Какие последствия от взрыва водородной бомбы. Отличие водородной бомбы от атомной: список различий, история создания

Взрыв произошел в 1961 году. В радиусе нескольких сотен километров от полигона произошла спешная эвакуация людей, так как ученые рассчитали, что разрушены, будут все без исключения дома. Но такого эффекта никто не ожидал. Взрывная волна обошла планету трижды. Полигон остался «чистым листом», на нем исчезли все возвышенности. Здания в секунду превращались в песок. В радиусе 800 километров был слышен ужасный взрыв.

Если вы думаете, что атомная боеголовка является самым страшным оружием человечества, значит еще не знаете об водородной бомбе. Мы решили исправить эту оплошность и рассказать о том, что же это такое. Мы уже рассказывали о и .

Немного о терминологии и принципах работы в картинках

Разбираясь в том, как выглядит ядерная боеголовка и почему, необходимо рассмотреть принцип ее работы, основанный на реакции деления. Сначала в атомной бомбе происходит детонация. В оболочке располагаются изотопы урана и плутония. Они распадаются на частички, захватывая нейтроны. Далее разрушается один атом и инициируется деление остальных. Делается это при помощи цепного процесса. В конце начинается сама ядерная реакция. Части бомбы становятся одним целым. Заряд начинает превышать критическую массу. При помощи такой структуры освобождается энергия и происходит взрыв.

Кстати, ядерную бомбу еще называют атомной. А водородная получила название термоядерной. Поэтому вопрос, чем отличается атомная бомба от ядерной, по сути своей является некорректным. Это одно и то же. Отличие ядерной бомбы от термоядерной же заключается не только в названии.

Термоядерная реакция основана не на реакции деления, а сжатия тяжелых ядер. Ядерная боеголовка является детонатором или запалом для водородной бомбы. Другими словами, представьте себе огромную бочку с водой. В нее погружают атомную ракету. Вода представляет собой тяжелую жидкость. Тут протон со звуком замещается в ядре водорода на два элемента - дейтерий и тритий:

  • Дейтерий представляет собой один протон и нейтрон. Их масса вдвое тяжелее, чем водород;
  • Тритий состоит из одного протона и двух нейтронов. Они тяжелее водорода в три раза.

Испытания термоядерной бомбы

, окончания Второй Мировой Войны, началась гонка между Америкой и СССР и мировое сообщество поняло, что мощнее ядерная или водородная бомба. Разрушительная сила атомного оружия начала привлекать каждую из сторон. США первыми сделали и испытали ядерную бомбу. Но вскоре стало понятно, что она не может иметь больших размеров. Поэтому было решено попробовать сделать термоядерную боеголовку. Тут снова же преуспела Америка. Советы решили не проигрывать в гонке и испытали компактную, но мощную ракету, которую можно перевозить даже на обычном самолете Ту-16. Тогда все поняли, чем отличается ядерная бомба от водородной.

Для примера, первая американская термоядерная боеголовка была такой высокой, как трехэтажный дом. Ее нельзя было доставить небольшим транспортом. Но потом по разработкам СССР размеры были уменьшены. Если проанализировать , можно сделать вывод, что эти ужасные разрушения были не такими уж и большими. В тротиловом эквиваленте сила удара была всего несколько десятком килотонн. Поэтому здания были уничтожены только в двух городах, а в остальной части страны услышали звук ядерной бомбы. Если это была бы водородная ракета, всю Японию бы разрушили полностью всего одной боеголовкой.

Ядерная бомба со слишком сильным зарядом может взорваться непроизвольно. Начнется цепная реакция и произойдет взрыв. Рассматривая, чем отличаются ядерная атомная и водородная бомбы, стоит отметить данный пункт. Ведь термоядерную боеголовку можно сделать какой угодно мощности, не боясь самопроизвольного подрыва.

Это заинтересовало Хрущева, который приказал сделать самую мощную водородную боеголовку в мире и таким образом приблизиться к выигрышу гонки. Ему показалось оптимальным 100 мегатонн. Советские ученые поднатужились и у них получилось вложиться в 50 мегатонн. Испытания начались на острове Новая Земля, где был военный полигон. До сих пор Царь-бомбу называют крупнейшим зарядом, взорванным на планете.

Взрыв произошел в 1961 году. В радиусе нескольких сотен километров от полигона произошла спешная эвакуация людей, так как ученые рассчитали, что разрушены, будут все без исключения дома. Но такого эффекта никто не ожидал. Взрывная волна обошла планету трижды. Полигон остался «чистым листом», на нем исчезли все возвышенности. Здания в секунду превращались в песок. В радиусе 800 километров был слышен ужасный взрыв. Огненный шар от применения такой боеголовки, как универсальный уничтожитель руническая ядерная бомба в Японии, был виден только в городах. А вот от водородной ракеты он поднялся на 5 километров в диаметре. Гриб из пыли, радиации и сажи вырос на 67 километров. По подсчетам ученых, его шапка в диаметре составляла сотню километров. Только представьте себе, что бы было, если бы взрыв произошел в городской черте.

Современные опасности использования водородной бомбы

Отличие атомной бомбы от термоядерной мы уже рассмотрели. А теперь представьте, какими бы были последствия взрыва, если бы ядерная бомба, сброшенная на Хиросиму и Нагасаки, была водородной с тематическим эквивалентом. От Японии не осталось бы и следа.

По заключениям испытаний, ученые сделали вывод о последствиях термоядерной бомбы. Некоторые думают, что водородная боеголовка является более чистой, то есть фактически не радиоактивной. Это связано с тем, что люди слышат название «водо» и недооценивают ее плачевное влияние на окружающую среду.

Как мы уже разобрались, водородная боеголовка основана на огромном количестве радиоактивных веществ. Ракету без уранового заряда сделать можно, но пока на практике этого не применялось. Сам процесс будет очень сложным и затратным. Поэтому реакция синтеза разбавляется ураном и получается огромная мощность взрыва. Радиоактивные осадки, которые неумолимо выпадут на цель сброса, увеличиваются на 1000%. Они нанесут вред здоровью даже тем, кто находится в десятках тысяч километров от эпицентра. При подрыве создается огромный огненный шар. Все, что попадает в радиус его действия, уничтожается. Выжженная земля может быть необитаемой десятилетиями. На обширной территории совершенно точно ничего не вырастет. И зная силу заряда, по определенной формуле можно рассчитать теоретически зараженную площадь.

Также стоит упомянуть о таком эффекте, как ядерная зима. Это понятие даже страшнее разрушенных городов и сотен тысяч человеческих жизней. Будет уничтожено не только место сброса, но и фактически весь мир. Сначала статус обитаемой потеряет только одна территория. Но в атмосферу произойдет выброс радиоактивного вещества, которое снизит яркость солнца. Это все смешается с пылью, дымом, сажей и создаст пелену. Она разнесется по всей планете. Урожаи на полях будут уничтожены на несколько десятилетий вперед. Такой эффект спровоцирует голод на Земле. Население сразу сократится в несколько раз. И выглядит ядерная зима более чем реально. Ведь в истории человечества, а конкретнее, в 1816 году, был известен подобный случай после мощнейшего извержения вулкана. На планете тогда был год без лета.

Скептики, которые не верят в подобное стечение обстоятельств, могут переубедить себя расчетами ученых:

  1. Когда на Земле произойдет похолодание на градус, этого не заметит никто. А вот на количестве осадков это отразится.
  2. Осенью произойдет похолодание на 4 градуса. Ввиду отсутствия дождей, возможны неурожаи. Ураганы будут начинаться даже там, где их никогда не было.
  3. Когда температура упадет еще на несколько градусов, на планете будет первый год без лета.
  4. Далее последует малый ледниковый период. Температура падает на 40 градусов. Даже за незначительное время это станет разрушительным для планеты. На Земле будут наблюдаться неурожаи и вымирание людей, проживающих в северных зонах.
  5. После наступит ледниковый период. Отражение солнечных лучей произойдет, не достигая поверхности земли. За счет этого, температура воздуха достигнет критической отметки. На планете перестанут расти культуры, деревья, замерзнет вода. Это приведет к вымиранию большей части населения.
  6. Те, кто выживут, не переживут последнего периода - необратимого похолодания. Этот вариант совсем печальный. Он станет настоящим концом человечества. Земля превратится в новую планету, непригодную для обитания человеческого существа.

Теперь о еще одной опасности. Стоило России и США выйти из стадии холодной войны, как появилась новая угроза. Если вы слышали о том, кто такой Ким Чен Ир, значит понимаете, что на достигнутом он не остановится. Этот любитель ракет, тиран и правитель Северной Кореи в одном флаконе, может с легкостью спровоцировать ядерный конфликт. О водородной бомбе он говорит постоянно и отмечает, что в его части страны уже есть боеголовки. К счастью, в живую их пока никто не видел. Россия, Америка, а также ближайшие соседи - Южная Корея и Япония, очень обеспокоены даже такими гипотетическими заявлениями. Поэтому надеемся, что наработки и технологии у Северной Кореи еще долго будут на недостаточном уровне, чтобы разрушить весь мир.

Для справки. На дне мирового океана лежат десятки бомб, которые были утеряны при транспортировке. А в Чернобыле, который не так далеко от нас, до сих пор хранятся огромные запасы урана.

Стоит задуматься, можно ли допустить подобные последствия ради испытаний водородной бомбы. И, если между странами, обладающими этим оружием, произойдет глобальный конфликт, на планете не останется ни самих государств, ни людей, ни вообще ничего, Земля превратится в чистый лист. И если рассматривать, чем отличается ядерная бомба от термоядерной, главным пунктом можно назвать количество разрушений, а также последующий эффект.

Теперь небольшой вывод. Мы разобрались, что ядерная и атомная бомба - это одно и тоже. А еще, она является основой для термоядерной боеголовки. Но использовать ни то, ни другое не рекомендуется даже для испытаний. Звук от взрыва и то, как выглядят последствия, не является самым страшным. Это грозит ядерной зимой, смертью сотен тысяч жителей в один момент и многочисленными последствиями для человечества. Хотя между такими зарядами, как атомная и ядерная бомба различия есть, действие обеих разрушительно для всего живого.

August 21st, 2015

Царь-бомба — это прозвище водородной бомбы АН602, испытания которой были проведены в Советском Союзе в 1961 году. Эта бомба была самой мощной из всех когда-либо взорванных. Ее мощность была такова, что вспышка от взрыва была видна за 1000 км, а ядерный гриб поднялся почти на 70 км.

Царь-бомба была водородной бомбой. Ее создали в лаборатории Курчатова. Мощность бомбы была такой, что ее хватило бы на 3800 Хиросим.

Давайте вспомним историю ее создания …

В начале «атомного века» Соединённые Штаты и Советский Союз вступили в гонку не только по количеству атомных бомб, но и по их мощности.

СССР, который обзавёлся атомным оружием позже конкурента, стремился выравнять положение за счёт создания более совершенных и более мощных устройств.

Разработка термоядерного устройства по кодовым названием «Иван» была начата в середине 1950-х годов группой физиков под руководством академика Курчатова. В группу, занимавшуюся данным проектом, входили Андрей Сахаров, Виктор Адамский, Юрий Бабаев, Юрий Трунов и Юрий Смирнов.

В ходе исследовательских работ учёные также пытались нащупать пределы максимальной мощности термоядерного взрывного устройства.

Теоретическая возможность получения энергии путём термоядерного синтеза была известна ещё до Второй мировой войны, но именно война и последующая гонка вооружений поставили вопрос о создании технического устройства для практического создания этой реакции. Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества - но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны (что в 450 раз больше мощности бомбы, сброшенной на Нагасаки), а в 1953 году в СССР было испытано устройство мощностью 400 килотонн.

Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования. К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива - дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба. В 1957 году испытания водородной бомбы провели в Великобритании.

Проектные изыскания длились в течение нескольких лет, а финальный этап разработки «изделия 602» пришёлся на 1961 год и занял 112 дней.

Бомба АН602 имела трёхступенчатую конструкцию: ядерный заряд первой ступени (расчётный вклад в мощность взрыва - 1,5 мегатонны) запускал термоядерную реакцию во второй ступени (вклад в мощность взрыва - 50 мегатонн), а она, в свою очередь, инициировала так называемую ядерную «реакцию Джекилла-Хайда» (деление ядер в блоках урана-238 под действием быстрых нейтронов, образующихся в результате реакции термоядерного синтеза) в третьей ступени (ещё 50 мегатонн мощности), так что общая расчётная мощность АН602 составляла 101,5 мегатонн.

Однако первоначальный вариант был отклонён, поскольку в таком виде взрыв бомбы вызвал бы чрезвычайно мощное радиационное загрязнение (которое, однако, по расчётам всё равно серьёзно уступало бы тому, которое было вызвано куда менее мощными американскими устройствами).
В итоге было решено не использовать «реакцию Джекилла-Хайда» в третьей ступени бомбы и заменить урановые компоненты на их свинцовый эквивалент. Это уменьшало расчётную общую мощность взрыва почти вдвое (до 51,5 мегатонн).

Ещё одним ограничением для разработчиков были возможности авиатехники. Первый вариант бомбы весом в 40 тонн был отвергнут авиаконструкторами из КБ Туполева - самолёт-носитель не смог бы доставить подобный груз до цели.

В итоге стороны достигли компромисса - атомщики уменьшили вес бомбы вдвое, а авиационные конструкторы готовили для неё специальную модификацию бомбардировщика Ту-95 - Ту-95В.

Оказалось, что поместить заряд в бомболюке не удастся ни при каких условиях, поэтому донести АН602 до цели Ту-95В должен был на специальной внешней подвеске.

Фактически самолёт-носитель был готов в 1959 году, однако физикам-атомщикам было дано указание не форсировать работы по бомбе - как раз в этот момент в мире наметились признаки снижения напряжения в международных отношениях.

В начале 1961 года, однако, обстановка вновь обострилась, и проект реанимировали.

Окончательный вес бомбы вместе с парашютной системой составил 26,5 тонн. У изделия оказалось сразу несколько названий - «Большой Иван», «Царь-Бомба» и «Кузькина мать». Последнее приклеилось к бомбе после выступление советского лидера Никиты Хрущёва перед американцами, в котором он посулил им показать «кузькину мать».

О том, что Советский Союз планирует в ближайшее время испытать сверхмощный термоядерный заряд, в 1961 году Хрущёв вполне открыто говорил иностранным дипломатам. 17 октября 1961 года о предстоящих испытаниях советский лидер заявил в докладе на XXII съезде партии.

Местом испытаний был определён полигон «Сухой Нос» на Новой Земле. Подготовка к взрыву была завершена в последних числах октября 1961 года.

Самолёт-носитель Ту-95В базировался на аэродроме в Ваенге. Здесь же в специальном помещении производилась окончательная подготовка к испытаниям.

Утром 30 октября 1961 года экипаж лётчика Андрея Дурновцева получил приказ вылететь в район полигона и произвести сброс бомбы.

Взлетев с аэродрома в Ваенге, Ту-95В через два часа достиг расчётной точки. Бомба на парашютной системе была сброшена с высоты 10 500 метров, после чего лётчики сразу стали уводить машину из опасного района.

В 11:33 по московскому времени на высоте 4 км над целью был произведён взрыв.

Мощность взрыва заметно превысила расчётную (51,5 мегатонн) и составила от 57 до 58,6 мегатонн в тротиловом эквиваленте.

Принцип действия:

Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии - благодаря этому звёзды и выделяют огромное количество энергии постоянно. Учёные скопировали эту реакцию с использованием изотопов водорода - дейтерия и трития, что и дало название «водородная бомба». Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития.

Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом.

Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн - его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий. Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву.

Если сделать несколько слоёв урана-238 и дейтерида лития-6, то каждый из них добавит свою мощность ко взрыву бомбы - т. е. такая «слойка» позволяет наращивать мощность взрыва практически неограниченно. Благодаря этому водородную бомбу можно сделать почти любой мощности, причём она будет гораздо дешевле обычной ядерной бомбы такой же мощности.

Свидетели испытания говорят, что ничего подобного в своей жизни им более наблюдать не приходилось. Ядерный гриб взрыва поднялся на высоту 67 километров, световое излучение потенциально могло вызывать ожоги третьей степени на расстоянии до 100 километров.

Наблюдатели сообщали, что в эпицентре взрыва скалы приняли удивительно ровную форму, а земля превратилась в некое подобие военного плаца. Полное уничтожение было достигнуто на площади, равной территории Парижа.

Ионизация атмосферы стала причиной помех радиосвязи даже в сотнях километров от полигона в течение около 40 минут. Отсутствие радиосвязи убедило учёных - испытания прошли как нельзя лучше. Ударная волна, возникшая в результате взрыва «Царь-бомбы», трижды обогнула земной шар. Звуковая волна, порождённая взрывом, докатилась до острова Диксон на расстоянии около 800 километров.

Несмотря на сильную облачность, свидетели видели взрыв даже на расстоянии тысячи километров и могли его описать.

Радиоактивное заражение от взрыва оказалось минимальным, как и планировали разработчики, - более 97 % мощности взрыва давала практически не создающая радиоактивного загрязнения реакция термоядерного синтеза.

Это позволило учёным приступить к исследованию результатов испытаний на опытном поле уже через два часа после взрыва.

Взрыв «Царь-бомбы» действительно произвёл впечатление на весь мир. Она оказалась мощнее самой мощной американской бомбы в четыре раза.

Существовала теоретическая возможность создания ещё более мощных зарядов, однако от реализации таких проектов было решено отказаться.

Как ни странно, главными скептиками оказались военные. С их точки зрения, практического смысла подобное оружие не имело. Как прикажете его доставлять в «логово врага»? Ракеты у СССР уже были, но долететь до Америки с таким грузом им было не под силу.

Стратегические бомбардировщики также были не в состоянии долететь до США с такой «поклажей». К тому же они становились лёгкой мишенью для средств ПВО.

Учёные-атомщики оказались куда большими энтузиастами. Выдвигались планы размещения у берегов США нескольких сверхбомб мощностью в 200–500 мегатонн, взрыв которых должен был вызвать гигантское цунами, которое смыло бы Америку в прямом смысле слова.

Академик Андрей Сахаров, будущий правозащитник и лауреат Нобелевской премии мира, выдвинул другой план. «Носителем может явиться большая торпеда, запускаемая с подводной лодки. Я фантазировал, что можно разработать для такой торпеды прямоточный водо-паровой атомный реактивный двигатель. Целью атаки с расстояния нескольких сот километров должны стать порты противника. Война на море проиграна, если уничтожены порты, - в этом нас заверяют моряки. Корпус такой торпеды может быть очень прочным, ей не будут страшны мины и сети заграждения. Конечно, разрушение портов - как надводным взрывом „выскочившей“ из воды торпеды со 100-мегатонным зарядом, так и подводным взрывом - неизбежно сопряжено с очень большими человеческими жертвами», - писал учёный в своих воспоминаниях.

О своей идее Сахаров рассказал вице-адмиралу Петру Фомину. Бывалый моряк, возглавлявший «атомный отдел» при Главкоме ВМФ СССР, пришёл в ужас от замысла учёного, назвав проект «людоедским». По словам Сахарова, он устыдился и более никогда к данной идее не возвращался.

Учёные и военные за успешное проведение испытаний «Царь-бомбы» получили щедрые награды, но сама идея сверхмощных термоядерных зарядов стала уходить в прошлое.

Конструкторы ядерного оружия сосредоточились на вещах менее эффектных, но куда более эффективных.

А взрыв «Царь-бомбы» и по сей день остаётся самым мощным из тех, что когда-либо были произведены человечеством.

Царь-бомба в цифрах:

  • Вес: 27 тонн
  • Длина: 8 метров
  • Диаметр: 2 метра
  • Мощность: 55 мегатонн в тротиловом эквиваленте
  • Высота ядерного гриба: 67 км
  • Диаметр основания гриба: 40 км
  • Диаметр огненного шара: 4.6 км
  • Расстояние, на котором взрыв вызывал ожоги кожи: 100 км
  • Расстояние видимости взрыва: 1000 км
  • Количество тротила, необходимое, чтобы сравняться по мощности с царь-бомбой: гигантский тротиловый куб со стороной 312 метров (высота Эйфелевой башни)

источники

http://www.aif.ru/society/history/1371856

http://www.aif.ru/dontknows/infographics/kak_deystvuet_vodorodnaya_bomba_i_kakovy_posledstviya_vzryva_infografika

http://lllolll.ru/tsar-bomb

И еще немного про немирный АТОМ: вот например , а вот . А было же еще и такое, что и были же еще Оригинал статьи находится на сайте ИнфоГлаз.рф Ссылка на статью, с которой сделана эта копия -

12 августа 1953 года на Семипалатинском полигоне была испытана первая советская водородная бомба.

А 16 января 1963 года, в самый разгар холодной войны, Никита Хрущёв заявил миру о том, что Советский союз обладает в своём арсенале новым оружием массового поражения. За полтора года до этого в СССР был произведён самый мощный взрыв водородной бомбы в мире — на Новой Земле был взорван заряд мощностью свыше 50 мегатонн. Во многом именно это заявление советского лидера заставило мир осознать угрозу дальнейшей эскалации гонки ядерных вооружений: уже 5 августа 1963 г. в Москве был подписан договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой.

История создания

Теоретическая возможность получения энергии путём термоядерного синтеза была известна ещё до Второй мировой войны, но именно война и последующая гонка вооружений поставили вопрос о создании технического устройства для практического создания этой реакции. Известно, что в Германии в 1944 году велись работы по инициированию термоядерного синтеза путём сжатия ядерного топлива с использованием зарядов обычного взрывчатого вещества — но они не увенчались успехом, так как не удалось получить необходимых температур и давления. США и СССР вели разработки термоядерного оружия начиная с 40-х годов, практически одновременно испытав первые термоядерные устройства в начале 50-х. В 1952 году на атолле Эниветок США осуществили взрыв заряда мощностью 10,4 мегатонны (что в 450 раз больше мощности бомбы, сброшенной на Нагасаки), а в 1953 году в СССР было испытано устройство мощностью 400 килотонн.

Конструкции первых термоядерных устройств были плохо приспособленными для реального боевого использования. К примеру, устройство, испытанное США в 1952 году, представляло собой наземное сооружение высотой с 2-этажный дом и весом свыше 80 тонн. Жидкое термоядерное горючее хранилось в нём с помощью огромной холодильной установки. Поэтому в дальнейшем серийное производство термоядерного оружия осуществлялось с использованием твёрдого топлива — дейтерида лития-6. В 1954 году США испытали устройство на его основе на атолле Бикини, а в 1955 году на Семипалатинском полигоне была испытана новая советская термоядерная бомба. В 1957 году испытания водородной бомбы провели в Великобритании. В октябре 1961 года в СССР на Новой Земле была взорвана термоядерная бомба мощностью 58 мегатонн — самая мощная бомба из когда-либо испытанных человечеством, вошедшая в историю под названием «Царь-бомба».

Дальнейшее развитие было направлено на уменьшение размеров конструкции водородных бомб, чтобы обеспечить их доставку к цели баллистическими ракетами. Уже в 60-е годы массу устройств удалось уменьшить до нескольких сотен килограммов, а к 70-м годам баллистические ракеты могли нести свыше 10 боеголовок одновременно — это ракеты с разделяющимися головными частями, каждая из частей может поражать свою собственную цель. На сегодняшний день термоядерным арсеналом обладают США, Россия и Великобритания, испытания термоядерных зарядов были проведены также в Китае (в 1967 году) и во Франции (в 1968 году).

Принцип действия водородной бомбы

Действие водородной бомбы основано на использовании энергии, выделяющейся при реакции термоядерного синтеза лёгких ядер. Именно эта реакция протекает в недрах звёзд, где под действием сверхвысоких температур и гигантского давления ядра водорода сталкиваются и сливаются в более тяжёлые ядра гелия. Во время реакции часть массы ядер водорода превращается в большое количество энергии — благодаря этому звёзды и выделяют огромное количество энергии постоянно. Учёные скопировали эту реакцию с использованием изотопов водорода — дейтерия и трития, что и дало название «водородная бомба». Изначально для производства зарядов использовались жидкие изотопы водорода, а впоследствии стал использоваться дейтерид лития-6, твёрдое вещество, соединение дейтерия и изотопа лития.

Дейтерид лития-6 является основным компонентом водородной бомбы, термоядерным горючим. В нём уже хранится дейтерий, а изотоп лития служит сырьём для образования трития. Для начала реакции термоядерного синтеза требуется создать высокие температуру и давление, а также выделить из лития-6 тритий. Эти условия обеспечивают следующим образом.

Оболочку контейнера для термоядерного горючего делают из урана-238 и пластика, рядом с контейнером размещают обычный ядерный заряд мощностью несколько килотонн — его называют триггером, или зарядом-инициатором водородной бомбы. Во время взрыва плутониевого заряда-инициатора под действием мощного рентгеновского излучения оболочка контейнера превращается в плазму, сжимаясь в тысячи раз, что создаёт необходимое высокое давление и огромную температуру. Одновременно с этим нейтроны, испускаемые плутонием, взаимодействуют с литием-6, образуя тритий. Ядра дейтерия и трития взаимодействуют под действием сверхвысоких температуры и давления, что и приводит к термоядерному взрыву.

Если сделать несколько слоёв урана-238 и дейтерида лития-6, то каждый из них добавит свою мощность ко взрыву бомбы — т. е. такая «слойка» позволяет наращивать мощность взрыва практически неограниченно. Благодаря этому водородную бомбу можно сделать почти любой мощности, причём она будет гораздо дешевле обычной ядерной бомбы такой же мощности.

Атомная энергия выделяется не только при делении атомных ядер тяжелых элементов, но и при соединении (синтезе) легких ядер в более тяжелые.

Например, ядра атомов водорода, соединяясь, образуют ядра атомов гелия, при этом выделяется энергии на единицу веса ядерного горючего больше, чем при делении ядер урана.

Эти реакции синтеза ядер, протекающие при очень высоких температурах, измеряемых десятками миллионов градусов, получили название термоядерных реакций. Оружие, основанное на использовании энергии мгновенно выделяющейся в результате термоядерной реакции, называется термоядерным оружием .

Термоядерное оружие, в котором в качестве заряда (ядерного взрывчатого вещества) используются изотопы водорода, часто называют водородным оружием .

Особенно успешно протекает реакция синтеза между изотопами водорода - дейтерием и тритием.

В качестве заряда водородной бомбы может также применяться и дейтерий лития (соединение дейтерия с литием).

Дейтерий, или тяжелый водород, в незначительных количествах встречается в природе в составе тяжелой воды. В обычной воде в виде примеси содержится около 0,02% тяжелой воды. Чтобы получить 1 кг дейтерия, надо переработать не менее 25 т воды.

Тритий, или сверхтяжелый водород, в природе практически не встречается. Он получается искусственно, например, при облучении лития нейтронами. Для этой цели могут быть использованы нейтроны, выделяющиеся в ядерных реакторах.

Практически устройство водородной бомбы можно представить себе следующим образом: рядом с водородным зарядом, содержащим тяжелый и сверхтяжелый водород (т. е. дейтерий и тритий), находятся два удаленных друг от друга полушария из урана или плутония (атомный заряд).

Для сближения этих полушарий используются заряды из обычного взрывчатого вещества (тротила). Взрываясь одновременно, заряды из тротила сближают полушария атомного заряда. В момент их соединения происходит взрыв, тем самым создаются условия для термоядерной реакции, а следовательно, произойдет взрыв и водородного заряда. Таким образом, реакция взрыва водородной бомбы проходит две фазы: первая фаза - деление урана или плутония, вторая - фаза синтеза, при которой образуются ядра гелия и свободные нейтроны больших энергии. В настоящее время имеются схемы построения трехфазной термоядерной бомбы.

В трехфазной бомбе оболочку изготовляют из урана-238 (природного урана). В этом случае реакция проходит три фазы: первая фаза деления (уран или плутоний для детонации), вторая - термоядерная реакция в гидрите лития и третья фаза - реакция деления урана-238. Деление ядер урана вызывают нейтроны, которые выделяются в виде мощного потока при реакции синтеза.

Изготовление оболочки из урана-238 дает возможность увеличить мощность бомбы за счет наиболее доступного атомного сырья. По сообщению иностранной печати, уже испытывались бомбы мощностью 10-14 млн. тонн и более. Становится очевидным, что это не является пределом. Дальнейшее усовершенствование ядерного оружия идет как по линии создания бомб особо большой мощности, так и по линии разработки новых конструкций, позволяющих уменьшить вес и калибр бомб. В частности, работают над созданием бомбы, основанной полностью на синтезе. Имеются, например, сообщения в иностранной печати о возможности применения нового метода детонации термоядерных бомб на основе использования ударных волн обычных взрывчатых веществ.

Энергия, выделяемая при взрыве водородной бомбы, может быть в тысячи раз больше, чем энергия взрыва атомной бомбы. Однако радиус разрушения не может превышать во столько же раз радиус разрушений, вызванных взрывом атомной бомбы.

Радиус действия ударной волны при воздушном взрыве водородной бомбы с тротиловым эквивалентом в 10 млн. т больше радиуса действия ударной волны, образующейся при взрыве атомной бомбы с тротиловым эквивалентом в 20000 тонн, примерно в 8 раз, тогда как мощность бомбы больше в 500 раз, т. е. на корень кубический из 500. Соответственно этому и площадь разрушения увеличивается примерно в 64 раза, т. е. пропорционально корню кубическому из коэффициента увеличения мощности бомбы в квадрате.

По данным иностранных авторов, при ядерном взрыве мощностью 20 млн. т площадь полного разрушения обычных наземных строений, по подсчетам американских специалистов, может достигнуть 200 км 2 , зона значительных разрушений - 500 км 2 и частичных - до 2580 км 2 .

Это значит, заключают иностранные специалисты, что взрыва одной бомбы подобной мощности достаточно для разрушения современного крупного города. Как известно, занимаемая площадь Парижа - 104 км 2 , Лондона - 300 км 2 , Чикаго - 550 км 2 , Берлина - 880 км 2 .

Масштабы поражений и разрушений от ядерного взрыва мощностью в 20 млн. т могут быть представлены схематично, в следующем виде:

Область смертельных доз начальной радиации в радиусе до 8 км (на площади до 200 км 2);

Область поражений световым излучением (ожоги)] в радиусе до 32 км (на площади около 3000 км 2).

Повреждения жилых зданий (выбиты стекла, осыпалась штукатурка и т. д.) могут наблюдаться даже на расстоянии до 120 км от места взрыва.

Приведенные данные из открытых иностранных источников являются ориентировочными, они получены при испытании ядерных боеприпасов меньшей мощности и путем расчетов. Отклонения от этих данных в ту или другую сторону будут зависеть от различных факторов, и в первую очередь от рельефа местности, характера застройки, метеорологических условий, растительного покрова и т. д.

Изменить радиус поражения в значительной степени можно путем создания искусственно тех или других условий, снижающих эффект воздействия поражающих факторов взрыва. Так, например, можно уменьшить поражающее действие светового излучения, сократить площадь, на которой могут возникнуть ожоги у людей и воспламеняться предметы, путем создания дымовой завесы.

Проведенные опыты в США по созданию дымовых завес при ядерных взрывах в 1954-1955 гг. показали, что при плотности завесы (масляных туманов), получаемой при расходе 440-620 л масла на 1 км 2 , воздействие светового излучения ядерного взрыва в зависимости от расстояния до эпицентра можно ослабить на 65-90 %.

Ослабляют поражающее воздействие светового излучения также и другие дымы, которые не только не уступают, а в ряде случаев превосходят масляные туманы. В частности, промышленный дым, уменьшающий атмосферную видимость, может ослабить воздействие светового излучения в такой же степени, как и масляные туманы.

Намного можно уменьшить поражающий эффект ядерных взрывов путем рассредоточенного строительства населенных пунктов, создания массивов лесных насаждений и т. д.

Особо следует отметить резкое уменьшение радиуса поражения людей в зависимости от использования тех или других средств защиты. Известно, например, что даже на небольшом сравнительно расстоянии от эпицентра взрыва надежным укрытием от воздействия светового излучения и проникающей радиации является убежище, имеющее слой земляного покрытия толщиной 1,6 м или слой бетона в 1 м.

Убежище легкого типа уменьшает радиус зоны поражения людей по сравнению с открытым расположением в шесть раз, а площадь поражения сокращается в десятки раз. При использовании крытых щелей радиус возможного поражения уменьшается в 2 раза.

Следовательно, при максимальном использовании всех имеющихся способов и средств защиты можно добиться значительного снижения воздействия поражающих факторов ядерного оружия и тем самым уменьшения людских и материальных потерь при его применении.

Говоря о масштабах разрушений, которые могут быть вызваны взрывами ядерного оружия большой мощности, необходимо иметь в виду, что поражения будут нанесены не только действием ударной волны, светового излучения и проникающей радиации, но и действием радиоактивных веществ, выпадающих по пути движения образовавшегося при взрыве облака, в состав которого входят не только газообразные продукты взрыва, но и твердые частицы различной величины как по весу, так и по размерам. Особенно большое количество радиоактивной пыли образуется при наземных взрывах.

Высота подъема облака и его размеры во многом зависят от мощности взрыва. По сообщению иностранной печати, при испытании ядерных зарядов мощностью в несколько миллионов тонн тротила, которые проводились США в районе Тихого океана в 1952-1954 гг., верхушка облака достигла высоты 30-40 км.

В первые минуты после взрыва облако имеет форму шара и с течением времени вытягивается по направлению ветра, достигая огромной величины (около 60- 70 км).

Примерно через час после взрыва бомбы с тротиловым эквивалентом в 20 тысяч т объем облака достигает 300 км 3 , а при взрыве бомбы в 20 млн. т объем может достигнуть 10 тыс. км 3 .

Двигаясь по направлению потока воздушных масс, атомное облако может занять полосу протяженностью в несколько десятков километров.

Из облака при его движении, после подъема в верхние слои разряженной атмосферы, уже через несколько минут начинает выпадать на землю радиоактивная пыль, заражая по пути территорию в несколько тысяч квадратных километров.

В первое время выпадают наиболее тяжелые частицы пыли, которые успевают осесть в течение нескольких часов. Основная масса крупной пыли выпадает в первые 6-8 часов после взрыва.

Около 50% частиц (наиболее крупных) радиоактивной пыли выпадает в течение первых 8 часов после взрыва. Это выпадение часто называют местным в отличие от общего, повсеместного.

Более мелкие частицы пыли остаются в воздухе на различных высотах и выпадают на землю в течение примерно двух недель после взрыва. За это время облако может обойти вокруг земного шара несколько раз, захватывая при этом широкую полосу параллельно широте, на которой был произведен взрыв.

Частицы малых размеров (до 1 мк) остаются в верхних слоях атмосферы, распределяясь более равномерно вокруг земного шара, и выпадают в течение последующего ряда лет. По заключению ученых, выпадение мелкой радиоактивной пыли продолжается повсеместно на протяжении около десяти лет.

Наибольшую опасность для населения представляет радиоактивная пыль, выпадающая в первые часы после взрыва, так как при этом уровень радиоактивного заражения является настолько высоким, что может вызвать смертельные поражения людей и животных, оказавшихся на территории по пути движения радиоактивного облака.

Размеры площади и степень заражения местности в результате выпадения радиоактивной пыли во многом зависят от метеорологических условий, рельефа местности, высоты взрыва, величины заряда бомбы, характера грунта и т. п. Наиболее важным фактором, определяющим размеры площади заражения, ее конфигурацию, является направление и сила ветров, господствующих в районе взрыва на различных высотах.

Чтобы определить возможное направление движения облака, необходимо знать, в каком направлении и с какой скоростью дует ветер на различных высотах, начиная с высоты примерно 1 км и кончая 25-30 км. Для этого метеослужба должна вести постоянные наблюдения и измерения ветра с помощью радиозондов на различных высотах; на основании полученных данных определять, в каком направлении вероятнее всего движение радиоактивного облака.

При взрыве водородной бомбы, произведенном США в 1954 году в районе центральной части Тихого океана (на атолле Бикини), зараженный участок территории имел форму вытянутого эллипса, который простирался на 350 км по ветру и на 30 км против ветра. Наибольшая ширина полосы составляла около 65 км. Общая площадь опасного заражения достигала около 8 тыс. км 2 .

Как известно, в результате этого взрыва заражению радиактивной пылью подверглось японское рыболовное судно «Фукурюмару», которое находилось в то время на расстоянии около 145 км. Находившиеся на этом судне 23 рыбака получили поражения, причем один из них смертельное.

Действию выпавшей радиоактивной пыли после взрыва 1 марта 1954 года подверглись также 29 американских служащих и 239 жителей Маршалловых островов, причем все получившие поражения находились на расстоянии более 300 км от места взрыва. Оказались зараженными также и другие суда, находившиеся в Тихом океане на удалении до 1500 км от Бикини, и часть рыбы вблизи японского берега.

На загрязнение атмосферы продуктами взрыва указывали выпавшие в мае месяце на тихоокеанском побережье и Японии дожди, в которых была обнаружена сильно повышенная радиоактивность. Районы, в которых отмечено выпадение радиоактивных осадков в течение мая 1954 года, занимают около трети всей территории Японии.

Приведенные выше данные о масштабах поражений, которые могут быть нанесены населению при взрыве атомных бомб больших калибров, показывают, что ядерные заряды большой мощности (миллионы тонн тротила) можно считать оружием радиологическим, т. е. оружием, поражающим больше радиоактивными продуктами взрыва, чем ударной волной, световым излучением и проникающей радиацией, действующей в момент взрыва.

Поэтому в ходе подготовки населенных пунктов и объектов народного хозяйства к гражданской обороне, необходимо повсеместно предусматривать мероприятия по защите населения, животных, продуктов питания, фуража и воды от заражения продуктами взрыва ядерных зарядов, которые могут выпадать по пути движения радиоактивного облака.

При этом следует иметь в виду, что в результате выпадения радиоактивных веществ будет подвергаться заражению не только поверхность почвы и предметов, но и воздух, растительность, вода в открытых водоемах и т. д. Воздух будет зараженным как в период оседания радиоактивных частиц, так и в последующее время, особенно вдоль дорог при движении транспорта или при ветреной погоде, когда осевшие частицы пыли будут опять подыматься в воздух.

Следовательно, незащищенные люди и животные могут оказаться пораженными радиоактивной пылью, попадающей в органы дыхания вместе с воздухом.

Опасными также окажутся пищевые продукты и вода, заражённые радиоактивной пылью, которые при попадании в организм могут вызвать тяжелое заболевание, иногда со смертельным исходом. Таким образом, в районе выпадения радиоактивных веществ, образующихся при ядерном взрыве, люди будут подвергаться поражению не только в результате внешнего облучения, но и при попадании в организм зараженной пищи, воды или воздуха. При организации защиты от поражения продуктами ядерного взрыва следует учитывать, что степень заражения по следу движения облака по мере удаления от места взрыва снижается.

Поэтому и опасность, которой подвергается население, находящееся в районе полосы заражения, на различном расстоянии от места взрыва неодинакова. Наиболее опасными будут районы, близлежащие от места взрыва, и районы, расположенные вдоль оси движения облака (средняя часть полосы по следу движения облака).

Неравномерность радиоактивного заражения по пути движения облака в известной мере имеет закономерный характер. Это обстоятельство необходимо принимать во внимание при организации и проведении мероприятий по противорадиационной защите населения.

Необходимо также учитывать, что от момента взрыва до момента выпадения из облака радиоактивных веществ проходит некоторое время. Это время тем больше, чем дальше от места взрыва, и может исчисляться несколькими часами. Население районов, удаленных от места взрыва, будет располагать достаточным временем, чтобы принять соответствующие меры защиты.

В частности, при условии своевременной подготовки средств оповещения и четкой работе соответствующих формирований ГО население может быть оповещено об опасности примерно за 2-3 часа.

В течение этого времени при заблаговременной подготовке населения и высокой организованности можно осуществить ряд мероприятий, обеспечивающих достаточно надежную защиту от радиоактивного поражения людей и животных. Выбор тех или иных мер и способов защиты будет определяться конкретными условиями создавшейся обстановки. Однако общие принципы должны быть определены, и в соответствии с этим заранее разработаны планы гражданской обороны.

Можно считать, что при определенных условиях наиболее рациональным следует признать принятие в первую очередь мер защиты на месте, используя все средства и. способы, предохраняющие как от попадания радиоактивных веществ внутрь организма, так и от внешнего облучения.

Как известно, наиболее эффективным средством защиты от внешнего облучения являются убежища { приспособленные с учетом требований противоатомной защиты, а также здания с массивными стенами, построенные из плотных материалов (кирпича, цемента, железобетона и т. д.), в том числе подвалы, землянки, погреба, крытые щели и обычные жилые постройки.

При оценке защитных свойств зданий и сооружений можно руководствоваться следующими ориентировочными данными: деревянный дом ослабляет действие радиоактивных излучений в зависимости от толщины стен в 4-10 раз, каменный дом - в 10-50 раз, погреба и подвалы в деревянных домах - в 50-100 раз, щель с перекрытием из слоя земли 60-90 см - в 200-300 раз.

Следовательно, в планах гражданской обороны должно быть предусмотрено использование в случае необходимости в первую очередь сооружений, обладающих более мощными защитными средствами; при получении сигнала об опасности поражения население должно немедленно укрыться в этих помещениях и находиться там до тех пор, пока не будет объявлено о дальнейших действиях.

Время пребывания людей в помещениях, предназначенных для укрытия, будет зависеть, главным образом, от того, в какой степени окажется зараженным район месторасположения населенного пункта, и скорости снижения уровня радиации с течением времени.

Так, например, в населенных пунктах, находящихся на значительном расстоянии от места взрыва, где суммарные дозы облучения, которые получат незащищенные люди, могут в течение короткого времени стать безопасными, населению целесообразно переждать это время в укрытиях.

В районах сильного радиоактивного заражения, где суммарная доза, которую могут получить незащищенные люди, будет высокой и снижение ее окажется продолжительным в этих условиях, длительное пребывание людей в укрытиях станет затруднительным. Поэтому наиболее рациональным в таких районах следует считать сначала укрытие населения на месте, а затем эвакуация его в незаряженные районы. Начало эвакуации и ее продолжительность будет зависеть от местных условий: уровня радиоактивного заражения, наличия транспортных средств, путей сообщения, времени года, отдаленности мест размещения эвакуированных и т. д.

Таким образом, территорию радиоактивного заражения по следу радиоактивного облака можно разделить условно на две зоны с различными принципами защиты населения.

В первую зону входит территория, где уровни радиации по истечении 5-6 суток после взрыва остаются высокими и снижаются медленно (примерно на 10-20% ежесуточно). Эвакуация населения из таких районов может начаться лишь после снижения уровня радиации до таких показателей, при которых за время сбора и движения в зараженной зоне люди не получат суммарной дозы более 50 р.

Ко второй зоне относятся районы, в которых уровни радиации снижаются в течение первых 3-5 суток после взрыва до 0,1 рентген/час.

Эвакуация населения из этой зоны не целесообразна, так как это время можно переждать в укрытиях.

Успешное осуществление мероприятий по защите населения во всех случаях немыслимо без тщательной радиационной разведки и наблюдения и постоянного контроля уровня радиации.

Говоря о защите населения от радиоактивного поражения по следу движения облака, образовавшегося при ядерном взрыве, следует помнить, что можно избежать поражения или достигнуть его снижения лишь при четкой организации комплекса мероприятий, к которым относится:

  • организация системы оповещения, обеспечивающей своевременное предупреждение населения о наиболее вероятном направлении движения радиоактивного облака и опасности поражения. В этих целях должны быть использованы все имеющиеся средства связи - телефон, радиостанции, телеграф, радиотрансляция и т. д.;
  • подготовка формирований ГО для проведения разведки как в городах, так и в районах сельской местности;
  • укрытие людей в убежищах или других помещениях, защищающих от радиоактивных излучений (подвалы, погреба, щели и т. д.);
  • проведение эвакуации населения и животных из района устойчивого заражения радиоактивной пылью;
  • подготовка формирований и учреждений медицинской службы ГО к действиям по оказанию помощи пораженным, главным образом лечению, проведению санитарной обработки, экспертизы воды и пищевых продуктов на зараженность радиоактивными веществ вами;
  • заблаговременное проведение мероприятий по защите продуктов питания на складах, в торговой сети, на предприятиях общественного питания, а также источников водоснабжения от заражения радиоактивной пылью (герметизация складских помещений, подготовка тары, подручных материалов для укрытия продуктов, подготовка средств для дезактивации продовольствия и тары, оснащение дозиметрическими приборами);
  • проведение мероприятий по защите животных и оказание помощи животным в случае поражения.

Для обеспечения надежной защиты животных необходимо предусмотреть содержание их в колхозах, совхозах по возможности мелкими группами по бригадам, фермам или населенным пунктам, имеющим места укрытия.

Следует также предусмотреть создание дополнительных водоемов или колодцев, которые могут стать резервными источниками водоснабжения в случае заражения воды постояннодействующих источников.

Важное значение приобретают складские помещения, в которых хранится фураж, а также животноводческие помещения, которые по возможности следует герметизировать.

Для защиты ценных племенных животных необходимо иметь индивидуальные средства защиты, которые могут быть изготовлены из подручных материалов на месте (повязки для защиты глаз, торбы, покрывала и др.), а также противогазы (при наличии).

Для проведения дезактивации помещений и ветеринарной обработки животных необходимо заблаговременно учесть имеющиеся в хозяйстве дезинфекционные установки, опрыскиватели, дождевальные установки, жижерасбрасыватели и другие механизмы и емкости, при помощи которых можно производить работы по обеззараживанию и ветобработке;

Организация и подготовка формирований и учреждений для проведения работ по дезактивации сооружений, местности, транспорта, одежды, снаряжения и друтого имущества ГО, для чего заранее осуществляются мероприятия по приспособлению коммунальной техники, сельскохозяйственных машин, механизмов и приборов для этих целей. В зависимости от наличия техники должны быть созданы и обучены соответствующие формирования - отряды» команды» группы, звенья и т. д.

30 октября 1961 года на советском ядерном полигоне на Новой Земле прогремел самый мощный взрыв в истории человечества. Ядерный гриб поднялся на высоту 67 километров, а диаметр «шляпки» это гриба составил 95 километров. Ударная волна трижды обогнула земной шар (а взрывной волной сносило деревянные постройки на расстоянии нескольких сотен километров от полигона). Вспышку взрыва было видно с расстояния в тысячу километров, невзирая на то, что над Новой Землей висела густая облачность. В течение почти часа во всей Арктике не работала радиосвязь. Мощность взрыва по разным данным составила от 50 до 57 мегатонн (миллионов тонн тротила).

Впрочем, как пошутил Никита Сергеевич Хрущев, мощность бомбы не стали доводить до 100 мегатонн, только потому, что в этом случае в Москве выбило бы все стекла. Но, в каждой шутке есть доля шутки – первоначально планировалось взорвать именно 100 мегатонную бомбу. И взрыв на Новой Земле убедительно доказал, что создание бомбы мощностью хоть в 100 мегатонн, хоть в 200, - вполне осуществимая задача. Но и 50 мегатонн – это почти в десять раз больше мощности всех боеприпасов, истраченных за всю Вторую Мировую войну всеми странами - участницами. К тому же, в случае испытания изделия мощностью в 100 мегатонн от полигона на Новой Земле (да и от большей части этого острова) остался бы только оплавленный кратер. В Москве стекла, скорее всего, уцелели бы, но вот в Мурманске могли и вылететь.


Макет водородной бомбы. Историко-мемориальный Музей ядерного оружия в Сарове

Устройство, взорванное на высоте 4200 метров над уровнем моря 30 октября 1961 года, вошло в историю под именем «Царь-Бомба». Еще одно неофициальное название - «Кузькина Мать». А официальное название этой водородной бомбы было не столь громким – скромное изделие АН602. Военного значения это чудо-оружие не имело – не тоннах тротилового эквивалента, а в обычных метрических тоннах «изделие» весило 26 тонн и его было бы проблематично доставить до «адресата». Это была демонстрация силы – наглядное доказательство того, что Стране Советов по силам создать оружие массового уничтожения любой мощности. Что же заставило руководство нашей страны пойти на столь беспрецедентный шаг? Разумеется, не что иное, как обострение отношений с Соединенными Штатами. Еще совсем недавно казалось, что США и Советский Союз достигли взаимопонимания по всем вопросам – в сентябре 1959 года Хрущев посетил США с официальным визитом, планировался и ответный визит в Москву президента Дуайта Эйзенхауэра. Но 1 мая 1960 года над советской территорией был сбит американский самолет-разведчик U-2. В апреле 1961 года американские спецслужбы организовали высадку на Кубу отрядов хорошо подготовленных и обученных кубинских эмигрантов в заливе Плайя-Хирон (эта авантюра завершилась убедительной победой Фиделя Кастро). В Европе великие державы не могли определиться со статусом Западного Берлина. В итоге,13 августа 1961 года столица Германии оказалась перегороженной знаменитой Берлинской стеной. Наконец, в том 1961 году США разместили в Турции ракеты PGM-19 «Юпитер» - европейская часть России (включая Москву) находилась в пределах дальности действия этих ракет (годом позже Советский Союз разместит ракеты на Кубе и начнется знаменитый Карибский Кризис). Это не говоря уж о том, что паритета по числу ядерных зарядов и их носителей тогда между Советским Союзом и Америкой тогда не было – 6 тысячам американских боеголовок мы могли противопоставить всего триста. Так что, демонстрация термоядерной мощи была в сложившейся ситуации совсем не лишней.

Советский короткометражный фильм про испытание Царь-бомбы

Существует популярный миф, что сверхбомбу разработали по приказу Хрущева все в том же 1961 году в рекордно короткие сроки – всего за 112 дней. На самом деле разработку бомбы вели с 1954 года. А в 1961 разработчики просто довели уже имеющиеся «изделие» до нужной мощности. Параллельно КБ Туполева занималось модернизацией самолетов Ту-16 и Ту-95 под новое оружие. По первоначальным расчетам вес бомбы должен был составить не менее 40 тонн, но авиаконструкторы объяснили ядерщикам, что на данный момент носителей для изделия с таким весом нет и быть не может. Ядерщики пообещали снизить вес бомбы до вполне приемлемых 20 тонн. Правда, и такой вес и такие габариты требовали полной переделки бомбовых отсеков, креплений, бомболюков.


Взрыв водородной бомбы

Работа над бомбой велась группой молодых физиков-ядерщиков под руководством И.В. Курчатова. В эту группу входил и Андрей Сахаров, который в ту пору еще не помышлял о диссидентстве. Более того, он был одним из ведущих разработчиков изделия.

Такой мощности удалось добиться благодаря применению многоступенчатой конструкции – урановый заряд, мощностью в «всего» полторы мегатонны запускал ядерную реакцию в заряде второй ступени, мощностью в 50 мегатонн. Не меняя габаритов бомбы можно было сделать ее и трехступенчатой (это уже за 100 мегатонн). Теоретически – число зарядов ступеней могло быть ничем не ограниченным. Конструкция бомбы была уникальной для своего времени.

Хрущев торопил разработчиков – в октябре в только что построенном Кремлевском Дворце Съездов отрывался XXII съезд КПСС и огласить новость о самом мощном взрыве в истории человечества надо бы именно с трибуны съезда. И 30 октября 30 октября 1961 года Хрущев получил долгожданную телеграмму за подписью министра среднего машиностроения Е. П. Славского и Маршала Советского Союза К. С. Москаленко (руководителей испытания):


"Москва. Кремль. Н. С. Хрущеву.

Испытание на Новой Земле прошло успешно. Безопасность испытателей и близлежащего населения обеспечена. Полигон и все участники выполнили задание Родины. Возвращаемся на съезд".

Взрыв Царь-Бомбы почти сразу же послужил благодатной почвой для разного рода мифов. Некоторые из них распространялись … официальной печатью. Так, например, «Правда» называла «Царь-Бомбу» не иначе как вчерашним днем атомного оружия и утверждала, что сейчас уже созданы более мощные заряды. Не обошлось и без слухов о самоподдерживающейся термоядерной реакции в атмосфере. Снижение мощности взрыва, по мнению некоторых, было вызвано страхом расколоть земную кору или … вызвать термоядерную реакцию в океанах.

Но, как бы то ни было, годом позже, во время Карибского кризиса США все еще имели подавляющее превосходство по числу ядерных зарядов. Но применить их так и не решились.

Кроме того, считается, что этот мега-взрыв помог сдвинуть с мертвой точки переговоры о запрете ядерных испытаний в трех средах, которые велись в Женеве с конца пятидесятых годов. В 1959-60 все ядерные державы, за исключением Франции, приняли односторонний отказ от испытаний, пока идут эти переговоры. Но о причинах, которые заставили Советский Союз не соблюдать взятые на себя обязательства, мы говорили ниже. После взрыва на Новой Земле переговоры возобновились. И 10 октября 1963 года в Москве был подписан «Договор о запрещении испытаний ядерного оружия в атмосфере, космическом пространстве и под водой». Пока этот Договор соблюдается, советская Царь-Бомба останется самым мощным взрывным устройством в человеческой истории.

Современная компьютерная реконструкция