Азот газообразный. Что такое азот? Масса азота

ОПРЕДЕЛЕНИЕ

Азот - седьмой элемент Периодической таблицы. Обозначение - N от латинского «nitrogenium». Расположен во втором периоде, VА группе. Относится к неметаллам. Заряд ядра равен 7.

Большая часть азота находится в свободном состоянии. Свободный азот является главной составной частью воздуха, который содержит 78,2% (об.) азота. Неорганические соединения азота не встречаются в природе в больших количествах, если не считать натриевую селитру NaNO 3 , образующую мощные пласты на побережье Тихого океана в Чили. Почва содержит незначительные количества азота, преимущественно в виде солей азотной кислоты. Но в виде сложных органических соединений - белков - азот входит в состав всех живых организмов.

В виде простого вещества азот - это бесцветный газ, не имеющий запаха и весьма мало растворимый в воде. Он немного легче воздуха: масса 1 л азота равна 1,25 г.

Атомная и молекулярная масса азота

Относительной атомной массой элемента называют отношение массы атома данного элемента к 1/12 массы атома углерода. Относительная атомная масса безразмерна и обозначается A r (индекс «r» — начальная буква английского слова relative, что в переводе означает «относительный»). Относительная атомная масса атомарного азота равна 14,0064 а.е.м.

Массы молекул, также как массы атомов выражаются в атомных единицах массы. Молекулярной массой вещества называется масса молекулы, выраженная в атомных единицах массы. Относительной молекулярной массой вещества называют отношение массы молекулы данного вещества к 1/12 массы атома углерода, масса которого равна 12 а.е.м. Известно, что молекула азота двухатомна - N 2 . Относительная молекулярная масса молекулы азота будет равна:

M r (N 2) = 14,0064× 2 ≈ 28.

Изотопы азота

В природе азот существует в виде двух стабильных изотопов 14 N (99,635%) и 15 N (0,365%). Их массовые числа равны 14 и 15 соответственно. Ядро атома изотопа азота 14 N содержит семь протонов и семь нейтронов, а изотопа 15 N - такое же количество протонов и шесть нейтронов.

Существует четырнадцать искусственных изотопов азота с массовыми числами от 10-ти до 13-ти и от 16-ти до 25-ти, из которых наиболее стабильным является изотоп 13 Nс периодом полураспада равным 10 минут.

Ионы азота

На внешнем энергетическом уровне атома азота имеется пять электронов, которые являются валентными:

1s 2 2s 2 2p 3 .

Схема строения атома азота представлена ниже:

В результате химического взаимодействия азот может терять свои валентные электроны, т.е. являться их донором, и превращаться в положительно заряженные ионы или принимать электроны другого атома, т.е. являться их акцептором, и превращаться в отрицательно заряженные ионы:

N 0 -5e → N 2+ ;

N 0 -4e → N 4+ ;

N 0 -3e → N 3+ ;

N 0 -2e → N 2+ ;

N 0 -1e → N 1+ ;

N 0 +1e → N 1- ;

N 0 +2e → N 2- ;

N 0 +3e → N 3- .

Молекула и атом азота

Молекула азота состоит из двух атомов - N 2 . Приведем некоторые свойства, характеризующие атом и молекулу азота:

Примеры решения задач

ПРИМЕР 1

Задание Для образования хлорида аммония было взято 11,2 л (н.у.) газообразного аммиака и 11,4 л (н.у.) хлороводорода. Какова масса образовавшегося продукта реакции?
Решение Запишем уравнение реакции получения хлорида аммония из аммиака и хлороводорода:

NH 3 + HCl = NH 4 Cl.

Найдем количество молей исходных веществ:

n(NH 3) = V(NH 3) / V m ;

n(NH 3) = 11,2 / 22,4 = 0,5 моль.

n(HCl) = V(NH 3) / V m ;

n(HCl) = 11,4 / 22,4 = 0,51 моль.

n(NH 3)

n(NH 4 Cl) = n(NH 3) = 0,5 моль.

Тогда, масса хлорида аммония будет равна:

M(NH 4 Cl) = 14 + 4×1 + 35,5 = 53,5г/моль.

m(NH 4 Cl) = n(NH 4 Cl) × M(NH 4 Cl);

m(NH 4 Cl) = 0,5×53,5 = 26,75 г.

Ответ 26,75 г

ПРИМЕР 2

Задание 10,7 г хлорида аммония смешали с 6 г гидроксида кальция и смесь нагрели. Какой газ и сколько его по массе и объему выделилось (н.у.)?
Решение Запишем уравнение реакции взаимодействия хлорида аммония с гидроксидом кальция:

2NH 4 Cl + Ca(OH) 2 = CaCl 2 + 2NH 3 - + 2H 2 O.

Определим, какое из двух реагирующих веществ находится в избытке. Для этого рассчитаем их количество молей:

M(NH 4 Cl) = A r (N) + 4×A r (H) + A r (Cl);

M(NH 4 Cl) = 14 + 4×1 + 35,5 = 53,5 г/моль.

n(NH 4 Cl) = m (NH 4 Cl) / M(NH 4 Cl);

n(NH 4 Cl) = 10,7 / 53,5 = 0,1 моль.

M(Ca(OH) 2) = A r (Ca) + 2×A r (H) + 2×A r (O);

M(Ca(OH) 2) = 40 + 2×1 + 2×16 = 42 + 32 = 74 г/моль.

n(Ca(OH) 2) = m (Ca(OH) 2) / M(Ca(OH) 2);

n(Ca(OH) 2) = 6 / 74 = 0,08 моль.

n(Ca(OH) 2)

n(NH 3) = 2×n(Ca(OH) 2) = 2×0,08 = 0,16 моль.

Тогда, масса аммиака будет равна:

M(NH 3) = A r (N) + 3×A r (H) = 14 + 3×1 = 17 г/моль.

m(NH 3) = n(NH 3) ×M(NH 3) = 0,16 × 17 = 2,72 г.

Объем аммиака равен:

V(NH 3) = n(NH 3) ×V m ;

V(NH 3) = 0,16× 22,4 = 3,584 л.

Ответ В результате реакции образовался аммиак объемом 3,584 л и массой 2,72 г.

Азот бесцветный и нетоксичный, без запаха и вкуса. Азот существует в природе как невоспламеняющийся газ при нормальных температурах и давлении. Этот газ (азот) несколько легче воздуха, поэтому его концентрация с высотой повышается. При охлаждении до точки кипения азот превращается в бесцветную жидкость, которая при определенных давлении и температуре становится твердым бесцветным кристаллическим веществом. Азот слаборастворим в воде и большинстве других жидкостей, является плохим проводником электричества и тепла.

Большинство использований азота объясняется его инертными свойствами. Однако при высоких давлениях и температурах азот реагирует с некоторыми активными металлами, например с литием и магнием, образуя нитриды, а также с некоторыми газами, такими как кислород и водород.

Основные факты об азоте: история открытия и основные свойства

Азот (N2) - одно из самых распространённых веществ на Земле. Из него на 75% состоит атмосфера нашей планеты, тогда как доля кислорода в ней составляет всего 22%.

Как ни странно, учёные долгое время не знали о существовании этого газа. Лишь в 1772 году английский химик Дэниэл Резерфорд описал его как «испорченный воздух», неспособный поддерживать горение, не вступающий в реакцию со щелочами и непригодный для дыхания. Само слово «азот » (от греческого - «безжизненный») предложил 15 лет спустя Антуан Лавуазье.

При нормальных условиях это газ, не имеющий цвета, запаха и вкуса, тяжелее воздуха и практически инертный. При температуре -195,8 °C он переходит в жидкое состояние; при -209,9 °C - кристаллизуется, напоминая снег.

Области применения азота

В настоящее время, азот нашел широкое применение во всех сферах человеческой деятельности.

Так, нефтегазовая промышленность использует его с целью регуляции уровня и давления в нефтяных скважинах, вытеснения кислорода из ёмкостей для хранения природного газа, продувки и тестирования трубопроводов. Химическая промышленность нуждается в нём для получения удобрений и синтеза аммиака, металлургия - для ряда технологических процессов. Благодаря тому, что азот вытесняет кислород , но не поддерживает горение, его применяют в пожаротушении. В пищевой промышленности упаковка продуктов в азотной атмосфере заменяет использование консервантов, препятствует окислению жиров и развитию микроорганизмов. Кроме того, это вещество используется в фармацевтике для получения различных препаратов и в лабораторной диагностике - для проведения ряда анализов.

Жидкий азот способен за считанные секунды заморозить всё, что угодно, без образования кристалликов льда. Поэтому медики применяют его в криотерапии для удаления отмерших клеток, а также в криосохранении сперматозоидов, яйцеклеток и образцов тканей.

Интересно, что:

  • Мгновенное мороженое, приготовленное при помощи жидкого азота, изобрёл в 1998 году биолог Курт Джонс, дурачась с друзьями на кухне. Впоследствии он основал компанию по производству этого десерта, который пользуется спросом у американских сладкоежек.
  • Мировая промышленность получает из земной атмосферы 1 млн тонн этого газа в год.
  • Рука человека, погружённая в стакан с жидким азотом на 1-2 секунды, останется невредимой благодаря «перчатке» из пузырьков газа, который образуется при закипании жидкости в местах контакта с кожей.

Азот — газ, простое химическое вещество, неметалл, элемент таблицы Менделеева. Латинское название Nitrogenium переводится как «рождающий селитры».

Название «азот» и созвучные ему используются во многих странах: во Франции, Италии, России, Турции, в некоторых восточнославянских и в странах бывшего СССР. По основной версии, название «азот» происходит от греческого слова azoos — «безжизненный», так как не пригоден для дыхания.

Азот в основном встречается как газ — в воздухе его около 78% (по объему). Месторождения полезных ископаемых, а которых он содержится — например, чилийской селитры (нитрат натрия), индийской селитры (нитрат калия) большей частью уже истощены, поэтому в промышленных масштабах реактив добывают химическим синтезом прямо из атмосферы.

Свойства

В нормальных условиях N2 — газ без вкуса, цвета и запаха. Не горит, пожаро- и взрывобезопасен, плохо растворяется в воде, спиртах, не токсичен. Плохо проводит тепло и электричество. При температуре ниже -196 °С становится сначала жидким, потом твердым. Жидкий азот — прозрачная, подвижная жидкость.

Молекула азота очень стабильна, поэтому химреактив в основном инертен, взаимодействует в нормальных условиях только с литием, цезием и комплексами переходных металлов. Для проведения реакций с другими веществами требуются особые условия: очень высокая температура и давление, а иногда и катализатор. Не вступает в реакции с галогенами, серой , углеродом, кремнием, фосфором.

Элемент крайне важен для жизни всего живого. Он является неотъемлемой частью белков, нуклеиновых кислот, гемоглобина, хлорофилла и многих других биологически важных соединений. Играет основную роль в обмене веществ живых клеток и организмов.

Азот выпускается в виде сжатого при 150 атмосфер газа, поставляется в баллонах черного цвета с крупной и четкой надписью желтого цвета. Жидкий реагент хранят в сосудах Дьюара (термос с двойными стенками, с серебрением изнутри и вакуумом между стенок).

Опасность азота

В обычных условиях азот не вреден для человека и животных, но при повышенном давлении вызывает наркотическое опьянение, а при нехватке кислорода — удушье. С азотом и его воздействием на кровь человека при резком снижении давления связана очень опасная кессонная болезнь.

Вероятно, все хотя бы однажды видели в фильмах или сериалах, как жидким азотом мгновенно замораживают людей или замки на решетке, сейфе и т. п., после чего они становятся хрупкими и легко разбиваются. На самом деле жидкий азот замораживает достаточно медленно, ввиду своей малой теплоемкости. Именно поэтому с его помощью нельзя замораживать людей для последующей разморозки — не получается равномерно и одномоментно заморозить все тело и органы.

Азот относится к пниктогенам — химическим элементам той же подгруппы таблицы Менделеева, что и он сам. Кроме азота к пниктогенам относят фосфор, мышьяк, сурьму, висмут и искусственно полученный московий.

Жидкий азот — идеальный материал для тушения пожаров, особенно с ценными объектами. После тушения азотом не остается ни воды, ни пены, ни порошка, а газ просто выветривается.

Применение

— Три четверти всего выпускаемого в мире азота идет на производство аммиака , из которого, в свою очередь, производят широко использующуюся в разных сферах промышленности азотную кислоту .
— В сельском хозяйстве соединения азота используются как удобрения, а сам азот — для лучшей сохранности овощей в овощехранилищах.
— Для производства взрывчатых веществ, детонаторов, топлива для космических аппаратов (гидразина).
— Для изготовления красителей, медикаментов.
— При перекачке горючих веществ по трубам, в шахтах, в электронных приборах.
— Для тушения кокса в металлургии, для создания нейтральной атмосферы в промышленных процессах.
— Для продувки труб и резервуаров; распирания пластов в горнодобыче; прокачки топлива в ракетах.
— Для закачки в самолетные шины, иногда — в автомобильные.
— Для производства особой керамики — нитрида кремния, обладающего повышенной механической, термической, химической стойкостью и многими другими полезными характеристиками.
— Пищевую добавку Е941 используют для создания в упаковках консервирующей среды, исключающей окисление и развитие микроорганизмов. Жидкий азот используют при разливе напитков и масел.

Жидкий азот применяется как:

— Хладагент в криостатах, вакуумных установках и т. п.
— В криогенной терапии в косметологии и медицине, для проведения некоторых видов диагностики, для хранения образцов биоматериалов, спермы, яйцеклеток.
— В криогенной резке.
— Для тушения пожаров. Испаряясь, реагент образует массу газа в 700 раз большую, чем объем жидкости. Этот газ оттесняет кислород от пламени, и оно тухнет.

Азот - это всем известный химический элемент, который обозначается буквой N. Этот элемент, пожалуй, основа неорганической химии, его начинают подробно изучать еще в 8 классе. В данной статье мы рассмотрим данный химический элемент, а также его свойства и типы.

История открытия химического элемента

Азот - это элемент, который впервые был представлен знаменитым французским химиком Антуаном Лавуазье. Но за звание первооткрывателя азота борются многие ученые, среди них и Генри Кавендиш, Карл Шееле, Даниэль Резерфорд.

В результате опыта первым выделил химический элемент, но так и не понял, что он получил простое вещество. О своем опыте он сообщил который тоже проделывал ряд исследований. Вероятно, Пристли тоже удалось выделить этот элемент, но ученый не смог понять, что именно он получил, поэтому не заслужил звание первооткрывателя. Карл Шееле одновременно с ними проводил те же исследования, но не пришел к нужному выводу.

В том же году Даниэль Резерфорд сумел не только получить азот, но и описать его, опубликовать диссертацию и указать основные химические свойства элемента. Но даже Резерфорд так до конца и не понял, что он получил. Однако именно его считают первооткрывателем, потому что он был ближе всех к разгадке.

Происхождение названия азота

С греческого "азот" переводится как "безжизненный". Именно Лавуазье трудился над правилами номенклатуры и решил так назвать элемент. В 18 веке про этот элемент было известно лишь то, что он не поддерживает ни ни дыхания. Поэтому данное название приняли.

В латинском языке азот называется "нитрогениум", что в перевод означает "рождающий селитру". Из латинского языка и появилось обозначение азота - буква N. Но само название во многих странах не прижилось.

Распространенность элемента

Азот - это, пожалуй, один из самых распространенных элементов на нашей планете, он занимает четвертое место по распространенности. Элемент также найден в солнечной атмосфере, на планетах Уран и Нептун. Из азота состоят атмосферы Титана, Плутона и Тритона. Помимо этого, атмосфера Земли состоит на 78-79 процентов из этого химического элемента.

Азот играет важную биологическую роль, ведь он необходим для существования растений и животных. Даже тело человека содержит от 2 до 3 процентов этого химического элемента. Входит в состав хлорофилла, аминокислот, белков, нуклеиновых кислот.

Жидкий азот

Жидкий азот - это бесцветная прозрачная жидкость, является одним из агрегатных состояний химического азот широко используется в промышленности, строительстве и медицине. Он используется при заморозке органических материалов, охлаждения техники, а в медицине для удаления бородавок (эстетическая медицина).

Жидкий азот не токсичен, а также не взрывоопасен.

Молекулярный азот

Молекулярный азот - это элемент, который содержится в атмосфере нашей планеты и образует большую ее часть. Формула молекулярного азота - N 2 . Такой азот вступает в реакции с другими химическими элементами или веществами только при очень высокой температуре.

Физические свойства

При нормальных условиях химический элемент азот - который не имеет запаха, цвета, а также практически не растворим в воде. Азот жидкий по своей консистенции напоминает воду, такой же прозрачный и бесцветный. У азота есть еще одно агрегатное состояние, при температуре ниже -210 градусов он превращается в твердое тело, образует много больших белоснежных кристаллов. Поглощает кислород из воздуха.

Химические свойства

Азот относится к группе неметаллов и перенимает свойства у других химических элементов из этой группы. Как правило, неметаллы не являются хорошими проводниками электричества. Азот образует различные оксиды, например NO (моноокисид). NO или окись азота является мышечным релаксантом (вещество, которое значительно расслабляет мускулатуру и при этом не оказывает никакого вреда и иных влияний на организм человека). Оксиды, где содержится больше атомов азота, например N 2 O - это веселящий газ, чуть-чуть сладковатый на вкус, который используется в медицине как анестезирующее средство. Однако уже оксид NO 2 не имеет никакого отношения к первым двум, ведь это довольно вредный выхлопной газ, который содержится в выхлопах автомобилей и серьезно загрязняет атмосферу.

Азотная кислота, которую образуют атомы водорода, азота и три атома кислорода, является сильной кислотой. Ее широко используют в производстве удобрений, в ювелирном деле, органическом синтезе, военной промышленности (производство взрывчатых веществ, и синтеза отравляющих веществ), производстве красителей, лекарств и др. Азотная кислота очень вредна для организма человека, на коже оставляет язвы и химические ожоги.

Люди ошибочно полагают, что углекислый газ - это азот. На самом деле, по своим химическим свойствам элемент реагирует лишь с небольшим количеством элементов при нормальных условиях. А углекислый газ - это оксид углерода.

Применение химического элемента

Азот в жидком состоянии применяют в медицине для лечения холодом (криотерапии), а также в кулинарии как хладагент.

Этот элемент также нашел широкое применение в промышленности. Азот - это газ, который взрыво- и пожаробезопасен. Помимо этого, он препятствует гниению и окислению. Сейчас азот используют в шахтах с целью создания взрывобезопасной среды. Газообразный азот применяют в нефтехимии.

В химической промышленности без азота обойтись очень нелегко. Его используют для синтеза различных веществ и соединений, например некоторых удобрений, аммиака, взрывчатых веществ, красителей. Сейчас большое количество азота используют для синтеза аммиака.

В пищевой промышленности это вещество зарегистрировано как пищевая добавка.

Смесь или чистое вещество?

Даже ученые первой половины 18 века, которым удалось выделить химический элемент, думали, что азот - это смесь. Но существует большая разница между этими понятиями.

Имеет целый комплекс постоянных свойств, таких как состав, физические и химические свойства. А смесь - это соединение, в которое входит два или больше химических элемента.

Сейчас мы знаем, что азот - это чистое вещество, так как он является химическим элементом.

При изучении химии очень важно понять, что азот является основой всей химии. Он образует различные соединения, которые всем нам встречаются, это и веселящий газ, и бурый газ, и аммиак, и азотная кислота. Недаром химия в школе начинается именно с изучения такого химического элемента, как азот.

Всем известно: азот инертен. Часто мы сетуем за это на элемент №7, что естественно: слишком дорогой ценой приходится расплачиваться за его относительную инертность, слишком много энергии, сил и средств приходится тратить на его превращение в жизненно необходимые соединения.

Но, с другой стороны, не будь азот так инертен, в атмосфере произошли бы реакции азота с кислородом, и жизнь на пашей планете в тех формах, в которых она существует, стала бы невозможной. Растения, животные, мы с вами буквально захлебывались бы в потоках неприемлемых жизнью окислов и кислот. И «при всем при том» именно в окислы и азотную кислоту мы стремимся превратить возможно большую часть атмосферного азота. Это один из парадоксов элемента №7. (Здесь автор рискует быть обвиненным в тривиальности, ибо парадоксальность азота, вернее его свойств, стала притчей во языцех. И все же...)

Азот – элемент необыкновенный. Порою кажется, что чем больше мы о нем узнаем, тем непонятнее он становится. Противоречивость свойств элемента №7 отразилась даже в его названии, ибо ввела в заблуждение даже такого блистательного химика, как Антуан Лоран Лавуазье. Это Лавуазье предложил назвать азот азотом после того, как не первым и не последним получил и исследовал не поддерживающую дыхания и горения часть воздуха. Согласно Лавуазье, «азот» означает «безжизненный», и слово это произведено от греческого «а» – отрицание и «зоэ» – жизнь.

Термин «азот» бытовал еще в лексиконе алхимиков, откуда и заимствовал его французский ученый. Означал он некое «философское начало», своего рода кабалистическое заклинание. Знатоки утверждают, что ключом к расшифровке слова «азот» служит заключительная фраза из Апокалипсиса: «Я есть альфа и омега, начало и конец, первый и последний...» В средние века особо почитались три языка: латинский, греческий и древнееврейский. И слово «азот» алхимики составили из первой буквы «а» (а, альфа, алеф) и последних букв: «зет», «омега» и «тов» этих трех алфавитов. Таким образом, это таинственное синтетическое слово означало «начало и конец всех начал».

Современник и соотечественник Лавуазье Ж. Шапталь, не мудрствуя лукаво, предложил назвать элемент №7 гибридным латино-греческим именем «нитрогениум», что значит «селитру рождающий». Селитры – азотнокислые соли, вещества, известные с древнейших времен. (О них речь впереди.) Надо сказать, что термин «азот» укоренился только в русском и французском языках. По-английски элемент №7 – «Nitrogen», по-немецки – «Stockton» (удушающее вещество). Химический же символ N – дань шапталевскому нитрогениуму.

Кем открыт азот

Открытие азота приписывают ученику замечательного шотландского ученого Джозефа Блэка Даниелю Резерфорду, который в 1772 г. опубликовал диссертацию «О так называемом фиксируемом и мефитическом воздухе». Блэк прославился своими опытами с «фиксируемым воздухом» – углекислым газом. Он обнаружил, что после фиксирования углекислоты (связывания ее щелочью) остается еще какой-то «не фиксируемый воздух», который был назван «мефитическим» – испорченным – за то, что не поддерживал горения и дыхания. Исследование этого «воздуха» Блэк и предложил Резерфорду в качестве диссертационной работы.

Примерно в то же время азот был получен К. Шееле, Дж. Пристли, Г. Кавендишем, причем последний, как следовало из его лабораторных записей, изучал этот газ раньше Резерфорда, но, как всегда, не спешил с публикацией результатов своих трудов. Однако все эти выдающиеся ученые имели весьма смутное представление о природе открытого ими вещества. Они были убежденными сторонниками теории флогистона и связывали свойства «мефитического воздуха» с этой мнимой субстанцией. Только Лавуазье, ведя наступление на флогистон, убедился сам и убедил других, что газ, который он назвал «безжизненным», – простое вещество, как и кислород...

Вселенский катализатор?

Можно лишь догадываться, что означает «начало и конец всех начал» в алхимическом «азоте». Но об одном из «начал», связанных с элементом №7, можно говорить всерьез. Азот и жизнь – понятия неотделимые. По крайней мере, всякий раз, когда биологи, химики, астрофизики пытаются постичь «начало начал» жизни, то непременно сталкиваются с азотом.

Атомы земных химических элементов рождены в недрах звезд. Именно оттуда, от ночных светил и дневного светила, начинаются истоки нашей земной жизни. Это обстоятельство и имел в виду английский астрофизик У. Фаулер , говоря, что «все мы... являемся частичкой звездного праха»...

Звездный «прах» азота возникает в сложнейшей цепи термоядерных процессов, начальная стадия которых – превращение водорода в гелий. Это многостадийная реакция, идущая, как предполагают, двумя путями. Один из них, получивший название углеродно-азотного цикла, имеет самое непосредственное отношение к элементу №7. Этот цикл начинается, когда в звездном веществе, помимо ядер водорода – протонов, уже есть и углерод. Ядро углерода-12, присоединив еще один протон, превращается в ядро нестабильного азота-13:

12 6 C + 1 1 H → 13 7 N + γ.

Но, испустив позитрон, азот снова становится углеродом – образуется более тяжелый изотоп 13 С:

13 7 N → 13 6 C + е + + γ.

Такое ядро, приняв лишний протон, превращается в ядро самого распространенного в земной атмосфере изотопа - 14 N.

13 6 C + 1 1 H → 14 7 N + γ.

Увы, лишь часть этого азота отправляется в путешествие по Вселенной. Под действием протонов азот-14 превращается в кислород-15, а тот, в свою очередь, испустив позитрон и гамма-квант, превращается в другой земной изотоп азота – 15 N:

14 7 N + 1 1 H → 15 8 O + γ;

15 8 O → 15 7 N + е + + γ.

Земной азот-15 стабилен, но и он в недрах звезды подвержен ядерному распаду; после того, как ядро 15 N примет еще один протон, произойдет не только образование кислорода 16 О, но и другая ядерная реакция:

15 7 N + 1 1 H → 12 6 С + 4 2 He.

В этой цепи превращений азот – один из промежуточных продуктов. Известный английский астрофизик Р.Дж. Тейлер пишет: « 14 N – изотоп, который нелегко построить. В углеродно-азотном цикле образуется азот, и, хотя впоследствии он снова превращается в углерод, все же если процесс протекает стационарно, то азота в веществе оказывается больше, чем углерода. Это, по-видимому, основной источник 14 N»...

В умеренно сложном углеродно-азотном цикле прослеживаются любопытные закономерности. Углерод 12 С играет в нем роль своеобразного катализатора. Судите сами, в конечном счете не происходит изменения количества ядер 12 С. Азот же, появляясь в начале процесса, исчезает в конце... И если углерод в этом цикле – катализатор, то азот явно – аутокатализатор, т.е. продукт реакции, катализирующий ее дальнейшие промежуточные стадии.

Мы не случайно завели здесь речь о каталитических свойствах элемента №7. Но сохранил ли эту особенность звездный азот и в живом веществе? Катализаторы жизненных процессов – ферменты, и все они, равно как и большинство гормонов и витаминов, содержат азот.

Азот в атмосфере Земли

Жизнь многим обязана азоту, но и азот, по крайней мере атмосферный, своим происхождением обязан не столько Солнцу, сколько жизненным процессам. Поразительно несоответствие между содержанием элемента №7 в литосфере (0,01%) и в атмосфере (75,6% по массе или 78,09% по объему). В общем-то, мы обитаем в азотной атмосфере, умеренно обогащенной кислородом.

Между тем ни на других планетах солнечной системы, ни в составе комет или каких-либо других холодных космических объектов свободный азот не обнаружен. Есть его соединения и радикалы – CN * , NH * , NH * 2 , NH * 3 , а вот азота нет. Правда, в атмосфере Венеры зафиксировано около 2% азота, но эта цифра еще требует подтверждения. Полагают, что и в первичной атмосфере Земли элемента №7 не было. Откуда же тогда он в воздухе?

По-видимому, атмосфера нашей планеты состояла вначале из летучих веществ, образовавшихся в земных недрах: Н 2 , Н 2 О, СО 2 , СН 4, NH 3 . Свободный азот если и выходил наружу как продукт вулканической деятельности, то превращался в аммиак. Условия для этого были самые подходящие: избыток водорода, повышенные температуры – поверхность Земли еще не остыла. Так что же, значит, сначала азот присутствовал в атмосфере в виде аммиака? Видимо, так. Запомним это обстоятельство.

Но вот возникла жизнь... Владимир Иванович Вернадский утверждал, что «земная газовая оболочка, наш воздух, есть создание жизни». Именно жизнь запустила удивительнейший механизм фотосинтеза. Один из конечных продуктов этого процесса – свободный кислород стал активно соединяться с аммиаком, высвобождая молекулярный азот:

CO 2 + 2Н 2 О → фотосинтез → НСОН + Н 2 О + О 2 ;

4NH 3 + 3O 2 → 2N 2 + 6Н 2 О.

Кислород и азот, как известно, в обычных условиях между собой не реагируют, что и позволило земному воздуху сохранить «статус кво» состава. Заметим, что значительная часть аммиака могла раствориться в воде при образовании гидросферы.

В наше время основной источник поступления N 2 в атмосферу – вулканические газы.

Если разорвать тройную связь...

Разрушив неисчерпаемые запасы связанного активного азота, живая природа поставила себя перед проблемой: как связать азот. В свободном, молекулярном состоянии он, как мы знаем, оказался весьма инертным. Виной тому – тройная химическая связь его молекулы: N≡N.

Обычно связи такой кратности малоустойчивы. Вспомним классический пример ацетилена: НС = СН. Тройная связь его молекулы очень непрочна, чем и объясняется невероятная химическая активность этого газа. А вот у азота здесь явная аномалия: его тройная связь образует самую стабильную из всех известных двухатомных молекул. Нужно приложить колоссальные усилия, чтобы разрушить эту связь. К примеру, промышленный синтез аммиака требует давления более 200 атм. и температуры свыше 500°C, да еще обязательного присутствия катализаторов... Решая проблему связывания азота, природе пришлось наладить непрерывное производство соединений азота методом гроз.

Статистика утверждает, что в атмосфере нашей планеты ежегодно вспыхивают три с лишним миллиарда молний. Мощность отдельных разрядов достигает 200 млн киловатт, а воздух при этом разогревается (локально, разумеется) до 20 тыс. градусов. При такой чудовищной температуре молекулы кислорода и азота распадаются на атомы, которые, легко реагируя друг с другом, образуют непрочную окись азота:

N 2 + O 2 → 2NО.

Благодаря быстрому охлаждению (разряд молнии длится десятитысячную долю секунды) окись азота не распадается и беспрепятственно окисляется кислородом воздуха до более стабильной двуокиси:

2NO + О 2 → 2NO 2 .

В присутствии атмосферной влаги и капель дождя двуокись азота превращается в азотную кислоту:

3NO 2 + H 2 O → 2HNO 3 + NO.

Так, попав под свежий грозовой дождик, мы получаем возможность искупаться в слабом растворе азотной кислоты. Проникая в почву, атмосферная азотная кислота образует с ее веществами разнообразные естественные удобрения. Азот фиксируется в атмосфере и фотохимическим путем: поглотив квант света, молекула N 2 переходит в возбужденное, активированное состояние и становится способной соединяться с кислородом...

Бактерии и азот

Из почвы соединения азота попадают в растения. Далее: «лошади кушают овес», а хищники – травоядных животных. По пищевой цепи идет круговорот вещества, в том числе и элемента №7. При этом форма существования азота меняется, он входит в состав все более сложных и нередко весьма активных соединений. Но не только «грозорожденный» азот путешествует по пищевым цепям..

Еще в древности было замечено, что некоторые растения, в частности бобовые, способны повышать плодородие почвы.

«...Или, как сменится год, золотые засеивай злаки
Там, где с поля собрал урожай, стручками шумящий,
Или где вика росла мелкоплодная с горьким лупином...»

Вчитайтесь: это же травопольная система земледелия! Строки эти взяты из поэмы Вергилия, написанной около двух тысяч лет назад.

Пожалуй, первым, кто задумался над тем, почему бобовые дают прибавки урожая зерновых, был французский агрохимик Ж. Буссенго. В 1838 г. он установил, что бобовые обогащают почву азотом. Зерновые же (и еще многие другие растения) истощают землю, забирая, в частности, все тот же азот. Буссенго предположил, что листья бобовых усваивают азот из воздуха, но это было заблуждением. В то время немыслимо было предположить, что дело не в самих растениях, а в особых микроорганизмах, вызывающих образование клубеньков на их корнях. В симбиозе с бобовыми эти организмы и фиксируют азот атмосферы. Сейчас это прописная истина...

В наше время известно довольно много различных азотфиксаторов: бактерии, актиномицеты, дрожжевые и плесневые грибки, сине-зеленые водоросли. И все они поставляют азот растениям. Но вот вопрос: каким образом без особых энергетических затрат расщепляют инертную молекулу N 2 микроорганизмы? И почему одни из них обладают этой полезнейшей для всего живого способностью, а другие нет? Долгое время это оставалось загадкой. Тихий, без громов и молний механизм биологической фиксации элемента №7 был раскрыт лишь недавно. Доказано, что путь элементарного азота в живое вещество стал возможен благодаря восстановительным процессам, в ходе которых азот превращается в аммиак. Решающую роль при этом играет фермент нитрогеназа. Его центры, содержащие соединения железа и молибдена, активируют азот для «стыковки» с водородом, который предварительно активируется другим ферментом. Так из инертного азота получается весьма активный аммиак – первый стабильный продукт биологической азотфиксации.

Вот ведь как получается! Сначала процессы жизнедеятельности перевели аммиак первичной атмосферы в азот, а затем жизнь снова превратила азот в аммиак. Стоило ли природе на этом «ломать копья»? Безусловно, потому что именно так и возник круговорот элемента №7.

Залежи селитры и рост народонаселения

Природная фиксация азота молниями и почвенными бактериями ежегодно дает около 150 млн т. соединений этого элемента. Однако не весь связанный азот участвует в круговороте. Часть его выводится из процесса и отлагается в виде залежей селитры. Богатейшей такой кладовой оказалась чилийская пустыня Атакама в предгорьях Кордильер. Здесь годами не бывает дождей. Но изредка на склоны гор обрушиваются сильные ливни, вымывающие почвенные соединения. Потоки воды в течение тысячелетий выносили вниз растворенные соли, среди которых больше всего было селитры. Вода испарялась, соли оставались... Так возникло крупнейшее в мире месторождение азотных соединений.

Еще знаменитый немецкий химик Иоганн Рудольф Глаубер, живший в XVII в., отметил исключительную важность азотных солей для развития растений. В своих сочинениях, размышляя о круговороте азотистых веществ в природе, он употреблял такие выражения, как «нитрозные соки почвы» и «селитра – соль плодородия».

Но природную селитру в качестве удобрения стали применять лишь в начале прошлого века, когда стали разрабатывать чилийские залежи. В то время это был единственный значительный источник связанного азота, от которого, казалось, зависит благополучие человечества. Об азотной же промышленности тогда не могло быть и речи.

В 1824 г. английский священник Томас Мальтус провозгласил свою печально известную доктрину о том, что народонаселение растет гораздо быстрее, чем производство продуктов питания. В это время вывоз чилийской селитры составлял всего около 1000 т в год. В 1887 г. соотечественник Мальтуса, известный ученый Томас Гексли предсказал скорый конец цивилизации из-за «азотного голода», который должен наступить после выработки месторождений чилийской селитры (ее добыча к этому времени составляла уже более 500 тыс. т в год).

Через 11 лет еще один знаменитый ученый сэр Уильям Крукс заявил в Британском обществе содействия наукам, что не пройдет и полувека, как наступит продовольственный крах, если численность народонаселения не сократится. Он также аргументировал свой печальный прогноз тем, что «в скором времени предстоит полное истощение залежей чилийской селитры» со всеми отсюда вытекающими последствиями.

Пророчества эти не оправдались – человечество не погибло, а освоило искусственную фиксацию элемента №7. Более того, сегодня доля природной селитры – лишь 1,5% от мирового производства азотсодержащих веществ.

Как связывали азот

Соединения азота люди умели получать давно. Ту же селитру приготовляли в особых сараях – селитряницах, но очень уж примитивным был этот способ. «Выделывают селитру из куч навоза, золы, помета, оскребков кож, крови, картофельной ботвы. Кучи эти два года поливают мочою и переворачивают, после чего на них образуется налет селитры», – такое описание селитряного производства есть в одной старинной книге.

Источником соединений азота может служить и каменный уголь, в котором до 3% азота. Связанного азота! Этот азот стали выделять при коксовании углей, улавливая аммиачную фракцию и пропуская ее через серную кислоту.

Конечный продукт – сульфат аммония. Но и это, в общем-то, крохи. Трудно даже представить, какими путями развивалась бы наша цивилизация, не реши она вовремя проблему промышленно приемлемой фиксации атмосферного азота.

Впервые атмосферный азот связал еще Шееле. В 1775 г. он получил цианистый натрий, нагревая в атмосфере азота соду с углем:

Na 2 CO 3 + 4С + N 2 → 2NaCN + 3СО.

В 1780 г. Пристли установил, что объем воздуха, заключенный в сосуде, перевернутом над водой, уменьшается, если через него пропускать электрическую искру, а вода приобретает свойства слабой кислоты. Этот эксперимент был, как мы знаем (Пристли этого не знал), моделью природного механизма фиксации азота. Четыре года спустя Кавендиш, пропуская электрический разряд через воздух, заключенный в стеклянной трубке со щелочью, обнаружил там селитру.

И хотя все эти эксперименты не могли в то время выйти за пределы лабораторий, в них виден прообраз промышленных способов фиксации азота – цианамидного и дугового, появившихся на рубеже XIX...XX вв.

Цианамидный способ был запатентован в 1895 г. немецкими исследователями А. Франком и Н. Каро. По этому способу азот при нагревании с карбидом кальция связывался в цианамид кальция:

CaC 2 + N 2 → Ca(CN) 2 .

В 1901 г. сын Франка, подав идею о том, что цианамид кальция может служить хорошим удобрением, по существу, положил начало производству этого вещества. Росту индустрии связанного азота способствовало появление дешевой электроэнергии. Наиболее перспективным способом фиксации атмосферного азота в конце XIX в. считался дуговой, при помощи электрического разряда. Вскоре после строительства Ниагарской электростанции американцы неподалеку пустили (в 1902 г.) первый дуговой завод. Через три года в Норвегии вступила в строй дуговая установка, разработанная теоретиком и специалистом по изучению северного сияния X. Биркеландом и инженером-практиком С. Эйде. Заводы подобного типа получили широкое распространение; селитру, которую они выпускали, называли норвежской. Однако расход электроэнергии при этом процессе был чрезвычайно велик и составлял до 70 тыс. киловатт/час на тонну связанного азота, причем только 3% этой энергии использовалось непосредственно на фиксацию.

Через аммиак

Перечисленные выше способы фиксации азота были лишь подходами к методу, появившемуся незадолго до первой мировой войны. Это о нем американский популяризатор науки Э. Слоссон весьма остроумно заметил: «Всегда говорилось, что англичане господствуют на море, а французы – на суше, немцам же остается только воздух. К этой шутке немцы отнеслись как будто бы серьезно и принялись использовать воздушное царство для нападения на англичан и французов... Кайзер... обладал целым флотом цеппелинов и таким способом фиксации азота, который не был известен никакой другой нации. Цеппелины разрывались, как мешки с воздухом, но заводы, фиксирующие азот, продолжали работать и сделали Германию независимой от Чили не только в годы войны, но и в мирное время»... Речь идет о синтезе аммиака – основном процессе современной индустрии связанного азота.

Слоссон был не совсем прав, говоря о том, что способ фиксации азота в аммиак не был известен нигде, кроме Германии. Теоретические основы этого процесса были заложены французскими и английскими учеными. Еще в 1784 г. знаменитый К. Бертолле установил состав аммиака и высказал мысль о химическом равновесии реакций синтеза и разложения этого вещества. Через пять лет англичанином У. Остином была предпринята первая попытка синтеза NH 3 из азота и водорода. И, наконец, французский химик А. Ле Шателье, отчетливо сформулировав принцип подвижного равновесия, первым синтезировал аммиак. При этом он применил высокое давление и катализаторы – губчатую платину и железо. В 1901 г. Ле Шателье запатентовал этот способ.

Исследования по синтезу аммиака в начале века проводили также Э. Перман и Г. Аткинс в Англии. В своих экспериментах эти исследователи в качестве катализаторов применяли различные металлы, в частности медь, никель и кобальт...

Но наладить синтез аммиака из водорода и азота в промышленных масштабах впервые удалось, действительно, в Германии. В этом заслуга известного химика Фрица Габера . В 1918 г. он был удостоен Нобелевской премии по химии.

Технология производства NH 3 , разработанная немецким ученым, очень сильно отличалась от других производств того времени. Здесь впервые был применен принцип замкнутого цикла с непрерывно действующей аппаратурой и утилизацией энергии. Окончательную разработку технологии синтеза аммиака завершил коллега и друг Габера К. Бош , который в 1931 г. также был удостоен Нобелевской премии – за развитие методов химического синтеза при высоких давлениях.

По пути природы

Синтез аммиака стал еще одной моделью природной фиксации элемента №7. Напомним, что микроорганизмы связывают азот именно в NH 3 . При всех достоинствах процесса Габера – Боша он выглядит несовершенным и громоздким по сравнению с природным!

«Биологическая фиксация атмосферного азота... была неким парадоксом, постоянным вызовом для химиков, своего рода демонстрацией недостаточности наших знаний». Эти слова принадлежат советским химикам М.Е. Вольпину и А.Е. Шилову, которые предприняли попытку фиксации молекулярного азота в мягких условиях.

Сначала были неудачи. Но в 1964 г. в Институте элементоорганических соединении АН СССР, в лаборатории Вольпина, было сделано открытие: в присутствии соединений переходных металлов – титана, ванадия, хрома, молибдена и железа – элемент №7 активируется и при обычных условиях образует комплексные соединения, разлагаемые водой до аммиака. Именно эти металлы служат и центрами фиксации азота в ферментах азотфиксаторов, и прекрасными катализаторами в производстве аммиака.

Вскоре после этого канадские ученые А. Аллен и К. Зеноф, исследуя реакцию гидразина N 2 H 2 с треххлористым рутением, получили химический комплекс, в котором, опять же в мягких условиях, азот оказался связанным. Этот результат настолько противоречил обычным представлениям, что редакция журнала, куда исследователи послали свою статью с сенсационным сообщением, отказалась ее печатать. В дальнейшем советским ученым удалось в мягких условиях получить и азотсодержащие органические вещества. Пока еще рано говорить о промышленных способах мягкой химической фиксации атмосферного азота, однако, достигнутые успехи позволяют предвидеть надвигающуюся революцию в технологии связывания элемента №7.

Современной наукой не забыты и старые способы получения азотных соединений через окислы. Здесь главные усилия направлены на разработку технологических процессов, ускоряющих расщепление молекулы N 2 на атомы. Наиболее перспективными направлениями окисления азота считают сжигание воздуха в специальных печах, применение плазмотронов, использование для этих целей пучка ускоренных электронов.

Чего бояться?

Сегодня нет оснований опасаться, что человечество когда-либо будет испытывать недостаток в соединениях азота. Промышленная фиксация элемента №7 прогрессирует невероятными темпами. Если в конце 60-х годов мировое производство связанного азота составляло 30 млн т., то к началу будущего века оно, по всей вероятности, достигнет миллиарда тонн!

Такие успехи не только радуют, но и вызывают опасения. Дело в том, что искусственная фиксация N 2 и внесение в почву огромного количества азотсодержащих веществ – самое грубое и значительное вмешательство человека в естественный круговорот веществ. В наше время азотные удобрения не только вещества плодородия, но и загрязнители окружающей среды. Они вымываются из почвы в реки и озера, вызывают вредное цветение водоемов, разносятся воздушными потоками на дальние расстояния...

В подземные воды уходит до 13% азота, содержащегося в минеральных удобрениях. Азотные соединения, особенно нитраты, вредны для людей и могут быть причиной отравлений. Вот вам и кормилец-азот!

Всемирная организация здравоохранения (ВОЗ) приняла предельно допустимую концентрацию нитратов в питьевой воде: 22 мг/л для умеренных широт и 10 мг/л для тропиков. В СССР санитарные нормы регламентируют содержание нитратов в воде водоемов по «тропическим» меркам – не более 10 мг/л. Выходит, что нитраты средство «обоюдоострое»...

4 октября 1957 г. человечество еще раз вмешалось в круговорот элемента №7, запустив в космос «шарик», заполненный азотом, – первый искусственный спутник...

Менделеев об азоте

«Хотя деятельнейшую, т.е. наиболее легко и часто химически действующую часть окружающего нас воздуха, составляет кислород, но наибольшую массу его, судя как по объему, так и по весу, образует азот; а именно газообразный азот составляет более 3 / 4 , хотя и менее 4 / 5 объема воздуха. А так как азот лишь немногим легче кислорода, то весовое содержание азота в воздухе составляет около 3 / 4 всей его массы. Входя в таком значительном количестве в состав воздуха, азот, по-видимому, не играет особо видной роли в атмосфере, химическое действие которой определяется преимущественно содержанием в ней кислорода. Но правильное представление об азоте получается только тогда, когда узнаем, что в чистом кислороде животные не могут долго жить, даже умирают, и что азот воздуха, хотя лишь медленно и мало-помалу, образует разнообразные соединения, часть которых играет важнейшую роль в природе, особенно в жизни организмов».

Где применяют азот

Азот – самый дешевый из всех газов, химически инертных в обычных условиях. Его широко применяют в химической технологии для создания неокислительных сред. В лабораториях в атмосфере азота хранят легко окисляющиеся соединения. Выдающиеся произведения живописи иногда (в хранилищах или при транспортировке) помещают в герметические футляры, заполненные азотом, – чтобы предохранить краски от влаги и химически активных компонентов воздуха.

Значительной бывает роль азота в металлургии и при металлообработке. Различные металлы в расплавленном состоянии реагируют на присутствие азота по-разному. Медь, например, абсолютно инертна по отношению к азоту, поэтому изделия из меди часто сваривают в струе этого газа. Магний, напротив, при горении на воздухе дает соединения не только с кислородом, но и с азотом. Так что для работы с изделиями из магния при высоких температурах азотная среда неприменима. Насыщение азотом поверхности титана придает металлу большую прочность и износостойкость – на ней образуется очень прочный и химически инертный нитрид титана. Эта реакция идет лишь при высоких температурах.

При обыкновенной температуре азот активно реагирует только с одним металлом – литием.

Наибольшее количество азота идет на производство аммиака.

Азотный наркоз

Распространенное мнение о физиологической инертности азота не совсем правильно. Азот физиологически инертен при обычных условиях.

При повышенном давлении, например при погружении водолазов, растет концентрация растворенного азота в белковых и особенно жировых тканях организма. Это приводит к так называемому азотному наркозу. Водолаз словно пьянеет: нарушается координация движений, мутится сознание. В том, что причина этого – азот, ученые окончательно убедились после проведения экспериментов, в которых вместо обычного воздуха в скафандр водолаза подавалась гелио-кислородная смесь. При этом симптомы наркоза исчезли.

Космический аммиак

Большие планеты солнечной системы Сатурн и Юпитер состоят, как полагают астрономы, частично из твердого аммиака. Аммиак замерзает при –78°C, а на поверхности Юпитера, например, средняя температура – 138°C.

Аммиак и аммоний

В большой семье азота есть странное соединение – аммоний NH 4 . В свободном виде он нигде не встречается, а в солях играет роль щелочного металла. Название «аммоний» предложил в 1808 г. знаменитый английский химик Хэмфри Дэви. Латинское слово ammonium когда-то означало: соль из Аммонии. Аммония – область в Ливии. Там находился храм египетского бога Аммона, по имени которого и называли всю область. В Аммонии издавна получали аммонийные соли (в первую очередь нашатырь), сжигая верблюжий навоз. При распаде солей получался газ, который сейчас называют аммиаком.

С 1787 г. (в том самом году, когда был принят термин «азот») комиссия по химической номенклатуре дала этому газу имя ammoniaque (аммониак). Русскому химику Я.Д. Захарову это название показалось слишком длинным, и в 1801 г. он исключил из него две буквы. Так получился аммиак.

Веселящий газ

Из пяти окислов азота два – окись (NO) и двуокись (NO 2) – нашли широкое промышленное применение. Два других – азотистый ангидрид (N 2 O 3) и азотный ангидрид (N 2 O 5) – не часто встретишь и в лабораториях. Пятый – закись азота (N 2 O). Она обладает весьма своеобразным физиологическим действием, за которое ее часто называют веселящим газом.

Выдающийся английский химик Хэмфри Дэви с помощью этого газа устраивал специальные сеансы. Вот как описывал действие закиси азота один из современников Дэви: «Одни джентльмены прыгали по столам и стульям, у других развязались языки, третьи обнаружили чрезвычайную склонность к потасовке».

Свифт смеялся напрасно

Выдающийся писатель-сатирик Джонатан Свифт охотно издевался над бесплодием современной ему науки. В «Путешествиях Гулливера», в описании академии Лагадо, есть такое место: «В его распоряжении были две большие комнаты, загроможденные самыми удивительными диковинами; пятьдесят помощников работали под его руководством. Одни сгущали воздух в сухое плотное вещество, извлекая из него селитру...»

Сейчас селитра из воздуха – вещь абсолютно реальная. Аммиачную селитру NH 4 NO 3 действительно делают из воздуха и воды.

Бактерии связывают азот

Идею о том, что некоторые микроорганизмы могут связывать азот воздуха, первым высказал русский физик П. Коссович. Русскому биохимику С.Н. Виноградскому первому удалось выделить из почвы один вид бактерий, связывающих азот.

Растения разборчивы

Дмитрий Николаевич Прянишников установил, что растение, если ему предоставлена возможность выбора, предпочитает аммиачный азот нитратному. (Нитраты – соли азотной кислоты).

Важный окислитель

Азотная кислота HNO 3 – один из самых важных окислителей, применяемых в химической промышленности. Первым ее приготовил, действуя серной кислотой на селитру, один из крупнейших химиков XVII в. Иоганн Рудольф Глаубер.

Среди соединений, получаемых сейчас с помощью азотной кислоты, многие совершенно необходимые вещества: удобрения, красители, полимерные материалы, взрывчатые вещества.

Двойная роль

Некоторые азотсодержащие соединения, применяемые в агрохимии, выполняют двоякие функции. Например, цианамид кальция хлопкоробы применяют как дефолиант – вещество, вызывающее опадение листьев перед уборкой урожая. Но это соединение одновременно служит и удобрением.

Азот в ядохимикатах

Далеко не все вещества, в состав которых входит азот, способствуют развитию любых растений. Аминные соли феноксиуксусной и трихлорфеноксиуксусной кислот – гербициды. Первая подавляет рост сорняков на полях злаковых культур, вторая применяется для очистки земель под пашни – уничтожает мелкие деревья и кустарники.

Полимеры: от биологических до неорганических

Атомы азота входят в состав многих природных и синтетических полимеров – от белка до капрона. Кроме того, азот – важнейший элемент безуглеродных, неорганических полимеров. Молекулы неорганического каучука – полифосфонитрилхлорида – это замкнутые циклы, составленные из чередующихся атомов азота и фосфора, в окружении ионов хлора. К неорганическим полимерам относятся и нитриды некоторых металлов, в том числе и самое твердое из всех веществ – боразон.