Инфляционная теория возникновения вселенной. Экстрасенсы

Эпиграф:
И целого мира мало!

Могу поспорить, среди читающих эти строки нет ни одного человека, который бы ни разу в жизни не слышал о теории Большого Взрыва. Допускаю, что на Земле попадаются подобные персонажи - крестьянин из заброшенной деревушки в горах Тибета, туземец племени Тонга–Тонга, мормон из Юты, наверняка такие где–то, да встречаются. Однако если вы умеете читать, имеете доступ в Интернет и смогли, пусть случайно, зайти в этот блог - могу гарантировать, вы обязательно что–нибудь хоть краем уха, но слышали о теории Большого Взрыва.

В этом посте я расскажу о текущем научном понимании этой теории, текст получился немаленький, но обещаю, сегодня вы узнаете что–то новое, то, что раньше не знали, и даже не задумывались.

Прежде всего, забавно, но мало кто задумывался, в чем же, собственно, заключается теория Большого Взрыва? Попробуйте вот прямо сейчас покрутить в голове факты, что вы знаете о ней, а потом я изложу, как она звучит на самом деле .

Попробовали? Ну, еще 20 секунд на размышления...

Итак. Теория Большого Взрыва утверждает, что раньше наша Вселенная была маленькая и горячая, с тех пор она расширяется и остывает. Точка. Больше ничего в данной теории нет, не выдумывайте лишнего.

Удивительно, но в классической теории Большого Взрыва нет самого важного - нет собственно Большого Взрыва. Нигде не упоминается, что это был за "взрыв", что же там взорвалось, куда взорвалось, как и почему.

Следуя основному тезису, что "сначала наша Вселенная была маленькая и горячая" , можно мысленно растянуть его еще дальше (хотя обращаю внимание, это уже НЕ ЕСТЬ теория Большого Взрыва, это именно попытки растянуть границы применимости в область догадок и фантазий) и придти к предположению, что еще раньше вся Вселенная была собрана в одну точку, называемую точкой сингулярности , которая позже взорвалась по каким–то своим внутренним причинам.

Замечу, что теория Большого Взрыва ("раньше Вселенная была маленькая и горячая, а потом стала большая и холодная") сегодня не является теорией , как таковой. Можно считать, что это вполне себе научно установленный факт , подтверждаемый огромным количеством наблюдений, сегодня нет ни одного стоящего ученого, который бы сомневался в нем. Но вот насчет точки сингулярности (лежащей, повторюсь, вне пределов границ применимости теории Большого Взрыва) у ученых не только нет единого мнения, у них вообще никакого мнения нет.

Никто не имеет ни малейшего понятия, что это за "сингулярность" . Сингулярность это вообще плейсхолдер (слово–заменитель) фразы "я не знаю". То есть на вопрос "равны ли классы P и NP?", или "жив ли кот Шредингера?", или даже "как звучит хлопок одной ладони?" можно смело отвечать "Сингулярность!".
Не ошибешься.

Теория Большого Взрыва была сформулирована в 20–х годах прошлого столетия, и вот уже с тех пор целый век ученые только и занимаются тем, что пытаются понять, в чем же суть сингулярности, и нельзя ли как–нибудь от нее избавиться?

Основная проблема сингулярности - в ней происходит натуральное деление на ноль, причем в самом прямом смысле. Все формулы превращаются в чепуху, 3 становится равно 5, и одна бесконечность начинает наползать на другую. А это конец физики, конец науки, дальше живут лишь драконы–ЕГГОГи, и где–то из складок пространства ехидно подмигивает сам Всевышний.

Много разных способов, подходов и хитростей предлагалось на замену сингулярности, лучше всех покуда получилось у американского физика Алана Гута в 1981–м году. Как всегда в очередной раз напомню, наука дело коллективное, Гут, как и все предшественники, вскарабкался на плечи гигантов, но в этом коротком тексте на пальцах™ я не стану перечислять всех предшественников, коллег и оппонентов, упомяну лишь одну фамилию, того заслуживающую - Алексей Старобинский , который высказывал похожие идеи ранее, но слава первооткрывателя закрепилась именно за Аланом Гутом.

Гут предложил сделать хитрый финт ушами. Внимательно следите за руками и ушами, сейчас я покажу вам фокус. Давайте мысленно(!) достанем из всех текстов слово "сингулярность" и положим вместо него фразу "скалярное поле". Обращаю ваше внимание, на данном этапе ничего не поменялось, термин "скалярное поле" продолжает являться полным аналогом () "сингулярности", которая в свою очередь, как мы помним, лишь заменитель фразы "я не знаю".

Что это за "скалярное поле", каковы его характеристики, откуда оно появилось, что вообще, черт возьми, происходит - все так же нет ответов. Покуда "скалярное поле", или как его еще называют в английской традиции "поле инфлатонов" (потому что "инфляция" же), это лишь результат мысленного эксперимента в попытках уйти от сингулярности и придти к чему–то еще. Пока это не более чем замена шила на мыло. Но будем настоящими учеными, доведем наш мысленный эксперимент до конца, и посмотрим, что же получилось в итоге.

Итак, по Гуту, первоначальная протоВселенная была безвидна и пуста, в ней ничего не было и ничего не происходило, она была бесконечна, или как минимум очень–очень–очень большая, гораздо больше, чем современная Обозримая Вселенная , и вся она была заполнена этим самым скалярным полем , про которое нам ничего не известно, кроме того, что это какое–то поле, и что оно как ясно из названия - скалярное.

Не стану грузить читателя определением "скаляра", это не особо нужно в рамках данного поста, совсем просто и на пальцах™ можно считать, что в этом поле присутствует какая–то "напряженность" . Поле несет в себе некую энергию, как грозовая туча несет в себе готовую пролиться дождем воду.

Чем эта ситуация лучше предыдущей с сингулярностью с точки зрения физики? Да всем! Пусть мы не знаем ни одной характеристики данного поля, пусть мы понятия не имеем, что там была за напряженность и откуда она взялась, но это вам не деление на ноль! Теперь у нас есть решаемая задача, можно начать писать какие–то формулы (сами понимаете, настоящего ученого мёдом не корми, дай только каких–нибудь трехэтажных формул нафигачить), в которые возможно подставлять начальные условия и коэффициенты, делить и умножать, вычислять, что получиться в итоге, и потом сравнивать с результатами непосредственных наблюдений и экспериментов.

Да, звучит смешно и даже как–то глупо, натуральное "шило на мыло", но это оказался реальный прорыв. Это шаг вперед по сравнению с тотальным "я не знаю", начертанным на бетонной стене, это уже серьезная заявка на успех, на обход, на подкоп или хотя бы на лестницу.

Однако самое смешное, что фокус со скалярным полем у Алана Гута удался, а вот формулы как раз не заладились. Алан принес в науку идею скалярного поля и его инфляции (о механизме инфляции чуточку позже), но верно описать свои мысли сухим языком математики у него не получилось. Ряды расходились, все снова начинало делиться на ноль, короче полный провал.

И лишь через год подпритухший факел инфляционной модели высоко поднял Андрей Линде , советский ученый, временно проживающий в США и возглавляющий кафедру физики в Стэнфордском университете.

Он исправил ошибки теории Алана Гута, заставил формулы сходиться и давать предсказуемый и проверяемый результат, но попутно открыл настоящий ящик Пандоры, о котором упомяну в самом конце поста, оставлю его на сладкое.

Суть инфляционной модели Вселенной (коротенько так, образно и туманно) такова:

Мы помним, что протоВселенная, предшественница нашей Вселенной, была заполнена неким скалярным полем, о котором нам ничего не известно, кроме наличия самого поля и его "скалярности". Скалярное, не скалярное, но принципы квантовой механики никто не отменял! Вот уже сто лет, как никому, включая самого Альберта Эйнштейна, ни разу не удавалось принципы квантовой механики. Что означает, что даже если это поле изначально было однородным (а оно, в принципе, не обязательно должно быть изначально однородным), все равно со временем, под действием квантовых флуктуаций в нем таки появятся мелкие неоднородности, которые по указанию его величества Квантового Случая, могут накладываться друг на друга, образовывая неоднородности крупные.

Ну, крупные–то по квантовым меркам. Все равно это все еще милли–милли–милли–...(и еще 10 раз милли–) Джоули, метры и килограммы, ни о какой нашей Вселенной, с триллионами звезд и галактик речь пока не идет.

И тут внезапно выясняется, что поле у нас не абы какое, а весьма хитрое! В обычном поле, в котором нет трения, неоднородности просто рано или поздно "замкнутся и коротнут " сами на себя. Например возьмем известное и понятное электромагнитное поле. Если где–то возникла разность потенциалов, которая продолжает увеличиваться, то рано или поздно, но закоротит обязательно. Пробежит разряд, возникнет мини–искра (или мега–молния, если разность потенциалов была большая как в грозу) и неоднородность нивелируется.

Кстати, во–первых, внимательный читатель со звездочкой (*) , тут должен заявить, что электромагнитное поле, не есть поле скалярное, а как раз наоборот - векторное поле, причем весьма замороченное. Но в данном конкретном примере это роли вообще не играет. И в том и в том поле коротнет практически одинаково, по одному сценарию. Ну, и во–вторых, нельзя сказать, что прям непременно тут же коротнет, заряды могут накапливаться годами и даже миллионами лет. Все зависит от тысячи разных условий, но если прождать достаточно долго (например вечность), то короткое замыкание неоднородностей непременно случится. Естественно, это все не более чем аналогия, причем в этом месте не очень прямая, я лишь пытаюсь на пальцах ™ объяснить поведение непонятного скалярного поля на примере понятного электромагнитного.

Так вот, в электромагнитном поле практически нет трения , если можно так выразиться. У электронов есть конечная скорость передвижения и они испытывают прямое сопротивление среды, которое мы и называем сопротивлением электрического тока , но изменения поля передаются со скоростью самого электромагнитного поля, т.е. со скоростью света. Если отойти от темы слишком далеко, то читатель с двумя звездочками (**) должен знать, что даже полный и абсолютный вакуум имеет некий аналог "сопротивления" электромагнитным волнам, но это уже совсем глубокие дебри силы Казимира и прочих эффектов вакуумных флуктуаций, нам туда пока не стоит углубляться, хоть такие посты из серии на пальцах ™ планируются в неизвестном, но обозримом будущем.

Короче, можно сказать, что у электромагнитного поля нет внутреннего трения, или оно пренебрежимо мало. Ну, коротнуло и коротнуло в мгновение ока. Если наложить аналогию на аналогию, можно сказать, что замыкание электромагнитного поля это словно бы гора, находящаяся в области высокого потенциала, на которой лежит мячик, а область низкого потенциала это яма под горой, куда этот мячик в конце концов упадет. Так как трения почти нет, мяч несется вниз со всей скорости, фактически со скоростью света. Бац, и упал.

При падении обязательно выделится какая–то энергия, которая пойдет на нагревание окружающего пространства, земли и мячика. В случае электромагнитного поля происходит натуральный разряд поля, т.е. молния . Если дело происходило под водой (а электрические разряды могут коротить и под водой), то в этом месте образуется крохотный пузырек воздуха, когда вода распадется на составляющие ее кислород и водород. Разряд в буквальном смысле молниеносный, разность потенциалов падает быстро, пузырек воздуха получается совсем маленький.

Теперь вернемся к нашему гипотетическому скалярному полю. Так как оно все еще гипотетическое, фантазировать про него и его свойства можно как угодно. Предположим, что в этом поле существует внутреннее трение и оно очень большое. Очень–очень большое. Перекладываясь на аналогию с мячом, он будет падать с горы не в вакууме или там воздухе, а в очень вязкой и тягучей жидкости, например в подсолнечном масле или мёде.

Стало быть сила тяжести тянет мячик вниз, а сила трения мешает ему быстро падать и тянет его назад вверх. И вместо того, чтобы стремительно нестись к подножью (а мы помним, что это лишь аналогия того, как быстро разряжается неравномерность напряженности поля ), мячик плавно, практически с постоянной скоростью, т.е. почти равномерно опускается вниз. Разряжение скалярного поля ответственно за создание вакуума, т.е. нашего родимого пространства–времени, падение его потенциала словно бы надувает воздушный шарик, только вместо воздуха там вакуум, а вместо шарика - наша Вселенная. Если бы все происходило без трения, напряженность скалярного поля упала бы очень быстро и у нас получился бы маленький пузырек вакуума в огромном безбрежном океане протоВселенной. Но трение (а по сути само скалярное поле) не дает напряженности падать быстро, мешает и тянет само себя назад . Из–за этого, в то время как напряженность медленно снижается, фактически стоит на месте, "сила надувания", т.е. сила, которая распирает образующийся вакуум во все стороны остается постоянной, и продолжает накачивать с прежним усилием, не смотря на то, что размеры новорожденной Вселенной все увеличиваются и увеличиваются.

Ученые знают, а вы можете мне на слово поверить, а можете проверить и погуглить, что в данном случае у нас получается уравнение, решением которого является экспонента. Т.е. получается натуральное экспоненциальное расширение Вселенной . В миллиарды миллиардов миллиардов раз. За не очень большой, весьма короткий промежуток времени. Все зависит от того, какие коэффициенты у нас входят в экспоненту, т.е. какова была начальная напряженность скалярного поля, какова была сила трения и т.д.

Расчеты показывают, если "сила распирания" не падает со временем, за какие–то 10 –36 доли секунды новая с пылу с жару Вселенная (т.е. этот изначальный пузырек вакуума) может расшириться в 10 26 раз. Да, это на многие порядки превосходит скорость света, но тут нет никакого парадокса. Теория Относительности запрещает любой материи передвигаться в пространстве быстрее скорости света, но совсем не запрещает самому пространству (т.е. пустоте) расширяться в стороны с любой скоростью.

Выходит, что никакого Большого Взрыва как "взрыва" вовсе не было. Было быстрое, очень быстрое, взрывообразно или экспоненциально быстрое "надувание и расширение" пузырька нашей Вселенной, именно что инфляция , от английского слова inflate - "накачивать", "раздувать".

Но тут хитрый момент! Расширяется–то вакуум, т.е. абсолютная пустота, откуда же взялась вся та энергия и материя, что составляет сейчас все наши звезды, галактики и прочий контент современного космоса? И почему Вселенная была раньше горячая, чему там быть горячему, пустому вакууму что–ли?

Здесь опять сложная фиговина с зубодробильными формулами, постараюсь разъяснить ее при помощи чего бы вы думали? Аналогии на пальцах™ , ну конечно!

Вы знаете, что если у нас что–то очень быстро расширяется, то это что–то так же стремительно теряет энергию, в смысле так же быстро размазывает ее по всему расширяющемуся объему, и в каждой отдельной точке или кубометре пространства энергии становится все меньше и меньше. Это вам не хухры–мухры, это между прочим первое начало термодинамики!

У нас же получается наоборот. Если очень быстро растянуть пузырек Вселенной, он начнет мгновенно накапливать энергию. Ведь гравитационная энергия всегда идет со знаком минус. Если разнести в пространстве два тела, или, скажем, поднять тяжелый груз над поверхностью Земли, потенциальная, а следовательно и общая энергия системы увеличится ! А так как все происходит быстро (напомню, очень–очень–очень–... и еще 26 раз очень быстро), то в случае с каким–нибудь газом, например воздухом, он резко охлаждается, образует туман и находящийся в нем водяной пар выпадает в осадок, образуя натуральный снег или лед. Все видели, если открыть клапан баллона со сжиженным газом, баллон тут же покрывается инеем.

А в случае со Вселенной, наоборот температура резко повышается, случается фазовый переход и высвободившаяся энергия "выпадает в осадок" в виде собственно энергии (фотонов) и материи (электронов, протонов и прочих элементарных частиц). Вот почему по окончанию инфляции, которая начиналась не такой уж и горячей, Вселенная быстро разогревается до беспредельных энергий и температур, которые раньше считалось вырвались наружу прямо из точки сингулярности. А дальше, когда мячик долетел до дна ямы и период экспоненциального расширения закончился, все продолжается по старому сценарию классического Большого Взрыва, Вселенная расширяется, но уже не экспоненциально, а медленно так, по инерции. Но теперь все это выходит без самого Большого Взрыва и его сингулярности.

Звучит непривычно, звучит каким–то обманом, но если задуматься, все логично - увеличившаяся потенциальная энергия, энергия гравитации со знаком минус в точности компенсируется энергией кинетической, энергией движения (температурой) и энергией покоя (массой) "выпавших в осадок" частиц материи. Общая энергия Вселенной продолжает оставаться равна нулю, минус сто да плюс сто дает в результате ноль. Как минус миллиард и плюс миллиард.

Если быть до конца точным, там не совсем ровно ноль получается в итоге, ведь напряженность первоначального скалярного поля, с которого все началось, в этом месте таки упала почти до нуля. Но абсолютная величина данного падения, какие–то там доли Джоуля (или в чем там у нас измеряется напряженность поля инфлатонов? ), все равно остается в пределах пусть и крупных, но все еще квантовых эффектов. Это не идет ни в какое сравнение с трилли–миллиардами (точнее 10 50 и так далее) килограммами народившейся материи и такими же порядками запасенной гравитационной энергии. Мышь родила гору, в прямом смысле этого слова. Точнее гору и яму рядом для равновесия.

Еще раз для понятности повторю предыдущий абзац немного другими словами. Когда в результате падения напряженности скалярного поля в нем появился маленький пузырек нашего пространства–времени, т.е. обычного вакуума, это пространство–время оказывается "немножечко погнутым". Почему? Потому что именно так любая энергия влияет на пространство. Ньютон думал, что гравитация есть сила притяжения двух масс. А Эйнштейн сказал, что гравитация есть лишь гнутость пространства. Если пространство "гнутое" в нем уже запасена какая–то гравитационная энергия, даже если это пространство абсолютно пустое и в нем нет массы. Что у нас гнет пространство? Его гнет энергия (правильнее говорить - тензор энергии–импульса). Масса это тоже энергия, много энергии, но можно обойтись и вовсе без массы, вообще любая энергия гнет пространство. Когда под действием падения энергии скалярного поля "надулся маленький пузырик вакуума", в нем уже есть энергия скалярного поля, вакуум в нем уже "гнутый". Если этот пузырь быстро растянуть в стороны, гравитационная энергия резко возрастет, что вызовет "выпадение в осадок" массы, которая с одной стороны добавляет Вселенной энергии (т.к. E=mc 2) со знаком плюс, а с другой - добавляет во Вселенную гравитации этой массы со знаком минус, а значит и дальше продолжится гонка–состязание горы и мыши.

Да, напоминаю, если кто позабыл, что все это происходит в рамках мысленного эксперимента по избавлению от сингулярности! Это пока всего лишь гимнастика ума, наукой здесь еще не очень пахнет, хотя сам мысленный эксперимент - обязательный атрибут научного метода. Чтобы подняться в ранге хотя бы до гипотезы, не говоря уже о теории, нужно много пройти и многое объяснить.

Повторяю, мы все еще в процессе обмена шила на мыло. Мы никуда не ушли от непонятной первоначальной сингулярности, всего–то назвали ее немного по другому и в результате встали с ног на голову. Однако конкретные детали теории инфляционного расширения Вселенной, в отличие от классической теории Большого Взрыва, позволяют найти объяснения многим наблюдаемым феноменам (проблема начальных условий, проблема однородности и изотропности наблюдаемой Вселенной, проблема плоскости наблюдаемой Вселенной, проблема с магнитными монополями и много чего еще), перед которыми сингулярность Большого Взрыва пасовала. Это делает инфляционную модель весьма привлекательной, но совершенно не доказывает ее и не объявляет верной. В состоянии "молодой и перспективной", но "недоказанной и немного фантастической" теории инфляционная модель находилась с 80–х годов последнего века прошлого тысячелетия (это я так "30 лет назад" замысловато сказал), покуда в 2014 году не появились первые, все еще робкие, неподтвержденные и весьма косвенные улики , в смысле результаты экспериментов ее подтверждающие. А здесь уже не просто заявка, тут получается реальный успех!

Что это за эксперименты, каковы их результаты, что такое "гравитационные волны" как они связаны с инфляцией и почему их открытие тянет на нобелевскую премию, которую, я думаю, Алану Гуту и Андрею Линде таки вручат в конечном итоге, а так же все прочие технические подробности собираются в кучу и будут описаны особо, во второй части данного повествования, они тянут на полноценный отдельный пост. Здесь я лишь изложил суть инфляционной теории, остановив ее на этапе 2013 года - интересной, заманчивой, но ничем не подтвержденной.

А теперь обещанное сладкое.

Да, пока еще рано говорить с твердой уверенностью. Да, все это еще весьма вилами по воде писано, и совсем не обязательно обязано быть. Да, впереди еще долгая–предолгая дорога расчетов, ошибок и экспериментов, но.

Самая вкуснота в том, что инфляционная теория Алана Гута, а точнее как раз математические выкладки Андрея Линде подразумевают совершенно замечательную и крышесносящую штуку.

Дополнения Линде официально называются "хаотическая теория инфляции" . Центральная ее часть, сама эссенция теории говорит о том, что данные "разряды скалярного поля" просто обязаны хаотически , т.е. случайно, происходить везде и всюду в изначальной протоВселенной. А это значит, что наш конкретный Большой Взрыв (который, как мы уже знаем из текущего поста, был совсем не взрыв), приведший к образованию нашей конкретной Вселенной - лишь один разряд, отдельный конкретный пузырь образовавшегося пространства, что мы зовем нашим космосом. А вокруг не просто "может быть", а по формулам прямо–таки "обязательно" должны плавать миллиарды и миллиарды других пузырей, других вселенных. В каждой из этих вселенных (уже с маленькой буквы) скалярное поле падало/разряжалось чуточку иначе, а следовательно законы физики в этих вселенных могут существенно отличаться от наших. Звезды и галактики там могли и вовсе не образоваться, или наоборот, там могло образоваться такое, что нам и не снилось в самых диких фантазиях.

Весь этот конгломерат раздувающихся пузырей–вселенных принято называть мультивселенная , хотя сам Линде предпочитает говорить по–русски "Многоликая Вселенная". Получается, что современное научное понимание происхождения и устройства нашего мира сейчас таково:

Существует бесконечная или как минимум очень большая мультивселенная, заполненная неким скалярным полем. Как долго она существует, откуда сама появилась, каковы условия в этой мультивселенной - мы понятия не имеем. Даже на полшишечки. Но ученые довольно сильно уверены, что в некоторых местах этой мультивселенной скалярное поле начинает падать, надувая пузыри обычных вселенных и образовывая в них привычное нам пространство–время. Наш конкретный пузырь начал надуваться около 13.8 миллиардов лет назад, и скалярное поле в нашей Вселенной, кстати, никуда не делось, теперь оно находится почти в минимуме, но не равно нулю! То, что расталкивает галактики нашей Вселенной в стороны, и что мы называем Темной Энергией, это и есть то самое "скалярное поле", точнее сказать, лишь часть его. Тут между прочим должно быть несколько абзацев объясняющих, что давно искомое поле Хиггса, образованное вроде бы недавно найденным бозоном Хиггса, тоже является порождением скалярного поля, а именно его внуком, потому что между скалярным и хиггсовым есть, вернее должно бы быть , еще некое суперХиггсово поле, в которое вырождается скалярное и которое в свою очередь вырождается в хиггсово. Но это не совсем доказано, и уже совсем в сторону от нашего текущего разговора, так что, пожалуй, хватит об этом.

Вокруг пузыря нашей Вселенной находятся пузыри других вселенных, которые образуются от падения скалярного поля в тех конкретных местах. Где–то их собственный местечковый большой взрыв (тоже с маленькой буквы) только–только начинается, а где–то все уже давно закончилось, а "между" этими вселенными находится просто скалярное поле в своем высоком энергетическом состоянии. Мультивселенная становится похожа на швейцарский сыр, где сам сыр это скалярное поле, а дырки в нем - мириады и мириады вселенных, одна из которых наша.

Можно ли пробурить тоннели сквозь это скалярное поле, чтобы попасть в другие "параллельные" вселенные? Неизвестно.
Как далеко от нашего пузыря до соседнего, и можно ли пробраться туда через высшие измерения? Неизвестно.
Существуют ли они вообще в действительности эти другие вселенные вокруг нашей или все это лишь фантазии? Неизвестно, но теперь в науке этому есть очень сильная уверенность.

Разве не замечательно?

UPD: Продолжение поста читайте в статье .

Общепризнанная теория Большого Взрыва имеет много проблем в описании ранней Вселенной. Даже если оставить в стороне странность сингулярного состояния, не поддающуюся никакому физическому объяснению, пробелов не становится меньше. И с этим приходится считаться. Иногда маленькие неувязки приводят к отрицанию всей теории. Поэтому обычно появляются дополняющие и вспомогательные теории, призванные прояснить узкие места и разрулить напряженность ситуации. В данном случае теория инфляции играет эту роль. Итак, посмотрим в чем проблема.

Вещество и антивещество имеют равные права на существование. Тогда как объяснить, что Вселенная практически полностью состоит из вещества?

По фоновому излучению установлено, что температура во Вселенной примерно одинакова. Но отдельные ее части не могли находиться в контакте при расширении. Тогда как установилось тепловое равновесие?

Почему масса Вселенной именно такова, что может замедлить и остановить хаббловское расширение?

В 1981 году американский физик и космолог, доктор философии Алан Харви Гут, адьюнкт Массачусетского университета, занимающийся математическими проблемами физики элементарных частиц, предположил, что через десять в минус тридцать пятой степени секунды после Большого Взрыва сверхплотное и горячее вещество, состоящее в основном из кварков и лептонов, претерпело квантовый переход, подобный кристаллизации. Произошло это при отделении сильных взаимодействий из единого поля. Алан Гут смог показать, что при разделении сильных и слабых взаимодействий произошло скачкообразное расширение, как в замерзающей воде. Это расширение, во много раз быстрее хаббловского, назвали инфляционным.

Примерно за десять в минус тридцать второй степени секунды Вселенная расширилась на 50 порядков - была меньше протона, стала размером с грейпфрут. Кстати, вода расширяется всего на 10%. Это стремительное инфляционное расширение решает две проблемы из трех обозначенных. Расширение нивелирует кривизну пространства, которая зависит от количества материи и энергии в ней. И не нарушает теплового равновесия, успевшего сложиться к началу инфляции. Проблему антивещества объясняют тем, что на начальном этапе формирования возникло на несколько обычных частиц больше. После аннигиляции образовался кусочек обычной материи из которой сформировалось вещество Вселенной.

Инфляционная модель образования Вселенной.

Протовселенная была заполнена скалярным полем. Вначале оно было однородным, но возникли квантовые флуктуации и в нем возникли неоднородности. При накоплении этих неоднородностей происходит разряжение с созданием вакуума. Скалярное поле поддерживает напряженность и образовавшийся пузырек все увеличивается, раздуваясь во все стороны. Процесс идет по экспоненте, за весьма короткое время. Здесь определяющую роль играют начальные характеристики поля. Если сила постоянна во времени, то за промежуток времени десять в минус тридцать шестой степени секунды начальный пузырек Вакуума может расшириться в десять в двадцать шестой степени раз. И это согласуется с теорией относительности, речь идет о движении самого пространства в разные стороны.

В итоге получается, что Взрыва не было, было очень быстрое надувание и расширение пузырька нашей Вселенной. Термин инфляция от английского inflate - накачивать, раздувать. Но расширялся вакуум, откуда взялись энергия и материя, которые образовали звезды, галактики? И почему считают, что Вселенная была горячей? Может ли пустота быть высокотемпературной?

При растягивании пузырька Вселенной, он начинает накапливать энергию. Вследствие фазового перехода, температура резко повышается. По окончании периода инфляции Вселенная оказывается сильно нагретой, полагают, благодаря сингулярности. Энергию вакууму сообщила изогнутость пространства. По Эйнштейну гравитация есть не сила притяжения двух масс, а изогнутость пространства. Если пространство изогнуто, в нем уже есть энергия, если даже нет массы. Любая энергия изгибает пространство. То, что расталкивает галактики в разные стороны и что мы называем темной энергией, и есть часть скалярного поля. И искомое поле Хиггса порождено этим скалярным полем.

К числу критиков теории инфляции принадлежит сэр Роджер Пентроуз, английский математик, специалист в области общей теории относительности и квантовой теории, заведующий кафедрой математики Оксфордского университета. Он считал, что все рассуждения об инфляции надуманы и не подлежат доказательству. То есть налицо проблемы начальных значений. Как доказать, что в ранней Вселенной неоднородности были таковы, что смогли породить однородный мир, наблюдаемый сейчас? А если изначально была большая кривизна, то ее остаточные явления должны наблюдаться и в настоящее время.

Однако, проведенные исследования в рамках Supernova Cosmology Project показали, что в настоящее время наблюдается инфляция на поздней стадии эволюции Вселенной. Фактор, вызывающий это явление, получил название темной энергии. В настоящее время в теорию инфляции внесены дополнения Линде в виде хаотической инфляции. Не следует спешить сбрасывать ее со счетов, теория инфляционной Вселенной еще послужит космологии.

Информация:

Окунь Л.Б." Лептоны и кварки", М., Наука, 1981

www.cosmos-journal.ru

Помимо вопроса о происхождении Вселенной, современные космологи сталкиваются с рядом других проблем. Чтобы стандартная могла предсказать то распределение материи, которое мы наблюдаем, ее исходное состояние должно характеризоваться очень высокой степенью организованности. Сразу же возникает вопрос: каким образом такая структура могла образоваться?

Физик Алан Гут из Массачусетского технологического института предложил свою версию , которая объясняет спонтанное возникновение этой организации, устраняя необходимость искусственно вводить точные параметры в уравнения, описывающие исходное состояние Вселенной. Его модель была названа «инфляционной Вселенной». Суть ее в том, что внутри быстро расширяющейся, пере гретой Вселенной небольшой участок пространства охлаждается и начинает расширяться сильнее, подобно тому, как переохлажденная вода стремительно замерзает, расширяясь при этом. Эта фаза быстрого расширения позволяет устранить некоторые проблемы, присущие стандартным теориям большого взрыва.

Однако модель Гута тоже не лишена недостатков. Чтобы уравнения Гута правильно описывали инфляционную Вселенную, ему пришлось очень точно задавать исходные параметры для своих уравнений. Таким образом, он столкнулся с той же проблемой, что и создатели других теорий. Он надеялся избавиться от необходимости задавать точные параметры условий большого взрыва, но для этого ему пришлось вводить собственную параметризацию, оставшуюся необъясненной. Гут и его соавтор П. Штайнгарт признают, что в их модели «расчеты приводят к приемлемым предсказаниям только в том случае, если заданные исходные параметры уравнений варьируют в очень узком диапазоне. Большинство теоретиков (включая и нас самих) считают подобные исходные условия маловероятными». Далее авторы говорят о своих надеждах на то, что когда-нибудь будут разработаны новые математические теории, которые позволят им сделать свою модель более правдоподобной.

Эта зависимость от еще не открытых теорий — другой недостаток модели Гута. Теория единого поля, на которой основывается модель инфляционной Вселенной, полностью гипотетична и «плохо поддается экспериментальной проверке, так как большую часть ее предсказаний невозможно количественно проверить в лабораторных условиях». (Теория единого поля — это достаточно сомнительная попытка ученых связать воедино некоторые основные силы Вселенной.)

Другой недостаток теории Гута — это то, что в ней ничего не говорится о происхождении перегретой и расширяющейся материи. Гут проверил совместимость своей инфляционной теории с тремя гипотезами происхождения Вселенной. Сначала он рассмотрел стандартную теорию большого взрыва. В этом случае, по мнению Гута, инфляционный эпизод должен был произойти на одной из ранних стадий эволюции Вселенной. Однако эта модель ставит перед нами неразрешимую проблему сингулярности. Вторая гипотеза постулирует, что Вселенная возникла из хаоса. Некоторые ее участки были горячими, другие — холодными, одни расширялись, а другие сжимались. В этом случае инфляция должна была начаться в перегретой и расширяющейся области Вселенной. Правда, Гут признает, что эта модель не может объяснить происхождение первичного хаоса.

Третья возможность, которой Гут отдает предпочтение, заключается в том, что перегретый расширяющийся сгусток материи возникает квантово-механическим путем из пустоты. В статье, появившейся в журнале «Сайентифик Америкэн» в 1984 году, Гут и Штайнгарт утверждают: «Инфляционная модель Вселенной дает нам представление о возможном механизме, при помощи которого наблюдаемая Вселенная могла появиться из бесконечно малого участка пространства. Зная это, трудно удержаться от соблазна сделать еще один шаг и прийти к выводу, что Вселенная возникла буквально из ничего».

Однако какой бы привлекательной ни была эта идея для ученых, готовых ополчиться на любое упоминание о возможности существования высшего сознания, создавшего Вселенную, при внимательном рассмотрении она не выдерживает критики. «Ничто», о котором говорит Гут, — это гипотетический квантово-механический вакуум, описываемый еще не разработанной теорией единого поля, которая должна объединить уравнения квантовой механики и общей теории относительности. Другими словами, в данный момент этот вакуум невозможно описать даже теоретически.

Надо отметить, что физики описали более простой тип квантово-механического вакуума, который представляет собой море так называемых «виртуальных частиц», фрагментов атомов, которые «почти существуют». Время от времени некоторые из этих субатомных частиц переходят из вакуума в мир материальной реальности. Это явление получило название вакуумных флуктуаций. Вакуумные флуктуации невозможно наблюдать непосредственно, однако теории, постулирующие их существование, были подтверждены экспериментально. Согласно этим теориям, частицы и античастицы без всякой причины возникают из вакуума и практически сразу исчезают, аннигилируя друг друга. Гут и его коллеги допустили, что в какой-то момент вместо крошечной частицы из вакуума появилась целая Вселенная, и вместо того, чтобы сразу исчезнуть, эта Вселенная каким-то образом просуществовала миллиарды лет. Авторы этой модели решили проблему сингулярности, постулировав, что состояние, в котором Вселенная появляется из вакуума, несколько отличается от состояния сингулярности.

Однако у этого сценария есть два основных недостатка. Во-первых, можно только удивляться смелости фантазии ученых, распространивших достаточно ограниченный опыт с субатомными частицами на целую Вселенную. С. Хоукинг и Г. Эллис мудро предостерегают своих излишне увлекающихся коллег: «Предположение о том, что законы физики, открытые и изученные в лаборатории, будут справедливы в других точках пространственно-временного континуума, безусловно, очень смелая экстраполяция». Во-вторых, строго говоря, квантово-механический вакуум нельзя называть «ничто». Описание квантово-механического вакуума даже в самой простой из существующих теорий занимает множество страниц в высшей степени абстрактных математических выкладок. Такая система, несомненно, представляет собой «нечто», и сразу же встает все тот же упрямый вопрос: «Как возник столь сложно организованный «вакуум»?»

Вернемся к изначальной проблеме, для решения которой Гут создал инфляционную модель: проблеме точной параметризации исходного состояния Вселенной. Без такой параметризации невозможно получить наблюдаемое распределение материи во Вселенной. Как мы убедились, решить эту проблему Гуту не удалось. Более того, сомнительной представляется сама возможность того, что какая-нибудь версия теории большого взрыва, включая версию Гута, может предсказать наблюдаемое распределение материи во Вселенной.

Высокоорганизованное исходное состояние в модели Гута, по его же словам, в конце концов, превращается во «Вселенную» диаметром 10 сантиметров, наполненную однородным сверхплотным, перегретым газом. Она будет расширяться и остывать, но нет никаких оснований предполагать, что она когда-нибудь превратится в нечто большее, чем однородное облако газа. По сути дела, к этому результату приводят все теории большого взрыва. Если Гуту пришлось пускаться на многие ухищрения и делать сомнительные допущения, чтобы в конце концов получить Вселенную в виде облака однородного газа, то можно представить себе, каким должен быть математический аппарат теории, приводящей ко Вселенной в том виде, в каком мы ее знаем!

Хорошая научная теория дает возможность предсказывать многие сложные природные явления, исходя из простой теоретической схемы. Но в теории Гута (и любой другой версии ) все наоборот: в результате сложных математических выкладок мы получаем расширяющийся пузырь однородного газа. Несмотря на это, научные журналы печатают восторженные статьи об инфляционной теории, сопровождающиеся многочисленными красочными иллюстрациями, которые должны создать у читателя впечатление, что Гут наконец достиг заветной цели — нашел объяснение происхождения Вселенной. Честнее было бы просто открыть постоянную рубрику в научных журналах, чтобы публиковать в ней теорию происхождения Вселенной, модную в этом месяце.

Трудно даже представить себе всю сложность исходного состояния и условий, необходимых для возникновения нашей Вселенной со всем многообразием ее структур и организмов. В случае нашей Вселенной степень этой сложности такова, что ее едва ли можно объяснить с помощью одних физических законов.

Сразу после зарождения Вселенная расширялась невероятно быстро.

С 30-х годов XX века астрофизики уже знали, что, согласно закону Хаббла , Вселенная расширяется, а значит, она имела свое начало в определенный момент в прошлом. Задача астрофизиков, таким образом, внешне выглядела простой: отследить все стадии хаббловского расширения в обратной хронологии, применяя на каждой стадии соответствующие физические законы, и, пройдя этот путь до конца — точнее, до самого начала, — понять, как именно всё происходило.

В конце 1970-х годов, однако, оставались нерешенными несколько фундаментальных проблем, связанных с ранней Вселенной, а именно:

  • Проблема антивещества . Согласно законам физики, вещество и антивещество имеют равное право на существование во Вселенной (см. Античастицы), однако Вселенная практически полностью состоит из вещества. Почему так произошло?
  • Проблема горизонта. По фоновому космическому излучению (см. Большой взрыв) мы можем определить, что температура Вселенной везде примерно одинакова, однако отдельные ее части (скопления галактик) не могли находиться в контакте (как принято говорить, они были за пределами горизонта друг друга). Как же получилось, что между ними установилось тепловое равновесие?
  • Проблема распрямления пространства. Вселенная, судя по всему, обладает именно той массой и энергией, которые необходимы для того, чтобы замедлить и остановить хаббловское расширение. Почему из всех возможных масс Вселенная имеет именно такую?

Ключом к решению этих проблем послужила идея, что сразу после своего рождения Вселенная была очень плотной и очень горячей. Всё вещество в ней представляло собой раскаленную массу кварков и лептонов (см. Стандартная модель), у которых не было никакой возможности объединиться в атомы. Действующим в современной Вселенной различным силам (таким, как электромагнитные и гравитационные силы) тогда соответствовало единое поле силового взаимодействия (см. Универсальные теории). Но когда Вселенная расширилась и остыла, гипотетическое единое поле распалось на несколько сил (см. Ранняя Вселенная).

В 1981 году американский физик Алан Гут осознал, что выделение сильных взаимодействий из единого поля, случившееся примерно через 10 -35 секунды после рождения Вселенной (только задумайтесь — это 34 нуля и единица после запятой!), стало поворотным моментом в ее развитии. Произошел фазовый переход вещества из одного состояния в другое в масштабах Вселенной — явление, подобное превращению воды в лед. И как при замерзании воды ее беспорядочно движущиеся молекулы вдруг «схватываются» и образуют строгую кристаллическую структуру, так под влиянием выделившихся сильных взаимодействий произошла мгновенная перестройка, своеобразная «кристаллизация» вещества во Вселенной.

Кто видел, как лопаются водопроводные трубы или трубки автомобильного радиатора на сильном морозе, стоит только воде в них превратиться в лед, тот на собственном опыте знает, что вода при замерзании расширяется. Алану Гуту удалось показать, что при разделении сильных и слабых взаимодействий во Вселенной произошло нечто подобное — скачкообразное расширение. Это расширение, которое называется инфляционным , во много раз быстрее обычного хаббловского расширения. Примерно за 10 -32 секунды Вселенная расширилась на 50 порядков — была меньше протона, а стала размером с грейпфрут (для сравнения: вода при замерзании расширяется всего на 10%). И это стремительное инфляционное расширение Вселенной снимает две из трех вышеназванных проблем, непосредственно объясняя их.

Решение проблемы распрямления пространства нагляднее всего демонстрирует следующий пример: представьте координатную сетку, нарисованную на тонкой эластичной карте, которую затем смяли как попало. Если теперь взять и сильно встряхнуть эту смятую в комок эластичную карту, она снова примет плоский вид, а координатные линии на ней восстановятся, независимо от того, насколько сильно мы деформировали ее, когда скомкали. Аналогичным образом, не важно, насколько искривленным было пространство Вселенной на момент начала ее инфляционного расширения, главное — по завершении этого расширения пространство оказалось полностью распрямленным. А поскольку из теории относительности мы знаем, что кривизна пространства зависит от количества материи и энергии в нем, становится понятно, почему во Вселенной находится ровно столько материи, сколько необходимо, чтобы уравновесить хаббловское расширение.

Объясняет инфляционная модель и проблему горизонта , хотя не так прямо. Из теории излучения черного тела мы знаем, что излучение, испускаемое телом, зависит от его температуры. Таким образом, по спектрам излучения удаленных участков Вселенной мы можем определить их температуру. Такие измерения дали ошеломляющие результаты: оказалось, что в любой наблюдаемой точке Вселенной температура (с погрешностью измерения до четырех знаков после запятой) одна и та же. Если исходить из модели обычного хаббловского расширения, то вещество сразу же после Большого взрыва должно было разлететься слишком далеко, чтобы температуры могли уравняться. Согласно же инфляционной модели, вещество Вселенной до момента t = 10 -35 секунды оставалось гораздо более компактным, чем при хаббловском расширении. Этого чрезвычайно краткого периода было вполне достаточно, чтобы установилось термическое равновесие, которое не было нарушено на стадии инфляционного расширения и сохранилось до сих пор.

Американский физик, специалист в области элементарных частиц и космологии. Родился в Нью-Брюнсвике, штат Нью-Джерси. Докторскую степень получил в Массачусетском технологическом институте, куда в 1986 году и вернулся, став профессором физики. Свою теорию инфляционного расширения Вселенной Гут разработал еще в Стэнфордском университете, занимаясь теорией элементарных частиц . Известен его отзыв о Вселенной как о «бескрайней скатерти-самобранке».

Хотя скалярные поля не предмет повседневной жизни, знакомая аналогия существует. Это электростатический потенциал – напряжение в цепи тока, например. Электрическое поле проявляет себя, только если потенциал неоднороден (не одинаков), как между полюсами батареи или, если он меняется со временем. Если он одинаков везде (скажем 110 в), то никто его не замечает. Этот потенциал просто другое вакуумное состояние. Подобно этому скалярное поле выглядит как вакуум. Мы его не видим, даже если окружены им.
Эти скалярные поля заполняют Вселенную и проявляют себя лишь через свойства элементарных частиц. Если скалярное поле взаимодействует с W, Z, то они становятся тяжёлыми. Частицы, которые не взаимодействуют со скалярным полем, как фотоны, остаются лёгкими.
Чтобы описать физику элементарных частиц, физики, поэтому, начали с теории, в которой все частицы изначально лёгкие и в которой нет фундаментальных различий между слабым и электромагнитным взаимодействием. Эти различия появляются позже, когда Вселенная расширяется и заполняется различными скалярными полями. Процесс, в котором фундаментальные силы разделяются, называется нарушением (breaking ) симметрии. Особое значение скалярного поля, которое появляется во Вселенной, определяется положением минимума её потенциальной энергии.
Скалярные поля играют решающую роль в космологии, так же как и в физике элементарных частиц. Они обеспечивают механизм, который генерирует быструю инфляцию Вселенной. В самом деле, согласно общей теории относительности Вселенная расширяется со скоростью (приблизительно) пропорциональной квадратному корню из её плотности. Если Вселенная заполнена обычной материей, тогда плотность быстро уменьшается с расширением Вселенной. Поэтому расширение Вселенной должно быстро замедляться по мере падения плотности. Но из-за эквивалентности массы и энергии, установленной Эйнштейном, потенциальная энергия скалярного поля также даёт вклад в расширение. В определённых случаях эта энергия уменьшается значительно медленнее, чем плотность обычной материи.
Приблизительное постоянство (persistance ) этой энергии (её медленное уменьшение ) может вести к стадии экстремально быстрого расширения или инфляции Вселенной. Эта возможность возникает, даже если рассматривать простейшую версию теории скалярного поля. В этой версии потенциальная энергия достигает минимума в точке, где скалярное поле исчезает. В этом случае, чем больше скалярное поле, тем больше его потенциальная энергия. Согласно общей теории относительности энергия скалярного поля должна вызывать очень быстрое расширение Вселенной. Расширение замедляется тогда, когда скалярное поле достигает минимума своей потенциальной энергии.
Одна возможность представить эту ситуацию – шар, скатывающийся по стенке большой миски. Дно миски – минимум энергии. Положение шара соответствует значению скалярного поля. Конечно, уравнения, описывающие движение (изменение ) скалярного поля в расширяющейся Вселенной, отчасти сложнее, чем для шара в пустой миске. Они содержат дополнительный член трения или вязкости. Это трение похоже на чёрную патоку в миске. Вязкость этой жидкости зависит от энергии поля. Чем выше шар, тем толще слой жидкости. Поэтому, если поле вначале очень большое, то энергия падала экстремально медленно.
Инертность энергетического падения скалярного поля решающим образом влияет на скорость расширения. Падение было таким постепенным, что потенциальная энергия скалярного поля оставалась почти постоянной по мере расширения Вселенной. Это сильно контрастирует с обычной материей, плотность которой быстро падает с расширением Вселенной. Благодаря большой энергии скалярного поля Вселенная продолжала расширяться со скоростью больше, чем предсказывалось доинфляционными космологическими теориями. Размер Вселенной в этом режиме растёт экспоненциально.
Стадия самоподдерживающейся, экспоненциально быстрой инфляции продолжается недолго. Её длительность ≈10 -35 сек. Когда энергия поля снижается, вязкость почти исчезает и инфляция заканчивается. Подобно шару, достигающему дна миски, скалярное поле начинает осциллировать вблизи минимума её потенциальной энергии. В процессе этой осцилляции оно теряет энергию, отдавая её на образование элементарных частиц. Эти частицы взаимодействуют друг с другом и, в конце концов, устанавливается равновесная температура. Начиная с этого момента стандартная теория Большого взрыва может описать дальнейшую эволюцию Вселенной.
Главное различие между инфляционной теорией и старой космологией выясняется при вычислении размера Вселенной в конце инфляции. Даже, если Вселенная в начале инфляции имела размер 10 -33 см (планковский размер ), после 10 -35 сек инфляции её размер становится немыслимо огромным. Согласно некоторым инфляционным моделям этот размер становится см, т.е. единица с триллионом нулей. Это число зависит от модели, но в большинстве из них этот размер на много порядков больше размера наблюдаемой Вселенной (10 28 см).
Этот огромный (инфляционный ) спурт немедленно решает большинство проблем старой космологической теории. Наша Вселенная – гладкая и однородная, потому что все неоднородности растянуты в раз. Плотность первичных магнитных монополей и других «нежелательных» дефектов становится экспоненциально разбавленной. (Недавно мы нашли, что монополи могут вызывать самоинфляцию и таким образом эффективно выталкивать себя из наблюдаемой Вселенной). Вселенная становится так велика, что мы сейчас видим только крошечную её долю. Вот почему, подобно малой части поверхности огромного подверженного инфляции баллона, наша часть Вселенной выглядит плоской. Вот почему нам не нужно требовать, чтобы все части Вселенной начали расширяться одновременно. Один домен самых малых возможных размеров (10 -33 см) более чем достаточен, чтобы произвести всё, что мы сейчас видим.
Инфляционная теория не всегда выглядела такой концептуально простой. Попытки получить стадию экспоненциального расширения Вселенной имеют давнюю историю. К сожалению, из-за политических барьеров эта история только частично известна американским читателям.
Первая реалистическая версия инфляционной теории была создана Алексеем Старобинским (Институт теоретической физики им. Ландау) в 1979 г. Модель Старобинского произвела сенсацию среди российских астрофизиков, и в течение двух лет она оставалась главной темой обсуждения на всех конференциях по космологии в Советском Союзе. Эта модель довольно сложна и основана на теории аномалий в квантовой гравитации. Она не сказала много о том, как инфляция начинается.
В 1981 г. Алан Гус (Alan H Guth, Массачусэтс, США) предположил, что горячая Вселенная на некоторой промежуточной стадии могла расширяться экспоненциально. Его модель возникла из теории, которая интерпретирует развитие ранней Вселенной как серию фазовых переходов. Это последняя теория была предложена в 1972 г. Давидом Киржницем и мной (Андреем Линде ). Согласно этой идее по мере расширения и охлаждения Вселенной она конденсируется в различных формах. Водяной пар подвергается таким фазовым переходам. По мере охлаждения пар конденсируется в воду, которая, если продолжить охлаждение, становится льдом.
Идея Гуса требовала, чтобы инфляция возникала, когда Вселенная была в нестабильном, переохлаждённом состоянии. Переохлаждение является обычным в процессе фазового перехода. Например, вода при подходящих обстоятельствах остаётся жидкой и при t o < 0 o C. Конечно, переохлаждённая вода, в конце концов, замерзает. Это событие соответствует концу инфляционного периода. Идея использовать переохлаждение для решения многих проблем модели Большого взрыва была очень привлекательной. К сожалению, как сам Гус указал, постинфляционная Вселенная в его сценарии становится экстремально неоднородной. После исследования своей модели в течение года он, наконец, отказался от неё в своей статье с Еrick J. Weinberg из Колумбийского университета.
В 1982 г. я ввёл так называемый новый инфляционный сценарий Вселенной, который Andreas Albrecht и Paul J. Steinhardt из университета Пенсильвании также позже открыли (см. «The Inflationary Universe» by Alan H. Guth and Paul J. Steinhardt, SCIENTIFIC AMERICAN, May 1984). Этот сценарий «справился» с главными проблемами модели Гуса. Но она всё ещё оставалась довольно сложной и не очень реалистичной.
Только год позже я осознал, что инфляция это естественно возникающая черта многих теорий элементарных частиц, включающих простейшую модель скалярного поля, обсуждавшуюся выше. Не нужны эффекты квантовой гравитации, фазовых переходов, переохлаждения и даже стандартного предположения, что Вселенная первоначально была горячей. Достаточно рассмотреть все возможные сорта и значения скалярного поля в ранней Вселенной и затем проверить, есть ли среди них те, которые ведут к инфляции. Те места (Вселенной ), где инфляция не возникает, остаются малыми. Те домены, где инфляция имеет место, становятся экспоненциально большими и доминирующими в общем объёме Вселенной. Из-за того, что скалярное поле может принять произвольное значение в ранней Вселенной, я назвал этот сценарий хаотической инфляцией.
Во многих отношениях хаотическая инфляция так проста, что трудно понять, почему эта идея не была открыта быстрее. Я думаю, что причина чисто философская. Блестящие успехи теории Большого взрыва гипнотизировали космологов. Мы предполагали, что полная Вселенная была создана в один и тот же момент, что вначале она была горячей, и что скалярное поле вначале находилось вблизи минимума своей потенциальной энергии. Как только мы начали ослаблять эти предположения, мы немедленно нашли, что инфляция не экзотическое явление, придуманное теоретиками для решения своих проблем. Это общий режим, который возникает в широком классе теорий элементарных частиц.
Это быстрое растяжение Вселенной может одновременно решить много трудных космологических проблем и может показаться слишком хорошим, чтобы быть правдой. В самом деле, если все неоднородности были сглажены растяжением, как образуются галактики? Ответ в том, что пока удаляются ранее образованные неоднородности, инфляция в то же время создаёт новые.
Эти неоднородности возникают от квантовых эффектов. Согласно квантовой механике пустое пространство не полностью пустое. Вакуум заполнен малыми квантовыми флуктуациями. Эти флуктуации могут рассматриваться как волны или как волнистость физических полей. Волны имеют все возможные длины и двигаются во всех направлениях. Мы не можем детектировать эти волны, потому что они живут очень мало и микроскопические.
В инфляционной Вселенной структура вакуума становится даже более сложной. Инфляция быстро растягивает волны. Как только длина волны становится достаточно большой, эта волнистость начинает чувствовать кривизну Вселенной. В этот момент растяжение волн останавливается из-за вязкости скалярного поля (напомним, что уравнение, описывающее поле, содержит член трения).
Первыми вымораживаются флуктуации, которые имеют большие длины волн. По мере того, как Вселенная расширяется, новые флуктуации становятся более растянутыми и вымораживаются на вершине других вымороженных волн. На этой стадии мы не можем назвать больше эти волны квантовыми флуктуациями. Большинство их имеют экстремально большие длины волн. Так как эти волны не двигаются и не исчезают, они увеличивают значение скалярного поля в некоторых областях и уменьшают в других, создавая, таким образом, неоднородности. Эти возмущения в скалярном поле вызывают возмущения плотности во Вселенной, что является ключевым для последующего образования галактик.
Вдобавок к объяснению многих черт нашего мира инфляционная теория делает несколько важных и тестируемых предсказаний. Во-первых, Вселенная должна быть экстремально плоской. Эта плоскостность может быть экспериментально проверена, так как плотность Вселенной связана просто со скоростью её расширения. До сих пор наблюдаемые данные в соответствии с этим предсказанием.
Другое проверяемое предсказание связано с возмущениями плотности, произведёнными в течение инфляции. Эти возмущения плотности действуют на распределение материи во Вселенной. Более того, они могут сопровождаться гравитационными волнами. И возмущения плотности и гравитационные волны накладывают отпечаток на микроволновое реликтовое излучение (МВR ). Они передают температуре этого излучения слабые различия в различных местах неба. Эти неоднородности точно такие, какие найдены 2 года назад спутником Cosmic Background Explorer (COBE) и это подтверждено рядом более поздних экспериментов.
Хотя результаты СОВЕ согласуются с предсказаниями инфляции, было бы преждевременно заявить, что СОВЕ подтверждает инфляционную теорию. Но определённо, правда, что результаты спутника на текущем уровне точности могли бы опровергнуть большинство инфляционных моделей, но это не случилось. В настоящее время ни одна другая теория не может объяснить, почему Вселенная так однородна, и всё ещё предсказать «рябь пространства», открытую СОВЕ.
Тем не менее, мы должны держать ум открытым. Существует возможность, что некоторые новые наблюдательные данные могут противоречить инфляционной космологии. Например, если бы наблюдательные данные сказали нам, что плотность Вселенной значительно отличается от критической, которая соответствует плоской Выселенной, то инфляционная космология столкнулась бы с реальным вызовом (можно разрешить и эту проблему, если она появится, но это довольно сложно).
Другое осложнение имеет чисто теоретическую природу. Инфляционные модели основаны на теории элементарных частиц, а эта теория сама полностью не сформирована. Некоторые версии этой теории (особенно теория суперструн) автоматически не ведут к инфляции. Вытаскивание инфляции из моделей суперструн может потребовать радикально новых идей. Мы должны определённо продолжать исследование альтернативных космологических теорий. Многие космологи, однако, верят, что инфляция, или что-то очень подобное ей, абсолютно необходимы для конструирования последовательной космологической теории. Инфляционная теория сама изменяется по мере того, как теория физики частиц быстро эволюционирует. Список новых моделей включает расширенную инфляцию, естественную инфляцию, гибридную инфляцию и многое другое. Каждая модель имеет уникальные черты, которые можно проверить через наблюдения или эксперименты. Большинство, однако, основано на идее хаотической инфляции.
Здесь мы подходим к наиболее интересной части нашей теории, к теории вечно существующей самовоспроизводящейся Вселенной. Эта теория довольно общая, но выглядит особенно многообещающей и ведёт к наиболее драматическим следствиям в контексте хаотического инфляционного сценария.
Как я уже упоминал, можно представить квантовые флуктуации скалярного поля в инфляционной Вселенной как волны. Они вначале двигаются во всевозможных направлениях и затем замораживаются одна на вершине другой. Каждая вымороженная волна слабо увеличивает скалярное поле в одних местах Вселенной и уменьшает в других.
Теперь рассмотрим те места Вселенной, где эти вновь вымороженные волны настойчиво (persistently, т.е. несколько раз подряд ) увеличили скалярное поле. Такие области экстремально редки, но всё ещё существуют. И они могут быть экстремально важны. Эти редкие домены Вселенной, где поле прыгнуло вверх достаточно высоко, начнут экспоненциально расширяться с всегда увеличивающейся скоростью. Чем выше прыгнуло скалярное поле, тем расширение быстрее. Очень скоро эти редкие домены приобретут много бòльшие объёмы, чем другие.
Из этой (инфляционной ) теории следует, что если Вселенная содержит, по крайней мере, один инфляционный домен достаточно большого размера, она начнёт непрерывно производить новые инфляционные домены. Инфляция в каждой точке может кончиться быстро, но много других мест будут продолжать расширяться. Полный объём всех этих доменов будет расти без конца. По существу, одна инфляционная Вселенная рождает другие инфляционные пузыри, которые в свою очередь рождают другие (см. картинку в конце ).
Этот процесс, который я назвал вечной (eternal ) инфляцией, идёт как цепная реакция, производя фракталоподобную картину Вселенной. В этом сценарии Вселенная, как целое, бессмертна. Каждая часть Вселенной может произойти из сингулярности где-то в прошлом и может закончиться сингулярностью где-то в будущем. Однако, нет конца эволюции всей Вселенной.
Ситуация с самым началом (very beginning ) менее определённая. Есть шанс, что все части Вселенной были созданы одновременно в начальной сингулярности Большого взрыва. Необходимость этого предположения, однако, больше не очевидна. Более того, полное число инфляционных пузырей в нашем космическом дереве растёт экспоненциально со временем. Поэтому большинство пузырей (включая нашу собственную часть Вселенной) вырастает неопределённо далеко от ствола этого дерева. Хотя этот сценарий делает существование начального Большого взрыва почти ненужным (неуместным), для всех практических целей можно рассматривать момент образования каждого инфляционного пузыря как новый Большой взрыв. Из этой перспективы следует, что инфляция – не часть теории Большой взрыва, как думали 15 лет назад. Напротив, Большой взрыв – часть инфляционной модели.
Думая о процессе самовоспроизведения Вселенных, мы не можем избежать художественных аналогий, однако, они могут быть поверхностными. Можно интересоваться, если этот процесс таков, то, что случится со всеми нами? Мы рождены некоторое время назад. В конце концов, мы умрём и целый мир наших душ, чувствований и памяти исчезнет. Но были те, кто жил до нас, будут те, кто будет жить после, и человечество в целом, если оно достаточно умно, может жить долго.
Инфляционная теория предполагает, что подобный процесс может возникать во Вселенной. Может возникнуть некий оптимизм из знания того, что даже если наша цивилизация умрёт, будут другие места во Вселенной, где жизнь возникнет снова и снова во всех своих возможных формах.
Могут ли дела быть даже более любопытными? Да. До сих пор мы рассматривали простейшую инфляционную теорию с одним скалярным полем, которое имеет только один минимум потенциальной энергии. Между тем, реалистические модели элементарных частиц предсказывают (обсуждают) много сортов скалярных полей. Например, в объединённых теориях слабого, сильного и электромагнитного взаимодействий существует, по крайней мере, два других скалярных поля. Потенциальная энергия этих скалярных полей может иметь несколько различных минимумов. Это обстоятельство означает, что подобная теория может иметь дело с различными вакуумными состояниями, отвечающими различным типам нарушения симметрий между фундаментальными взаимодействиями и, как результат, с различными законами низкоэнергичной физики. (Взаимодействия частиц при экстремально больших энергиях не зависят от нарушений симметрий).
Такие сложности в скалярном поле означают, что после инфляции Вселенная может оказаться разделённой на экспоненциально большие домены, которые отличаются законами низкоэнергичной физики. Заметим, что это деление возникает, даже если полная Вселенная первоначально родилась в одном состоянии, соответствующем одному частному минимуму потенциальной энергии. В самом деле, большие квантовые флуктуации могут заставлять скалярное пле выпрыгивать из их минимумов. То есть они могут перебрасывать шары из одних мисок в другие. Каждая миска соответствует альтернативным законам взаимодействия частиц. В некоторых инфляционных моделях квантовые флуктуации так велики, что даже число размерностей пространства и времени может меняться.
Если эта модель правильна, то одна физика не может обеспечить полное объяснение всех свойств нашего участка Вселенной. Та же физическая теория может дать большие части Вселенной, которые имеют различные свойства. Согласно этому сценарию мы обнаруживаем себя внутри 4-х мерного домена с нашим типом физических законов не потому, что домены с различной размерностью и альтернативными свойствами невозможны или неправдоподобны, а просто потому, что наш сорт жизни невозможен в других доменах.
Означает ли это, что понимание всех свойств нашей области Вселенной потребует, кроме знания физики, глубокого исследования нашей собственной природы, возможно даже включая природу нашего сознания? Этот вывод определённо один из наиболее неожиданных, которые могут возникнуть из недавнего развития инфляционной космологии.
Эволюция инфляционной теории приводит к возникновению совершенно новой космологической парадигмы, которая отличается значительно от старой теории Большого взрыва и даже от первых версий инфляционного сценария.
В ней Вселенная оказывается и хаотической и однородной, расширяющейся и стационарной. Наш космический дом растёт, флуктуирует и вечно воспроизводит сам себя во всевозможных формах, как бы приспособляя себя ко всем возможным типам жизни, которые он может поддерживать.
Некоторые части новой теории, мы надеемся, останутся с нами на годы. Многие другие должны будут значительно модифицированы, чтобы подходить под новые экспериментальные данные и новые изменения в теории элементарных частиц. Кажется, однако, что последние 15 лет развития космологии необратимо изменили наше понимание структуры и судьбы Вселенной и нашего собственного места в ней.