовании такого материала-оборудования можно питать отдельно выделенную электросеть или сбрасывать электроэнергию в общую сеть.

В любом случае общие затраты на электроэнергию снижаются.

Лидером по производству солнечной черепицы является компания из России - «Инноватикс». Вот уже более десяти лет она продает высококачественные отделочные материалы со встроенными фотоэлементами.

Интересно, что такую черепицу тяжело отличить от обычного кровельного материала даже при близком расстоянии.

Преимущества солнечной черепицы:

  1. Полупроводниковый материал, который используется при соединении фотоэлементов, сократили в 4 раза.
  2. Инновационная система фокусировки солнечного света позволяет получать в 5 раз больше энергии.
  3. Средний срок эксплуатации солнечной черепицы составляет 20 лет.
  4. Относительно небольшой вес черепицы не имеет негативного давления на кровлю.
  5. Прочность солнечной черепицы позволяет ее использовать при любых погодных условиях. Черепица спокойно выдерживает град и другие осадки.
  6. Простота креплений позволяет надежно устанавливать черепицу в самые короткие сроки.

Солнечное окно

Солнечное окно Буквально три года назад на рынке солнечных технологий появилась новая разработка американских конструкторов из «Pythagorus Solar Windows». Суть инновации в том, чтобы использовать оконное стекло в качестве панели, добывающей солнечную энергию.

Подобные панели по полной используют в высотках европейских городов. Это позволяет существенно экономить электроэнергию.

Технология солнечных окон представляет собой использование фотоэлементов в виде кремниевых полос, встроенных между стеклами. Помимо того, что окна будут вырабатывать дополнительную электроэнергию, в дополнение окно будет защищать комнату от перегрева, задерживая солнечный свет. Внешне солнечные окна похожи на привычные жалюзи.

Другой производитель солнечных окон «Solaris Plus» предлагает использовать специальные стекла, обработанные специальным кремниевым напылением. Полосы будут преобразовывать солнечные лучи в электроэнергию, которая будет питать АКБ через полупрозрачные проводники.

Гибридные фотоэлементы

В 2015 году американскими конструкторами были разработаны гибридные фотоэлементы, позволяющие преобразовывать электроэнергию не только из солнечного света, но и тепла. Суть конструкции заключается в применении фотоэлементов из кремния и полимерной пленки «PEDOT».

Фотоэлемент фиксируется с пироэлектрической пленкой и соединяется с термоэлектрическим оборудованием, способным преобразовывать тепло в электрический ток.

Тестирование новой гибридной технологии показало, что новая термическая пленка способна вырабатывать в 10 раз больше электроэнергии, чем стандартная солнечная панель.

Системы на основе биологической энергии

Исследования, проводимые специалистами из университета Кембриджа, пока не дали конкретных результатов в области разработки солнечных систем нового поколения, преобразовывающих биологическую энергию (фотосинтез). Последние результаты показали КПД менее 0.4 %.

Но разработки не останавливаются, а ученые обещают, что в ближайшем будущем получать энергию от биологических солнечных систем.

Варианты таких батарей впечатляют:

  1. Лампа дневного света, работающая от обычного лесного мха.
  2. Электростанции в виде больших листьев.
  3. Панели из растений для домашнего пользования.
  4. Мачты из растений, из которых будут добывать электроэнергию и многое другое.

Надеемся на то, что в скором будущем гелиосистемы нового поколения будут использоваться по максимуму. Это даст возможность обеспечить электроэнергией каждый дом на планете, без вреда для окружающей среды.

Смотрите видео, в котором рассказывается о солнечных батареях нового поколения:

В качестве сырья используется кварцевый песок с высоким массовым содержанием диоксида кремния (SiO 2). Он проходит многоступенчатую очистку, чтобы избавиться от кислорода. Происходит путем высокотемпературного плавления и синтеза с добавлением химических веществ.

  • Выращивание кристаллов.

    Очищенный кремний представляет собой просто разрозненные куски. Для упорядочивания структуры и выращиваются кристаллы по методу Чохральского. Происходит это так: куски кремния помещаются в тигель, где раскаляются и плавятся. В расплав опускается затравка – так сказать, образец будущего кристалла. Атомы, располагаются в четкую структуру, нарастают на затравку слой за слоем. Процесс наращивания длительный, но в результате образуется большой, красивый, а главное однородный кристалл.

  • Обработка.

    Этот этап начинается с измерения, калибровки и обработки монокристалла для придания нужной формы. Дело в том, что при выходе из тигля в поперечном сечении он имеет круглую форму, что не очень удобно для дальнейшей работы. Поэтому ему придается псевдо квадратная форма. Далее обработанный монокристалл стальными нитями в карбид - кремниевой суспензии или алмазно - импрегнированной проволокой режется на пластинки толщиной 250-300 мкм. Они очищаются, проверяются на брак и количество вырабатываемой энергии.

  • Создание фотоэлектрического элемента.

    Чтобы кремний мог вырабатывать энергию, в него добавляют бор (B) и фосфор (P). Благодаря этому слой фосфора получает свободные электроны (сторона n-типа), сторона бора – отсутствие электронов, т.е. дырки (сторона p-типа). По причине этого между фосфором и бором появляется p-n переход. Когда свет будет падать на ячейку, из атомной решетки будут выбиваться дырки и электроны, появившись на территории электрического поля, они разбегаются в сторону своего заряда. Если присоединить внешний проводник, они будут стараться компенсировать дырки на другой части пластинки, появится напряжение и ток. Именно для его выработки с обеих сторон пластины припаиваются проводники.

  • Сборка модулей.

    Пластинки соединяются сначала в цепочки, потом в блоки. Обычно одна пластина имеет 2 Вт мощности и 0,6 В напряжения. Чем больше будет ячеек, тем мощнее получится батарея. Их последовательное подключение дает определенный уровень напряжения, параллельное увеличивает силу образующегося тока. Для достижения необходимых электрических параметров всего модуля последовательно и параллельно соединенные элементы объединяются. Далее ячейки покрывают защитной пленкой, переносят на стекло и помещают в прямоугольную рамку, крепят распределительную коробку. Готовый модуль проходит последнюю проверку – измерение вольт - амперных характеристик. Все, можно использовать!