Одноклеточные зелёные водоросли. Доклад: Одноклеточные зелёные водоросли

Водоросли обнаруживаются повсеместно во всех пригодных для жизни местообитаниях. В пресноводных водоемах водоросли чаще всего имеют микроскопические размеры, но в морях встречаются во­доросли, достигающие десятков метров в длину.

Обитают водоросли в водоемах любого типа, но некоторые приспособились к жизни на суше (в почве и на ее поверхности, на камнях и скалах, стволах де­ревьев и т.д.). Одни из них свободно (активно или пассивно) переме­щаются в толще воды, другие ведут прикрепленный образ жизни.

Водоросли - это разнородная в таксономическом отношении группа организмов, которые возникли и эволюционировали незави­симо друг от друга. Водоросли - это фотосинтезирующие организ­мы, выделяющие кислород, которые обитают преимущественно в во­де. Тело водорослей представлено талломом, или слоевищем, а не разделяется на многоклеточные вегетативные органы. Для водорослей характерны одноклеточные органы размножения (спороношения и полового размножения). В настоящее время эта группа объединяет примерно 35^40 тысяч видов.

По строению тела водоросли делятся на одноклеточные, колони­альные и многоклеточные. Клетки многих водорослей по своему строению похожи на растительные, то есть у них имеются клеточная стенка, вакуоль с клеточным соком и хлоропласты, которые у водо­рослей называются хроматофорами. В хроматофорах находятся пиг­ментные системы, в состав которых входят хлорофиллы и каротинои­ды. Комбинации этих пигментов обусловливают окраску талломов водорослей. Некоторые водоросли утратили способность к фотосин­тезу и полностью перешли на гетеротрофный тип питания.

Размножение у водорослей может происходить тремя способами: вегетативным (деление клетки пополам, фрагментами колоний и ни­тей, специализированными структурами), бесполым (подвижными зооспорами и неподвижными апланоспорами) и половым путем с уча­стием гамет. Половой процесс у водорослей бывает трех типов: изо­гамия, при которой происходит слияние подвижных гамет, одинако­вых по размеру и форме; гетерогамия, при которой сливаются под­вижные гаметы, имеющие одинаковую форму, но отличающиеся по размерам; оогамия, когда сливается неподвижная крупная женская гамета (яйцеклетка) с мелким подвижным сперматозоидом. Отдель­ным типом полового процесса является конъюгация. При конъюгации сливаются протопласты двух гаплоидных вегетативных клеток и об­разуется диплоидная зигота.

Строение и жизнедеятельность одноклеточных водорослей

могут быть рассмотрены на примере хламидомонады и хлореллы.

Хламидомонада - зеленая водоросль, которая обитает в лужах и других мелких водоемах. По форме клетки эта водоросль напоминает каплю. Снаружи клетка хламидомонады покрыта клеточной стенкой, состоящей из пектина. Водоросль передвигается в воде с помощью двух одинаковых жгутиков, расположенных на переднем конце клет­ки. Большую часть клетки занимает чашевидный хроматофор. Ближе к переднему концу в нем расположен красный глазок, который вос­принимает свет. В хроматофоре происходит процесс фотосинтеза и откладывается запасной полисахарид - крахмал. В цитоплазме клет­ки расположены ядро и две сократительные вакуоли. Вакуоль с кле­точным соком у хламидомонады отсутствует. Размножение у хлами­домонады бесполое и половое. Бесполое размножение осу­ществляется с помощью зооспор, которые формируются внутри мате­ринской клетки. Чаще всего формируется 2-4-8 двужгутиковых зоо­спор, каждая из которых после выхода в воду дорастает до размеров взрослой особи. При половом размножении под оболочкой материн­ской клетки образуются двужгутиковые гаметы, которые попарно сливаются и образуют зиготу. Зигота покрывается толстой оболочкой и зимует. Весной ядро в ней мейотически делится, и в результате формируются четыре молодые гаплоидные хламидомонады. Таким образом, большая часть жизненного цикла хламидомонады протекает в гаплоидной стадии, диплоидной у нее является только зигота.

В пресных и соленых водоемах, а также в почве и на ее поверхно­сти встречается одноклеточная зеленая водоросль хлорелла. Ее клетка имеет шаровидную форму, покрыта плотной целлюлозной оболочкой. В цитоплазме находится ядро и крупный чашевидный хроматофор.

Хлорелла размножается только бесполым путем с помощью округлых неподвижных апланоспор. Хлорелла - удобный объект для научных исследований, с ее помощью активно изучаются многие процессы, происходящие в фотосинтезирующих клетках. Ее использовали на космических кораблях для регенерации воздуха и утилизации органи­ческих остатков в замкнутых системах жизнеобеспечения.

Представителями нитчатых водорослей являются улотрикс и спирогира.

Нитчатая зеленая водоросль улотрикс обитает преимущественно в пресных водоемах и образует зеленый налет на подводных предметах. К субстрату нить улотрикса прикрепляется с помощью одной бес­цветной базальной клетки (ризоида). Нити улотрикса не ветвятся и состоят из коротких одинаковых клеток. В цитоплазме клетки распо­ложены ядро и хроматофор в виде незамкнутого кольца. Большая часть клетки занята вакуолью с клеточным соком. Размножается улотрикс вегетативным, бесполым и половым путем. Четырехжгути­ковые зооспоры формируются внутри клеток улотрикса, выходят в воду, плавают, затем прикрепляются к подводным предметам и начи­нают делиться, формируя новые нити. В результате первого деления образуются две разнокачественные клетки: одна бесцветная (ризоид), другая зеленая. При делении последней происходит нарастание нити тела водоросли. При половом размножении в клетках образуются двужгутиковые гаметы. Половой процесс изогамный. Выйдя из мате­ринской клетки, гаметы сливаются в воде, образуя четырехжгутико­вую зиготу, которая, проплавав определенное время, одевается обо­лочкой. После периода покоя в зиготе в результате мейотического деления формируются 4 гаплоидные зооспоры, которые после выхода в воду прорастают в новые нити. Таким образом, большую часть жиз­ненного цикла улотрикс проводит в гаплоидном состоянии, диплоид­на у него только зигота.

Другая широко распространенная зеленая нитчатая водоросль - спирогира образует скопления зеленой тины в пресных водоемах. Ни­ти ее не ветвятся, состоят из крупных цилиндрических клеток, одетых целлюлозной оболочкой и слизью. В центре клетки расположена крупная вакуоль с клеточным соком, в которой на цитоплазматиче­ских нитях подвешено ядро. Хроматофор спирально закрученный. В одной клетке могут быть несколько хроматофоров. Размножается спирогира вегетативным (при разрывах нитей) и половым способом.

Половой процесс у спирогиры протекает по типу конъюгации. При этом сливается содержимое вегетативных клеток двух рядом распо­ложенных нитей. Образующаяся диплоидная зигота одевается обо­лочками и превращается в зимующую стадию. Весной ядро претерпе­вает мейотическое деление, три гаплоидных ядра отмирают, и вырастает только одна новая гаплоидная нить спирогиры.

Водоросли, которые обитают в морях, могут быть одноклеточ­ными, колониальными и многоклеточными. Наиболее крупные талло­мы имеют бурые, красные и зеленые водоросли. Бурые водоросли яв­ляются многоклеточными организмами с желто-бурой окраской, которая обусловлена наличием большого количества желтых и бурых пигментов. Наиболее густые заросли бурые водоросли образуют до глубины 15 м, хотя могут заходить и до глубины 40-100 м. В северных и умеренных широтах произрастает одна из самых распространенных бурых водорослей - ламинария, или морская капуста, таллом которой может достигать в длину 20 м. В ее талломе содержится много амино­кислоты метионина, йода, углеводов, минеральных веществ и витами­нов, по содержанию которых она может превосходить многие овощи и кормовые травы. В жизненном цикле ламинарии происходит чередо­вание бесполого и полового поколений. Эту водоросль культивируют в северных морях России и странах Юго-Восточной Азии.

Красные водоросли, или багрянки, в основном обитают в морях. Они называются так из-за окраски таллома, которая меняется в зави­симости от соотношения пигментов от темно-малинового, розового до голубовато-зеленого или желтого цвета. Наличие красного пиг­мента позволяет красным водорослям обитать на больших глубинах (до 200 м). Это самые глубоководные водоросли. Их многоклеточные слоевища имеют вид красивых сложнорассеченных пластинок, иногда кустиков, напоминающих кораллы, но некоторые представители мо­гут состоять из единственной клетки или образовывать колонии. В состав клеточной стенки красных водорослей помимо целлюлозы входит агар. Многие багрянки съедобны.

Значение водорослей в природе и хозяйстве многообразно. Во­доросли способны синтезировать органические вещества из неорга­нических в процессе фотосинтеза. В водных экосистемах они чаще всего выполняют роль продуцентов, то есть несут ту же функцию, что и зеленые растения на суше. Это начальное звено в цепях питания.

В процессе фотосинтеза они выделяют большое количество ки­слорода. Кислород растворяется в воде и используется для дыхания другими организмами.

Заросли водорослей служат местом обитания, укрытия и размно­жения многих животных, то есть водоросли формируют разнообраз­ные водные биотопы.

При наступлении благоприятных внешних условий некоторые во­доросли способны массово размножаться и вызывать цветение воды. Зеленое цветение воды в канавах, лужах и ямах чаще всего обуслов­лено размножением эвгленовых водорослей. Большой урон рыболов­ству наносят красные приливы - цветение морей, вызванное рядом микроскопических одноклеточных водорослей (отсюда название - Красное море). Водоросли, вызывающие «красные приливы», выде­ляют вещества, токсичные для животных и человека.

Почвенные водоросли участвуют в формировании структуры поч­вы, обеспечивают частично ее плодородие, насыщают почву кислоро­дом, принимают участие в формировании ряда горных и осадочных пород.

Водоросли широко употребляют в пищу (виды рода порфира, ла­минария). Ряд видов успешно культивируют.

Красные водоросли используют для получения агара. Он обладает желирующими свойствами и используется для изготовления желе, пастилы, суфле, ряда конфет и других продуктов, а в микробиологии для приготовления сред, на которых выращиваются микроорганизмы.

Бурые водоросли - единственный источник получения альгина­тов - соединений альгиновой кислоты, которые используют в пище­вой промышленности.

Ряд водорослей (ламинарии, фукусы, аскофиллум) идет на корм скоту и получение удобрений.

Водоросли применяются в медицине при лечении ряда заболева­ний. В последние годы препараты из водорослей применяют для вы­ведения радионуклидов.

Некоторые водоросли используют в качестве индикаторных орга­низмов для определения степени загрязнения водоемов. Используют их и для очистки сточных вод.

Многие водоросли служат хорошими модельными объектами для научных исследований.

Выберите один правильный ответ.

1. У водорослей не бывает

2) листьев

4) ни стебля, ни листьев, ни корней

2. Хроматофор - это

1) оболочка клетки водоросли

2) хлоропласт водоросли

3) орган размножения водоросли

4) листовая пластинка бурых водорослей

3. Водоросли размножаются

1) вегетативно

2) зооспорами

3) половым путем

4) всеми перечисленными выше способами

4. Половое размножение не обнаружено у

1) спирогиры 3) хламидомонады

2) хлореллы 4) ламинарии

5. При бесполом размножении хламидомонады она образует

1) одну зооспору

2) шесть зооспор

3) восемь зооспор

4) неопределенное большое количество зооспор

6. Хламидомонада размножается половым путем

1) в неблагоприятных условиях

2) в благоприятных условиях

3) постоянно, независимо от внешних условий

4) только в лабораторных условиях

7. Половой процесс называется конъюгацией у

1) хламидомонады 3) хлореллы

2) ламинарии 4) спирогиры

8. Многоклеточной водорослью является

1) хламидомонада 3) спирогира

2) хлорелла 4) пиннулария

9. Одноклеточной водорослью является

1) ламинария 3) хламидомонада

2) фукус 4) спирогира

10. К нитчатым водорослям не относится

1) улотрикс 3) кладофора

2) ламинария 4) спирогира

11. Хлорофилл в клетках спирогиры расположен в

1) многочисленных пластидах

2) шаровидном хроматофоре

3) ленточном хроматофоре

4) цитоплазме в растворенном виде

12. Хроматофор в виде незамкнутого кольца имеет

1) хламидомонада 3) хлорелла

2) спирогира 4) улотрикс

13. Ризоиды водорослей служат для

1) дыхания

2) вегетативного размножения

3) прикрепления к субстрату

4) фотосинтеза

14. К отделу бурых водорослей относится

1) хламидомонада

2) ламинария

3) хлорелла

4) спирогира

15. По типу питания водоросли, как правило, относятся к

16. К нитчатым водорослям относится

1) десмококкус 4) спирогира
2) хламидомонада 5) улотрикс
3) хлорелла 6) кладофора
17. Многоклеточной зеленой водорослью является
1) хламидомонада 4) спирогира
2) хлорелла 5) кладофора
3) улотриКС 6) ламинария
18. В клетках водорослей могут содержаться следующие пигменты
1) гемоглобин 4) каротин
2) гемоцианин 5) миоглобин
3) хлорофилл 6) билирубин
19. Частями таллома может делиться
1) хламидомонада 4) спирогира
2) хлорелла 5) улотрикс
3) пиннулария 6) кладофора
20. Хлорофилл содержит
1) ламинария 4) хлорелла
2) фукус 5) анфельция
3) улотрикс 6) спирогира
21. Установите соответствие между названием водоросли и типом
к которому она относится.
Название водоросли Тип водорослей
1) десмококкус А) красные водоросли
2) кладофора Б) зеленые водоросли
3) ламинария В) бурые водоросли
4) фукус
5) цистозейра
6) порфира

Зеленые водоросли - самый обширный из всех отделов водорослей, насчитывающий по разным оценкам от 4 до 13 - 20 тысяч видов. Все они имеют зеленый цвет слоевищ, что обусловлено преобладанием в хлоропластах хлорофилла a и b над другими пигментами. Клетки некоторых представителей зеленых водорослей (Хламидомонас, Трентеполия, Гематококкус ) окрашены в красный или оранжевый цвета, что связано с накоплением вне хлоропласта каротиноидных пигментов и их производных.

В морфологическом отношении они отличаются большим разнообразием. Среди зеленых водорослей встречаются одноклеточные, колониальные, многоклеточные и неклеточные представители, активно подвижные и неподвижные, прикрепленные и свободноживущие. Чрезвычайно велик и диапазон их размеров - от нескольких микрометров (что сравнимо по размерам с бактериальными клетками) до 1–2 метров.

Клетки одноядерные или многоядерные, с одним или несколькими хроматофорами, содержащими хлорофилл и каротиноиды. Хлоропласты покрыты двумя мембранами и обычно имеют стигму, или глазок, - фильтр, проводящий синий и зеленый свет к фоторецептору. Глазок состоит из нескольких рядов липидных глобул. Тилакоиды - структуры, где локализованы фотосинтетические пигменты - собраны в стопки (ламеллы) по 2–6. В переходной зоне жгутиков есть звездчатое образование. Жгутиков чаще всего два. Основной компонент клеточной стенки – целлюлоза.

У хлорофит встречаются различные типы питания: фототрофное, миксотрофное и гетеротрофное. Запасной полисахарид зеленых водорослей – крахмал – откладывается внутри хлоропласта. Хлорофиты также могут накапливать липиды, которые откладываются в виде капель в строме хлоропласта и в цитоплазме.

Многоклеточные слоевища нитевидные, трубчатые, пластинчатые, кустистые или иного строения и разнообразной формы. Из известных типов организации таллома у зеленых водорослей отсутствует только амебоидный.

Они широко распространены в пресных и морских водах, в почве и в наземных местообитаниях (на почве, скалах, коре деревьев, стенах домов и пр.). В морях распространено около 1/10 от общего количества видов, которые растут обычно в верхних слоях воды до 20 м. Среди них есть планктонные, перифитонные и бентосные формы. Иначе говоря, зеленые водоросли освоили три основных среды обитания живых организмов: воду – землю – воздух.

Зеленые водоросли обладают положительным (движение к источнику света) и отрицательным (движение от яркого источника света) фототаксисом. Кроме интенсивности освещения, на фототаксис влияет температура. Положительным фототаксисом при температуре 160°С обладают зооспоры видов родов Гематококкус, Улотрикс, Ульва , а также отдельные виды десмидиевых водорослей, у которых движение клеток осуществляется за счет выделения слизи через поры в оболочке.

Размножение. Для зеленых водорослей характерно наличие всех известных способов размножения: вегетативное, бесполое и половое.

Вегетативное размножение у одноклеточных форм происходит делением клетки пополам. Колониальные и многоклеточные формы хлорофит размножаются частями тела (слоевища, или таллома).

Бесполое размножение у зеленых водорослей представлено широко. Осуществляется чаще подвижными зооспорами, реже неподвижными апланоспорами и гипноспорами. Клетки, в которых образуются споры (спорангии), в большинстве случаев ничем не отличаются от остальных вегетативных клеток таллома, реже они имеют иную форму и более крупные размеры. Формирующиеся зооспоры могут быть голыми или покрытыми жесткой клеточной стенкой. Количество жгутиков у зооспор варьирует от 2 до 120. Зооспоры разнообразной формы: шаровидные, эллипсоидные или грушевидные, одноядерные, лишенные обособленной оболочки, с 2–4 жгутиками на переднем, более заостренном конце и хлоропластом в расширенном заднем конце. Обычно они имеют пульсирующие вакуоли и стигму. Зооспоры образуются одиночно или, чаще, в числе нескольких из внутреннего содержимого материнской клетки, выходят наружу через образующееся в оболочке круглое или щелевидное отверстие, реже вследствие ее общего ослизнения. В момент выхода из материнской клетки зооспоры иногда окружены тонким слизистым пузыре, в скором времени расплывающимся (род Улотрикс).

У многих видов вместо зооспор или наряду с ними образуются неподвижные споры – апланоспоры. Апланоспоры - споры бесполого размножения, у которых отсутствуют жгутики, но имеются сократительные вакуоли. Апланоспоры рассматривают как клетки, у которых приостановлено дальнейшее развитие в зооспоры. Они также возникают из протопласта клетки в числе одной или нескольких, но не вырабатывают жгутиков, а, приняв шаровидную форму, одеваются собственной оболочкой, в образовании которой оболочка материнской клетки не участвует. Апланоспоры освобождаются вследствие разрыва или ослизнения оболочек материнских клеток и прорастают после некоторого периода покоя. Апланоспоры с очень толстыми оболочками называются гипноспорами. Они обычно принимают на себя функцию покоящейся стадии. У автоспор, которые представляют собой уменьшенные копии неподвижных вегетативных клеток, отсутствуют сократительные вакуоли. Образование автоспор коррелирует с завоеванием наземных условий, в которых вода не может всегда присутствовать в достаточном количестве.

Половое размножение осуществляется гаметами, возникающих в неизмененных, слегка измененных или значительно преобразованных клетках – гаметангиях. Подвижные гаметы монадного строения, двужгутиковые. Половой процесс у зеленых водорослей представлен различными формами: гологамия, конъюгация, изогамия, гетерогамия, оогамия. При изогамии гаметы морфологически совершенно подобны друг другу и различия между ними являются чисто физиологическими. Зигота одевается толстой оболочкой, нередко со скульптурными выростами, содержит большое количество запасных веществ и прорастает сразу или после некоторого периода покоя. При прорастании содержимое зиготы у большинства видов делится на четыре части, которые выходят из оболочки и прорастают в новые особи. Значительно реже гаметы развиваются в новый организм без слияния, сами по себе, без образования зиготы. Такое размножение называется партеногенезом , а споры, образующиеся из отдельных гамет, – партеноспорами .

При гетерогамии обе гаметы различаются между собой по величине и иногда по форме. Более крупные гаметы, часто менее подвижные, принято считать женскими, меньшие по величине и более подвижные – мужскими. В одних случаях различия эти невелики, и тогда говорят просто о гетерогамии, в других весьма значительны.

Если женская гамета неподвижна и напоминает больше яйцеклетку, то подвижная мужская становится сперматозоидом, а половой процесс получает название оогамии. Гаметангии, в которых возникают яйцеклетки, называются оогониями, от вегетативных клеток они отличаются как по форме, так и по величине. Гаметангии, в которых образуются сперматозоиды, называются антеридиями . Зигота, получившаяся в результате оплодотворения яйцеклетки сперматозоидом, формирует толстую оболочку и называется ооспорой .

При типичной оогамии яйцеклетки крупные, неподвижные и развиваются чаще всего по одной в оогонии, сперматозоиды мелкие, подвижные, образуются в антеридии в большом количестве. Оогонии и антеридии могут развиваться на одной особи, в этом случае водоросли однодомные; если они развиваются на разных особях – двудомные. Оплодотворенная яйцеклетка одевается толстой бурой оболочкой; нередко соседние с ней клетки дают короткие веточки, которые обрастают ооспору, оплетая ее однослойной корой.

Жизненные циклы . У большинства представителей зеленых водорослей жизненный цикл гаплобионтный с зиготической редукцией. У таких видов диплоидной стадией является только зигота – клетка, получающаяся в результате оплодотворения яйцеклетки сперматозоидом. Другой тип жизненного цикла – гаплодиплобионтный со спорической редукцией – встречается у Ульвовых, Кладофоровых и некоторых Трентеполиевых. Для этих водорослей характерно чередование диплоидного спорофита и гаплоидного гаметофита. Гаплодиплобионтный жизненный цикл с соматической редукцией известен только у Празиолы . Наличие диплобионтного жизненного цикла у Бриопсидовых и Дазикладиевых подвергается сомнению.

У некоторых Улотриксовых одна и та же особь может давать начало как зооспорам, так и гаметам. В других случаях зооспоры и гаметы образуются на разных особях, т.е. жизненный цикл водорослей включает в себя как половую (гаметофит), так и бесполую (спорофит) форму развития. Спорофит обычно диплоидный, т.е. имеет в клетках двойной набор хромосом, гаметофит гаплоидный, т.е. имеет одинарный набор хромосом. Это наблюдается в тех случаях, когда мейоз происходит при образовании спор (спорическая редукция) и часть жизненного цикла водоросли от зиготы до образования спор проходит в диплофазе, а часть от споры до образования гамет в гаплофазе. Такой цикл развития характерен для видов рода Ульва.

В пределах Улотриксовых водорослей широко распространена зиготическая редукция, когда мейоз происходит при прорастании зиготы. Диплоидной в этом случае оказывается только зигота, весь остальной жизненный цикл протекает в гаплофазе. Значительно реже встречается гаметическая редукция, когда мейоз происходит при образовании гамет. В этом случае гаплоидными являются только гаметы, а весь остальной цикл диплоидный.

Систематика

До сих пор отсутствует единая устоявшаяся система зеленых водорослей, особенно в отношении группировки порядков в различные предлагаемые классы. Очень долго типу дифференциации таллома придавали основное значение при выделении порядков у зеленых водорослей. Однако в последнее время в связи с накоплением данных об ультраструктурных особенностях жгутиковых клеток, типе митоза и цитокинеза и др. очевидна гетерогенность многих таких порядков.

Отдел включает 5 классов: Ульвофициевые– Ulvophyceae, Брипсодовые – Bryopsidophyceae, Хлорофициевые – Chlorophyceae , Требуксиевые –Trebouxiophyceae , Празиновые – Prasinophyceae .

Класс Ульвофициевые – Ulvophyceae

Известно около 1 тысячи видов. Название класса происходит от типового рода Ulva . Включает виды с нитчатым и пластинчатым талломом. Жизненные циклы разнообразны. Виды преимущественно морские, реже пресноводные и наземные. Некоторые входят в состав лишайников. У морских представителей в клеточных стенках может откладываться известь.

Порядок Улотриксовые – Ulotrichales .

Род Улотрикс (рис. 54). Виды Улотрикса обитают чаще в пресных, реже в морских, солоноватых водоемах и в почве. Они прикрепляются к подводным предметам, формируя ярко-зеленые кустики размером до 10 см и более. Неразветвленные нити Улотрикса , состоящие из одного ряда цилиндрических клеток с толстыми целлюлозными оболочками, прикрепляются к субстрату бесцветной конической базальной клеткой, выполняющей функции ризоида. Характерным является строение хроматофора, который имеет вид постенной пластинки, образующей незамкнутый поясок или кольцо (цилиндр).

Рис. 54. Улотрик c (по:): 1 – нитчатый таллом, 2 – зооспора, 3 – гамета, 4 – копуляция гамет

Бесполое размножение Улотрикса осуществляется 2 следующими способами: распадением нити на короткие участки, развивающиеся в новую нить, или образованием в клетках четырехжгутиковых зооспор. Зооспоры выходят из материнской клетки, сбрасывают один за другим жгутики, прикрепляются боком к субстрату, покрываются тонкой целлюлозной оболочкой и прорастают в новую нить. Половой процесс изогамный. После оплодотворения зигота вначале плавает, затем оседает на дно, теряет жгутики, вырабатывает плотную оболочку и слизистую ножку, которой прикрепляется к субстрату. Это покоящийся спорофит. После периода покоя происходит редукционное деление ядра и зигота прорастает зооспорами. Так в жизненном цикле Улотрикса происходит чередование поколений, или смена половой и бесполой форм развития: нитчатый многоклеточный гаметофит (поколение, формирующее гаметы) сменяется одноклеточным спорофитом – поколением, которое представлено своеобразной зиготой на ножке и способно образовывать споры.

Порядок Ульвовые - Ulvales . Имеют пластинчатое, мешковидное, трубчатое или, редко, нитчатое слоевище всевозможных оттенков зеленого цвета. По краю пластины могут быть волнистыми либо складчатыми, для прикрепления к субстрату снабжены короткой ножкой или основанием с небольшим базальным диском. Морские и пресноводные виды. Наиболее распространены в прибрежных водах дальневосточных морей виды родов Ульва, Монострома, Корнманния и Ульвария.

Род Ульва (рис. 55). Таллом представляет собой светло-зеленую или ярко-зеленую, тонкую двуслойную, нередко перфорированную пластину либо однослойную полую трубку, прикрепленную к субстрату суженным в короткий черешок основанием.

Рис. 55. Ульва : А – внешний вид Ульвы окончатой , Б – поперечный срез таллома, В – внешний вид Ульвы кишечницы

Смена форм развития в жизненном цикле Ульвы сводится к изоморфной, когда бесполая стадия (спорофит) и половая стадия (гаметофит) морфологически подобны друг другу, и гетероморфной, когда они морфологически различны. Гаметофит многоклеточный, пластинчатый, спорофит одноклеточный. На гаметофитах образуются двужгутиковые гаметы, на спорофитах - четырехжгутиковые зооспоры.

Виды рода встречаются в морях всех климатических зон, хотя предпочитает теплые воды. Например, на мелководье Черного и Японского морей Ульва - один из самых массовых родов водорослей. Многие виды Ульвы выносят опреснение воды; их часто можно встретить в устьях рек.

Класс Бриопсидовые Bryopsidophyceae

Известно около 500 видов. Слоевище неклеточное. Образовано простыми или переплетенными сифонными нитями, образующими сложные структуры. Таллом в виде пузырей, кустиков, губчатых, дихотомически разветвленных кустов. Слоевище сегментированное, имитирующее многоклеточное, из нескольких или многих ядерных клеток. Нити и кустики всех оттенков зеленого или буроватого цвета.

Порядок Бриопсидовые Bryopsidales

Большинство видов встречается в пресных и солоноватых водоемах. Некоторые из них растут на почве, на камнях, песке и иногда на солончаках.

Род Бриопсис – нитевидные кустики до 6-8 см высоты, перисто или неправильно разветвленные, верхние веточки с перетяжками у основания. Слоевище сифонного неклеточного строения. Растет единичными кустиками или небольшими куртинами в в прибрежной зоне, обитает в теплых и умеренных морях (приложение, 7Б).

Род Кодиум – шнуровидные дихотомически разветвленные кустики 10–20 см высоты, губчатые. мягкие, прикрепляются дисковидной подошвой. Внутренняя часть слоевища образована сложно переплетенными сифонными нитями. Растет на мягких и твердых грунтах в сублиторальной зоне до глубины 20 м одиночными растениями или небольшими группами (приложение, 7А, Б).

Род Каулерпа включает около 60 видов морских водорослей, ползучие, распростертые на грунте части слоевища которых имеют вид ветвящихся цилиндров, достигающих в длину нескольких десятков сантиметров. Через определенные интервалы вниз от них отходят обильно ветвящиеся ризоиды, закрепляющие растение в грунте, а вверх – плоские листообразные вертикальные побеги, в которых сосредоточены хлоропласты.

Рис. 56. Каулерпа: А – внешний вид таллома; Б – срез таллома с целлюлозными балками

Таллом каулерпы, несмотря на свои крупные размеры, не имеет клеточного строения – в нем полностью отсутствуют поперечные перегородки, и формально он представляет собой одну гигантскую клетку (рис.56). Такое строение таллома называют сифонным . Внутри таллома каулерпы располагается центральная вакуоль, окруженная слоем цитоплазмы, содержащей многочисленные ядра и хлоропласты. Различные части таллома растут у своих верхушек, где скапливается цитоплазма. Центральную полость во всех частях таллома пересекают цилиндрические скелетные тяжи – целлюлозные балки, придающие телу водоросли механическую прочность.

Каулерпа легко размножается вегетативно: при отмирании более старых частей таллома отдельные участки его с вертикальными побегами становятся независимыми растениями. Виды этого рода обитают главным образом в тропических морях, и лишь немногие заходят в субтропические широты, например, распространенная в Средиземном море Каулерпа прорастающая . Эта водоросль предпочитает мелководье со спокойной водой, например, лагуны, защищенные от действия постоянного прибоя коралловыми рифами, и поселяется как на различных твердых субстратах – камнях, рифах, скалах, на песчаном и илистом грунте.

Класс Хлорофициевые Chlorophyceae

Известно около 2,5 тысяч видов. Слоевище одноклеточное или колониальное моннадное, свободно живущее.

Порядок Вольвоксовые - Volvocales .

Род Хламидомонада (рис. 57)включает свыше 500 видов одноклеточных водорослей, которые обитают в пресных, мелких, хорошо прогреваемых и загрязненных водоемах: прудах, лужах, канавах и т.п. При их массовом размножении вода приобретает зеленую окраску. Хламидомонада также обитает на почве и на снегу. Ее тело имеет овальную, грушевидную или шаровидную форму. Клетка одета плотной оболочкой, нередко отстающей от протопласта, с двумя одинаковыми жгутиками на переднем конце; с их помощью хламидомонада активно передвигается в воде. Протопласт содержит 1 ядро, чашевидный хроматофор, стигму и пульсирующие вакуоли.

Рис. 57. Строение и развитие Хламидомонады: А – вегетативная особь; Б – пальмеллевидная стадия; В – размножение (молодые особи внутри материнской клетки)

Хламидомонады размножаются преимущественно бесполым путем. При подсыхании водоема они размножаются делением клетки пополам. Клетки останавливаются, теряют жгутики, стенки их клеток ослизняются, и в таком неподвижном состоянии клетки переходят к делению. Стенки образующихся при этом дочерних клеток также ослизняются, так что в итоге образуется система вложенных друг в друга слизистых обверток, в которых группами располагаются неподвижные клетки. Это - пальмеллевидное состояние водоросли. При попадании в воду клетки снова образуют жгутики, покидают материнскую клетку в виде зооспор и переходят к одиночному монадному состоянию.

В благоприятных условиях хламидомонада интенсивно размножается другим путем – клетка останавливается, и ее протопласт, несколько отстав от стенки, последовательно делится продольно на две, четыре или восемь частей. Эти дочерние клетки образуют жгутики и выходят наружу в виде зооспор, которые вскоре снова приступают к размножению.

Половой процесс у хламидомонады изогамный или оогамный. Гаметы меньших размеров образуются внутри материнской клетки так же, как и зооспоры, но в большем количестве (16, 32 или 64). Оплодотворение происходит в воде. Оплодотворенная яйцеклетка покрывается многослойной оболочкой и оседает на дно водоема. После периода покоя зигота делится мейотически с образованием 4 гаплоидных дочерних особей хламидомонады.

Род Вольвокс – наиболее высокоорганизованные представители порядка, образуют гигантские колонии, состоящие из сотен и тысяч клеток. Колонии имеют вид слизистых, диаметром до 2 мм, шариков, в периферическом слое которых расположено до 50 тыс. клеток со жгутиками, сросшихся своими боковыми ослизненными стенками друг с другом и соединенных плазмодесмами (рис. 58). Внутренняя полость

Рис. 58. Внешний вид колоний Вольвокса

шара заполнена жидкой слизью. В колонии существует специализация клеток: периферическую ее часть составляют вегетативные клетки, а между ними разбросаны более крупные – репродуктивные.

Около десятка из клеток колонии – это гонидии, клетки бесполого размножения. В результате многократных делений они дают начало молодым, дочерним колониям, которые выпадают внутрь материнского шара и освобождаются лишь после его разрушения. Половой процесс – оогамия. Оогонии и антеридии возникают также из репродуктивных клеток. Колонии однодомные и двудомные. Виды рода встречаются в прудах и старицах рек, где в период интенсивного размножения вызывают «цветение» воды.

Класс Требуксиевые – Trebouxiophyceae

Класс назван по типовому роду Trebouxia . Включает в основном одноклеточные коккоидные формы. Встречаются сарциноидные и нитчатые представители. Пресноводные и наземные, реже морские формы, многие формируют симбиозы. Около 170 видов.

Порядок Хлорелловые - Chlorellales . Объединяет коккоидных автоспоровых представителей.

Род Хлорелла – одноклеточные водоросли в виде неподвижного шарика. Клетка одета гладкой оболочкой; содержит одно ядро и пристенный, цельный, рассеченный или лопастной хроматофор с пиреноидом. Клеточная стенка ряда видов наряду с целлюлозой содержит спорополленин – чрезвычайно устойчивое к действию различных ферментов вещество, встречающееся также в пыльцевых зернах и спорах высших растений. Размножается хлорелла бесполым путем, образуя до 64 неподвижных автоспор. Полового размножения нет. Хлорелла распространена в различных водоемах, встречается на сырой почве, коре деревьев, входит в состав лишайников.

Порядок Требуксиевые - Trebouxiales . Включает роды и виды, входящие в состав лишайников.

Род Требуксия – одноклеточная водоросль. Сферические клетки имеют единственный осевой звездчатый хлоропласт с одним пиреноидом. Бесполое размножение осуществляется голыми зооспорами. Встречается или в свободноживущем виде в наземных местообитаниях (на коре деревьев), или как фотобионт лишайников.

Класс Празиновые – Prasinophyceae

Название класса происходит от греч. prasinos – зеленый. Жгутиковые или, реже, коккоидные или пальмеллоидные одноклеточные организмы.

Порядок Пирамимонадовые - Pyramimonadales . Клетки несут 4 или больше жгутиков, три слоя чешуек. Митоз открытый, с веретеном, сохраняющимся в телофазе, цитокинез идет за счет образования борозды деления.

Род Пирамимонас – одноклеточные организмы (рис. 59). От переднего конца клетки отходит 4–16 жгутиков, которые могут быть в пять раз длиннее клетки. Хлоропласт обычно единственный, с одним пиреноидом и одним или больше глазками. Клетки и жгутики покрыты несколькими слоями чешуек. Широко распространены в пресных, солоноватых и морских водах. Встречаются в планктоне и бентосе, могут вызывать "цветение" воды.

Рис. 59. Внешний вид водоросли Пирамимонас

Порядок Хлородендровые Chlorodendrales . Клетки сжатые, с четырьмя жгутиками, покрыты текой, митоз закрытый, цитокинез идет за счет образования борозды деления.

Род Тетраселмис может встречаться в виде подвижных четырехжгутиковых клеток или в виде неподвижных клеток, прикрепленных слизистыми ножками. Клетки покрыты текой. При делении клеток новая тека формируется вокруг каждой дочерней клетки внутри теки материнской. На переднем конце клетки через отверстие в теке выходят жгутики, которые покрыты волосками и чешуйками. Хлоропласт один, с базальным пиренодом. Клетки обычно зеленого цвета, но иногда приобретают красную окраску, что связано с накоплением каротиноидов. Морские представители, могут обитать в морских плоских червях.

Экология и значение

Зеленые водоросли широко распространены по всему миру. Большинство из них можно встретить в пресных водоемах, но немало солоноватоводных и морских форм. Нитчатые зеленые водоросли, прикрепленные или неприкрепленные, наряду с диатомовыми и синезелеными являются преобладающими бентосными водорослями континентальных водоемов. Они встречаются в водоемах различной трофности (от дистрофных до эвтрофных) и с различным содержанием органических веществ (от ксено- до полисапробных), водородных ионов (от щелочных до кислых), при различных температурах (термо-, мезо- и криофилы).

Среди зеленых водорослей имеются планктонные, перифитонные и бентосные формы. В группе морского пикопланктона празиновая водоросль Остреококкус считается самой маленькой эукариотной свободноживущей клеткой. Есть виды зеленых водорослей, которые приспособились к жизни в почве и наземных местообитаниях. Их можно встретить на коре деревьев, скалах, различных постройках, на поверхности почв и в толще воздуха. В этих местообитаниях особенно распространены представители родов Трентеполия и Требуксия . Зеленые водоросли вегетируют в горячих источниках при температуре 35–52°С, а в отдельных случаях до 84°С и выше, нередко при повышенном содержании минеральных солей или органических веществ (сильно загрязненные горячие сточные воды заводов, фабрик, электростанций или атомных станций). Они также преобладают среди криофильных видов водорослей. Они могут вызывать зеленое, желтое, голубое, красное, коричневое, бурое или черное «цветение» снега или льда. Эти водоросли находятся в поверхностных слоях снега или льда и интенсивно размножаются в талой воде при температуре около 0 °С. Лишь немногие виды имеют стадии покоя, тогда как большинство лишены каких-либо специальных морфологических приспособлений к низким температурам.

В пересоленных водоемах преобладают одноклеточные подвижные зеленые водоросли – гипергалобы, клетки которых лишены оболочки и окружены лишь плазмалеммой. Эти водоросли отличаются повышенным содержанием хлористого натрия в протоплазме, высоким внутриклеточным осмотическим давлением, накоплением в клетках каротиноидов и глицерина, большой лабильностью ферментных систем и обменных процессов. В соленых водоемах они нередко развиваются в массовом количестве, вызывая красное или зеленое «цветение» соленых водоемов.

Микроскопические одноклеточные, колониальные и нитчатые формы зеленых водорослей приспособились к неблагоприятным условиям существования в воздушной среде. В зависимости от степени увлажнения их подразделяют на 2 группы: воздушные водоросли, обитающие в условиях только атмосферного увлажнения, и, следовательно, испытывающие постоянную смену влажности и высыхания; водновоздушные водоросли, подвергающиеся действию постоянного орошения водой (под брызгами водопада, прибоя и т. д.). Условия существования водорослей аэрофильных сообществ очень своеобразны и характеризуются, прежде всего, частой и резкой сменой двух факторов - влажности и температуры.

Сотни видов зеленых водорослей обитают в почвенном слое. Почва как биотоп имеет сходство и с водными и с воздушными местообитаниями: в ней есть воздух, но насыщенный водяными парами, что обеспечивает дыхание атмосферным воздухом без угрозы высыхания. Интенсивное развитие водорослей как фототрофных организмов возможно только в пределах проникновения света. В целинных почвах это поверхностный слой почвы толщиной до 1 см, в обрабатываемых почвах он немного толще. Однако в толще почвы, куда не проникает свет, жизнеспособные водоросли обнаруживаются на глубине до 2 м в целинных почвах и до 3 м – в пахотных. Это объясняется способностью некоторых водорослей переходить в темноте к гетеротрофному питанию. Многие водоросли сохраняются в почве в покоящемся состоянии.

Для поддержания своей жизнедеятельности почвенные водоросли имеют некоторые морфологические и физиологические особенности. Это относительно мелкие размеры почвенных видов, а также способность к обильному образованию слизи – слизистых колоний, чехлов и обверток. Благодаря наличию слизи, водоросли быстро поглощают воду при увлажнении и запасают ее, замедляя высыхание. Характерной чертой почвенных водорослей является «эфемерность» их вегетации – способность быстро переходить из состояния покоя к активной жизнедеятельности и наоборот. Они также способны переносить разные колебания температуры почвы. Диапазон выживаемости ряда видов лежит в пределах от -200 до +84 °С и выше. Наземные водоросли составляют важную часть растительности Антарктиды. Они окрашены почти в черный цвет, поэтому температура их тела оказывается выше температуры окружающей среды. Почвенные водоросли являются также важными компонентами биоценозов аридной (засушливой) зоны, где почва в летнее время нагревается до 60–80°С. Защитой от избыточной инсоляции служат темные слизистые чехлы вокруг клеток.

Своеобразную группу представляют эндолитофильные водоросли, связанные с известковым субстратом. Во-первых, это – сверлящие водоросли. Например, водоросли из рода Гомонтия сверлят раковины перловиц и беззубок, внедряются в известковый субстрат в пресных водоемах. Они делают известковый субстрат рыхлым, легко поддающимся различным воздействиям химических и физических факторов. Во-вторых, ряд водорослей в пресных и морских водоемах способны переводить растворенные в воде соли кальция в нерастворимые и отлагающие их на своих талломах. Ряд тропических зеленых водорослей, в частности Галимеда , откладывает в талломе карбонат кальция. Они принимают активное участие в постройке рифов. Гигантские залежи останков Галимеды , иногда достигающие 50 м в высоту, встречаются в континентальных шельфовых водах, связанных с Большим Барьерным Рифом в Австралии и других регионах, на глубине от 12 до 100 м.

Зеленые требуксиевые водоросли, вступая в симбиотические отношения с грибами, входят в состав лишайников. Около 85% лишайников содержат в качестве фотобионта одноклеточные и нитчатые зеленые водоросли, 10% - цианобактерии и 4% (и более) содержат одновременно синезеленые и зеленые водоросли. В качестве эндосимбионтов они существуют в клетках простейших, криптофитовых водорослей, гидр, губок и некоторых плоских червей. Даже хлоропласты отдельных сифоновых водорослей, например Кодиума , становятся симбионтами для голожаберных моллюсков. Эти животные питаются водорослями, хлоропласты которых остаются жизнеспособными в клетках дыхательной полости, причем на свету они очень эффективно фотосинтезируют. Ряд зеленых водорослей развивается на шерсти млекопитающих. Эндосимбионты, претерпевая морфологические изменения по сравнению со свободноживущими представителями, не теряют способности фотосинтезировать и размножаться внутри клеток хозяина.

Хозяйственное значение . Повсеместное распространение зеленых водорослей определяет их огромное значение в биосфере и хозяйственной деятельности человека. Благодаря способности к фотосинтезу они являются основными продуцентами громадного количества органических веществ в водоемах , которые широко используются животными и человеком. Поглощая из воды углекислый газ, зеленые водоросли насыщают ее кислородом, необходимым всем живым организмам. Велика их роль в биологическом круговороте веществ. Быстрое размножение и очень высокая скорость ассимиляции (примерно в 3-5 раз выше, чем у наземных растений) приводят к тому, что за сутки масса водоросли увеличивается более чем в 10 раз. При этом в клетках хлореллы накапливаются углеводы (в селекционных штаммах их содержание достигает 60%), липиды (до 85%), витамины B, С и К. Белок хлореллы, на долю которого может приходиться до 50% сухой массы клетки, содержит все незаменимые аминокислоты. Уникальная способность видов Хлореллы ассимилировать от 10 до 18% световой энергии (против 1–2% у наземных растений) позволяет использовать эту зеленую водоросль для регенерации воздуха в замкнутых биологических системах жизнеобеспечения человека при длительных космических полетах и подводном плавании.

Ряд видов зеленых водорослей используют как индикаторные организмы в системе мониторинга водных экосистем. Наряду с фототрофным способом питания многие одноклеточные зеленые водоросли (хламидомонады) способны всасывать через оболочку растворенные в воде органические вещества, что способствует активному очищению загрязненных вод, в которых развиваются эти виды. Поэтому их применяют для очистки и доочистки загрязненных вод, а также как корм в рыбохозяйственных водоемах.

Некоторые виды зеленых водорослей используются населением ряда стран в пищу . Для пищевых целей, например, в Японии специально культивируют виды рода Ульва . Эти водоросли широко используют, особенно в странах Юго-Восточной Азии, под названием Морского салата. Ульвовые по содержанию белка (до 20%) заметно превосходят другие виды водорослей. Отдельные виды зеленых водорослей используют в качестве продуцентов физиологически активных веществ. Зеленые водоросли - хороший модельный объект для разнообразных биологических исследований. Виды Гематококкуса культивируют для получения астаксантина, Ботриококкус - для получения липидов. В то же время с «цветением» воды одного из озер на Тайване, вызванного Ботриококкусом, связывают гибель рыб.

Виды родов Хлорелла и Хламидомонас - модельные объекты для изучения фотосинтеза в растительных клетках. Хлорелла , благодаря очень высоким темпам размножения, является объектом массового культивирования для использования в различных областях

Поверхностные пленки зеленых водорослей имеют большое противоэрозионное значение . Скрепляющее значение имеют некоторые одноклеточные виды зеленых водорослей, выделяющие обильную слизь. Слизистые вещества клеточных оболочек склеивают частицы почвы. Развитие водорослей влияет на структурирование мелкозема, придавая ему водостойкость и препятствуя выносу с поверхностного слоя. Влажность почвы под водорослевыми пленками обычно выше, чем там, где они отсутствуют. Кроме того, пленки уменьшают водопроницаемость почвы и замедляют испарение воды, что оказывает влияние и на солевой режим почвы. Уменьшается вымывание из почвы легкорастворимых солей; их содержание под макроразрастаниями водорослей выше, чем на других участках. В то же время замедляется поступление солей из глубоких слоев почвы.

Почвенные водоросли оказывают влияние и на рост и развитие высших растений. Выделяя физиологически активные вещества, они ускоряют рост проростков, особенно их корней.

Среди зеленых водорослей, обитающих в загрязненных водоемах, доминируют обычно хлорококковые, устойчивые к длительному воздействию многих токсических веществ.

Клетки водорослей способны аккумулировать из воды различные химические элементы, причем коэффициенты их накопления достаточно высоки. Мощными концентраторами являются пресноводные зеленые водоросли, особенно нитчатые. При этом интенсивность накопления в них металлов гораздо выше, чем в других пресноводных гидробионтах. Немалый интерес представляет способность водорослей концентрировать в себе радиоактивные элементы. Отмершие клетки водорослей удерживают накопленные элементы не менее прочно, чем живые, а в некоторых случаях десорбция из мертвых клеток меньше, чем из живых. Способность ряда родов (Хлорелла, Сценедесмус и др.) концентрировать и прочно удерживать в своих клетках химические элементы и радионуклиды позволяет использовать их в специализированных системах очистки для дезактивации промышленных сточных вод, например для дополнительной очистки слабоактивных сточных вод АЭС.

Некоторые зеленые водоросли являются антагонистами вируса гриппа, полиовируса и др. Выделяемые водорослями биологически активные вещества играют важную роль в обеззараживании воды и подавлении жизнедеятельности патогенной микрофлоры.

В специальных биологических прудах сообщества водорослей и бактерий используют для разложения и детоксикации гербицидов . Доказана способность ряда зеленых водорослей гидролизовать гербицид пропанил, который быстрее разрушается бактериями.

Контрольные вопросы

    Назовите характерные черты строения клетки зеленых водорослей.

    Какие пигменты и типы питания известны у зеленых водорослей?

    Как размножаются зеленые водоросли? Что такое зооспоры, апланоспоры, автоспоры?

    Какие классы выделяют у зеленых водорослей?

    Назовите характерные особенности зеленых водорослей класса Ульвофициевые.

    Назовите характерные особенности зеленых водорослей класса Бриопсидовые.

    Назовите характерные особенности зеленых водорослей класса Хлорофициевые.

    Назовите характерные особенности зеленых водорослей класса Требуксиевые.

    Назовите характерные особенности зеленых водорослей класса Празиновые.

    В каких местообитаниях встречаются зеленые водоросли? Охарактеризуйте их основные экологические группы.

    Роль и значение зеленых водорослей в природе.

    Каково хозяйственное значение зеленых водорослей?

    Что такое «цветение воды»? Участие зеленых водорослей в биологической очистке вод.

    Зеленые водоросли как нетрадиционные источники энергии.

По современной системе растительный мир разделен на два подцарства: низшие и высшие растения. К низшим растениям, которые возникли около 2 млрд лет назад, относятся наиболее просто устроенные представители растительного мира.

Содержание урока:

1. Водоросли - низшие растения. Общая характеристика.

По современной системе растительный мир разделен на два подцарства: низшие и высшие растения.

К низшим растениям , которые возникли около 2 млрд лет назад, относятся наиболее просто устроенные представители растительного мира.

Характерной особенностью этой группы организмов является то, что:

  • их тело не расчленено на вегетативные органы (корень, стебель, лист) и представлено талломом, или слоевищем ,
  • у них отсутствуют ткани,
  • органы полового и бесполого размножения, как правило, одноклеточные.

Низшие растения — водоросли и лишайники — широко распространены в природе и играют исключительно важную роль в общем круговороте веществ.

Как и говорит само их название,— это растения, обитающие в воде.

Однако это не совсем так. Водоросли способны жить и размножаться в таких условиях, которые на первый взгляд кажутся совершенно не пригодными для обитания. Некоторые водоросли вышли на сушу, eсть виды водорослей, обитающие в качестве симбионтов внутри организма некоторых животных и растений.

Не стоит забывать, что существуют и высшие растения, например, кувшинка или лотос, живущие в воде, однако к водорослям они не относятся.

Подводя итог, можно сказать, что термин "водоросль" сам по себе удобен, но его применение в систематике вносит ненужные осложнения.

Места обитания. Пресные, соленые водоемы, кора деревьев, влажные участки почвы.

Основная масса их обитает в морях, океанах, реках, ручьях, болотах - везде, где есть вода. Однако многие виды встречаются и на поверхности почвы, на скалах, в снегу, горячих источниках, соленых водоемов, где концентрация соли достигает 300 граммов на литр воды, и даже… в волосах ленивцев, обитающих во влажных лесах Южной Америки, и внутри волос белых медведей, живущих в зоопарках. У белых медведей волосы внутри полые, и там поселяются хлореллы вульгарис. При массовом развитии водоросли «окрашивают» животных в зеленый цвет. Однако жизнь всех этих растений связана с водой, они могут легко переносить пересыхание, промерзание, но стоит появиться достаточному количеству влаги, как поверхность предметов покрывается зеленым налетом.

Есть виды водорослей, обитающие в качестве симбионтов внутри организма некоторых животных и растений . Всем известный лишайник — пример симбиоза гриба и водоросли.

Наземные, или, как их еще называют, воздушные водоросли, можно встретить на стволах деревьев, скалах, крышах домов, заборах . Эти водоросли обитают везде, где есть хоть малейшее постоянное увлажнение дождем, туманом, брызгами водопадов, росой. В засушливые периоды водоросли высыхают настолько, что легко крошатся. Произрастая на открытых участках, они днем сильно прогреваются на солнце, ночью охлаждаются, а зимой промерзают.

На ледниках, снежниках, льдах нередко поселяются холодолюбивые водоросли . В этих условиях они размножаются иногда настолько интенсивно, что окрашивают поверхность льда и снега в самые разнообразные цвета — красный, малиновый, зеленый, синий, голубой, фиолетовый, бурый и даже… черный — в зависимости от преобладания тех или иных холодолюбивых водорослей.

Водоросли развиваются и в озерах, где соленость настолько велика, что соль выпадает из насыщенного раствора. Очень высокую соленость переносят лишь немногие водоросли.

Значительная часть водорослей обитает в почве . Наибольшее их число встречается на поверхности почвы и в самом верхнем ее слое, куда проникает солнечный свет. Здесь они живут за счет фотосинтеза. С глубиной их численность и видовое разнообразие резко снижаются. Наибольшая глубина, на которой были обнаружены жизнеспособные водоросли, 2 метра. Ученые считают, что туда их заносит вода или почвенные животные. В таких неблагоприятных условиях водоросли способны переходить на питание растворенными органическими веществами.

Количество видов. Известно более 40 тысяч видов водорослей, которые объединяются в два подцарства — Багрянки и Настоящие водоросли.

Подцарство Багрянки

ОТДЕЛЫ:

  • Красные водоросли

Подцарство Настоящие водоросли

Подразделяются на несколько обособленных отделов, которые отличаются друг от друга по ряду таких важнейших признаков, как:

  • структура таллома,
  • набор фотосинтезирующих пигментов и запасных питательных веществ,
  • особенности размножения и циклы развития,
  • местообитание

ОТДЕЛЫ:

  • Харовые водоросли
  • Золотистые водоросли
  • Диатомовые водоросли
  • Бурые водоросли

2. Одноклеточные водоросли. Особенности строения и жизнедеятельности.

Зеленые водоросли — водоросли зеленого цвета. Одноклеточные водоросли(хламидомонада, хлорелла) - одна клетка, покрытая оболочкой, внутри ядро, несущее наследственную информацию, цитоплазма (вязкая полужидкая масса, связывающая все органоиды клетки) и хроматофор с хлорофиллом.

Во время «цветения» мелких луж или водоемов наиболее часто в воде встречается одноклеточная зеленая водоросль хламидомонада . В переводе с греческого «хламидомонада» означает «простейший организм, покрытый одеждой» — оболочкой. Хламидомонада различима только под микроскопом. Она движется в воде при помощи двух жгутиков, находящихся на переднем, более узком конце клетки. Дышит кислородом, растворенным в воде. Может поглощать из окружающей среды готовые органические вещества, растворенные в воде. Поэтому хламидомонаду вместе с другими одноклеточными зелеными водорослями используют в очистных сооружениях. Здесь воду очищают от вредных примесей.

Хлорелла — тоже одноклеточная зеленая водоросль, широко распространенная в пресных водоемах и почвах. Клетки ее мелкие, шаровидные, содержат зеленый хроматофор. Хлорелла очень быстро размножается и активно поглощает из окружающей среды органические вещества. Хлорелла - еще более мелкая водоросль, чем хламидомонада, без сократительных вакуолей и без глазка.

Строение клетки . Клетки большинства водорослей существенно не отличаются от типичных клеток высших растений, однако у них есть свои особенности.

Клетки водоросли имеют клеточную оболочку, состоящую из целлюлозы и пектиновых веществ . У многих из них в состав клеточной стенки входят добавочные компоненты: известь, железо, альгиновая кислота и др.

Цитоплазма у большинства водорослей расположена тонким слоем вдоль клеточной стенки и окружает большую центральную вакуоль. В цитоплазме хорошо различимы эндоплазматический ретикулум, митохондрии, аппарат Гольджи, рибосомы, одно или несколько ядер.

В клетках водорослей из органелл особенно заметны хроматофоры (хлоропласты) , которые в отличие от хлоропластов высших растений более разнообразны по форме, размерам, числу, строению, местоположению и набору пигментов. Они могут быть чашевидными, лентовидными, пластинчатыми, звездчатыми, дисковидными и др.

В хроматофорах сосредоточены фотосинтезирующие пигменты: хлорофиллы а, b, с, d, каротиноиды (каротины и ксантофиллы), фикобилины (фикоцианин, фикоэритрин). Кроме того, в матриксе хроматофора находятся рибосомы, ДНК, липидные гранулы и особые включения — пиреноиды. Пиреноиды присущи почти всем водорослям и небольшой группе мхов. Они являются не только местом скопления запасных питательных веществ, но и зоной их синтеза.

Веществами запаса у водорослей служат крахмал, масло, гликоген, волютин, водорастворимый полисахарид ламинарии и др.

РАЗМНОЖЕНИЕ: Водоросли размножаются половым и бесполым путем.

Бесполое размножение осуществляется специ-альными клетками — спорами и зооспорами , которые образуются в особых органах или внутри вегетативных клеток. Споры непод-вижны, а зооспоры могут передвигаться с помощью жгутиков. Те и другие покрыты оболочкой и образуются в большом количестве. Зооспоры чаще всего не отличаются от вегетативных клеток, из ко-торых построено тело организма; после непродолжительного движе-ния они теряют жгутики и прорастают в новую водоросль, как и обычные споры.

Как правило, бесполым способом водоросли размножаются, в благоприятных условиях . При ухудшении условий существова-ния (высокая или низкая температура, накопление продуктов обме-на в среде обитания при высокой плотности заселения, загрязнение водоемов) они приступают к половому размножению.

Колониальные водоросли. Вольвокс. Переход к многоклеточности

В прудах и озерах можно найти плавающие в воде зеленые округлые организмы диаметром до 1 мм. Это вольвокс.


Под микроскопом видно, что каждый такой шарик состоит из множества (около 1000) клеток. Основная масса шарика - это полужидкое студенистое вещество. Клетки погружены в него у самой поверхности, так что жгутики торчат наружу. Благодаря движению жгутиков вольвокс перекатывается в воде ("вольвокс" означает "катящийся").

Каждая клетка вольвокса выглядит как самостоятельное простейшее, но все вместе они образуют колонию, так как соединены друг с другом цитоплазматическими мостиками. Этим объясняется согласованная работа жгутиков всей колонии.

При размножении вольвокса некоторые клетки погружаются вглубь колонии. Там они делятся, образуя несколько новых молодых колоний, которые выходят из старого вольвокса наружу.

3. Многоклеточные водоросли. Многообразие многоклеточных водорослей.

Тело - слоевище, или таллом, покрыто клеточной стенкой, из целлюлозы и пектиновых веществ, и слизью. Цитоплазма, вакуоли, заполненные клеточным соком, в клетке находиться одно или несколько ядер, и пластиды, или хроматофоры, содержащие пигменты.

Отдел Зеленые водоросли.

Талломы чисто-зеленого цвета. В хроматофорах клеток содержатся пигменты хлорофилл, каротин и ксантофилл, причем зеленый пигмент количественно преобладает над желтыми. Отдел насчитывает около 6 тысяч видов.

Отдел Представитель Описание Местообитание
Зеленые Улотрикс Нити состоят из ряда коротких клеток. Одно ядро. Хроматофор в виде незамкнутого кольца. Обитает в морских и проточных пресных водах
Клетки вытянутые, цилиндрические, покрыты слизью. Хроматофоры в виде спирально закрученных лент. Образует большие ватообразные скопления на поверхности воды. Распространена в пресных стоячих и медленно текущих водах.
Ульва или морской салат Слоевище пластинчатое, цельное, рассеченное или разветвленное, длина 30—150 см, состоит из 2 плотно сомкнутых слоев клеток. Наиболее широко распространена в морях субтропических и умеренных поясов
Нителла (блестянка гибкая)

Растение образует густые заросли в толще воды, представляет собой заросль перепутанных темно-зеленых стекловидных нитей, последние образованы длинными цилиндрическими клетками.

По внешнему виду похожа на хвощ. Часто выращивают в аквариумах.

Харовые водоросли имеют образования, которые по форме и выполняемым функциям напоминают органы высших растений.

Распространена в пресных водоемах Европы, Азии, Северной Америки.

1. Улотрикс. 2. Нить улотрикса под микроскопом.

3. Кодиум. 4. Ульва (морской салат).

5. Спирогира под микроскопом.

Отдел Бурые водоросли

Включает в себя 1500 видов (3 класса), большинство из которых - морские организмы . Отдельные экземпляры бурых водорослей могут достигать в длину 100 м.

Они образуют настоящие заросли, например, в Саргассовом море.

У некоторых бурых водорослей, например, ламинариевых, наблюдается дифференциация тканей и появление проводящих элементов .

Многоклеточные слоевища своей характерной бурой окраской (от оливково-зелёной до тёмно-бурой) обязаны пигменту фукоксантину , который поглощает большое количество синих лучей, проникающих на большую глубину.

Таллом выделяет много слизи, заполняющей внутренние полости; это препятствует потере воды.

Ризоиды либо базальный диск настолько плотно прикрепляют водоросль к грунту, что оторвать её от субстрата чрезвычайно сложно.

У многих представителей бурых водорослей имеются специальные воздушные пузыри , позволяющие плавающим формам удерживать слоевище на поверхности, а прикреплённым (например, фукусу) - занимать вертикальное положение в толще воды.

В отличие от зелёных водорослей, многие из которых растут по всей длине, у бурых водорослей есть верхушечная точка роста .

Представитель - ламинария.

(морская капуста) — съедобная водоросль, относящаяся к классу бурых морских водорослей.

С незапамятных времён она используется в питании тех людей, кто живет рядом с морем. Также её использовали и как удобрение, поскольку ламинария содержит очень большой набор макро- и микроэлементов. Ламинария особенно богата йодом, который содержит в органической форме, что влияет на её усвоение организмом человека. Поэтому ламинария способна регулировать работу щитовидной железы.{/spoiler}


Отдел Красные водоросли или Багрянки

Красные водоросли, или багрянки (Rhodophyta) обладают характерной красной окраской, обусловленной наличием пигмента фикоэритрина . У некоторых форм окраска тёмно-красная (почти чёрная), у других розоватая.

Морские (реже пресноводные) нитевидные, листовидные, кустистые или корковые водоросли с очень сложным половым процессом. Багрянки обитают преимущественно в морях, иногда на большой глубине, что связано со способностью фикоэритрина использовать для фотосинтеза зелёные и синие лучи, глубже других проникающие в толщу воды (максимальная глубина 285 м, на которой обнаружены красные водоросли, - рекорд для фотосинтезирующих растений).

Некоторые красные водоросли обитают в пресной воде и почве.

Около 4000 видов делятся на два класса. Из некоторых багрянок добывают агар-агар и другие химические вещества, порфира используется в пищу.

Красные водоросли. Порфира (Porphyra).

Красные водоросли. Родимения (Rhodymenia).

4. Значение водорослей в природе и жизни человека.

Повсеместное распространение водорослей определяет их огромное значение в биосфере и хозяйственной деятельности человека. Благодаря способности к фотосинтезу они являются основными продуцентами громадного количества органических веществ в водоемах, которые широко используются животными и человеком.

Поглощая из воды углекислый газ, водоросли насыщают ее кислородом, необходимым для всех живых организмов водоемов. Велика их роль в биологическом круговороте веществ, в циклическом характере которого природой решена проблема длительного существования и развития жизни на Земле.

В историческом и геологическом прошлом водоросли принимали участие в образовании горных и меловых пород, известняков, рифов, особых разновидностей угля, ряда горючих сланцев, явились родоначальниками растений, заселивших сушу.

Водоросли чрезвычайно широко используются в различных отраслях хозяйственной деятельности человека, в том числе пищевой, фармацевтической и парфюмерной промышленности. В восточной юго-восточной Азии давно уже используют морские водоросли для приготовления супов. Их выращивают в лиманах на воткнутых в ил бамбуковых палках или на деревянных рамах, опущенных в воду узких заливов.

Морская и водяная культуры начали давать во многих странах обнадеживающие результаты. Японская кухня использует водоросли при выпечке хлеба, добавляет их в пирожные, пудинги и мороженое. Даже консервирование грибов производится с помощью водорослей. В кадки укладывают один ряд грибов, затем один ряд морских водорослей и т.д. Во многих городах мира открыты специализированные кафе, где можно попробовать самые различные блюда из водорослей. Кроме того в морских водорослях установлено наличие витаминов А, В1, В2, В12, С и D, йода, брома, мышьяка и других веществ.

Водоросли проникли в сельское хозяйство и в животноводство. Помидоры, перец и арбузы быстрее созревают и дают больший урожай, если их опрыскать мукой из водорослей. Коровы и куры становятся более продуктивными, если вводить им в пищу концентраты из водорослей.

Одноклеточная зеленая хлорелла вырабатывает большое количество кислорода, аккумулирует органические вещества, используя меньший объем суспензии, имеет более короткий период вегетации, очень быстро размножается, а вся биомасса водоросли может быть использована в качестве пищи. Ее питательные качества - самые высокие в растительном мире. Содержание белка составляет 50% от сухой массы, содержатся также все 8 аминокислот, необходимых для жизнедеятельности человека, и все витамины. Эти способности хлореллы позволяют использовать эти микроводоросли для регенерации воздуха в замкнутых биологических системах жизнеобеспечения человека при длительных космических полетах и подводном плавании.

У нас в стране и за рубежом культивируются микроводоросли на коммунально-бытовых и промышленных сточных водах с целью биологической очистки и дальнейшего использования их биомассы для получения метана или применения в промышленности и сельскохозяйственном производстве.

ЗНАЧЕНИЕ:

В природе:

  • обогащают кислородом атмосферу и гидросферу;
  • основной ис-точник органи-ческого веще-ства в водоемах;
  • участвуют в самоочище-нии естест-венных и сточных вод;
  • индикаторы за-грязнения и засоления;
  • участвуют в круговороте кальция и кремния в поч-вообразовании;

В жизни человека:

Важнейшие компоненты экосистем: пищевые, дие-тические про-дукты, источники сы-рья для полу-чения ве-ществ, необхо-димых в отрас-лях промыш-ленности (фармакологической, бумажной, текстильной), применяются в качестве удобрений.

Водоросли относят к низшим растениям. Их более 30 тысяч видов. Среди них есть как одноклеточные, так и многоклеточные формы. Некоторые водоросли имеют очень большие размеры (несколько метров в длину).

Название «водоросль» говорит о том, что эти растения обитают в воде (в пресной и морской). Однако водоросли можно встретить во многих влажных местах. Например, в почве и на коре деревьев. Некоторые виды водорослей способны, как и ряд бактерий, обитать на ледниках и в горячих источниках.

Водорослей относят к низшим растениям, так как у них нет настоящих тканей. У одноклеточных водорослей тело состоит из одной клетки, некоторые водоросли образуют колонии клеток. У многоклеточных водорослей тело представлено слоевищем (другое название - таллом ).

Поскольку водоросли относят к растениям, то все они являются автотрофами. Кроме хлорофилла клетки многих водорослей содержат красные, синие, бурые, оранжевые пигменты. Пигменты находятся в хроматофорах , которые имеют мембранную структуру и выглядят как ленты или пластинки и т. п. В хроматофорах нередко откладывается запасное питательное вещество (крахмал).

Размножение водорослей

Водоросли размножаются как бесполым, так и половым путем. Среди типов бесполого размножения преобладает вегетативное . Так, одноклеточные водоросли размножаются делением их клетки надвое. У многоклеточных форм происходит фрагментация слоевища.

Однако бесполое размножение у водорослей может быть не только вегетативным, но и с помощью зооспор , которые образуются в зооспорангиях. Зооспоры представляют собой подвижные клетки с жгутиками. Они способны активно плавать. Через какое то время зооспоры отбрасывают жгутики, покрываются оболочкой и дают начало водоросли.

У ряда водорослей наблюдается половой процесс , или конъюгация. При этом между клетками разных особей происходит обмен ДНК.

При половом размножении у многоклеточных водорослей образуются мужские и женские гаметы. Они образуются в специальных клетках. При этом на одном растении могут образовываться гаметы обоих типов или только одного (только мужские, или только женские. После выхода гаметы сливаются с образованием зиготы. Чаще всего зигота превращается в спору, которая какое-то время находится в стадии покоя, переживая таким образом неблагоприятные условия. Обычно после зимовки споры водорослей дают начало новым растениям.

Одноклеточные водоросли

Хламидомонада

Хламидомонада обитает в загрязненных органикой мелких водоемах, лужах. Хламидомонада является одноклеточной водорослью. Ее клетка имеет овальную форму, но один из концов слегка заострен и на нем находится пара жгутиков. Жгутики позволяют достаточно быстро передвигаться в воде ввинчиванием.

Название этой водоросли происходит от слов «хламида» (одежда древних греков) и «монада» (простейший организм). Клетка хламидомонады покрыта пектиновой оболочкой, которая прозрачна и неплотно прилегает к мембране.

В цитоплазме хламидомонады есть ядро, светочувствительный глазок (стигма), крупная вакуоль, содержащая клеточный сок, а также пара мелких пульсирующих вакуолей.

Хламидомонада обладает способностью двигаться по направлению к свету (благодаря стигме) и кислороду. Т.е. она обладает положительным фототаксисом и аэротаксисом. Поэтому хламидомонада обычно плавает в верхних слоях водоемов.

Хлорофилл находится в большом хроматофоре, который имеет вид чаши. Здесь протекает процесс фотосинтеза.

Несмотря на то, что хламидомонада как растение способна к фотосинтезу, она также может поглощать готовые органические вещества, присутствующие в воде. Это ее свойство используется человеком для очистки загрязненных вод.

В благоприятных условиях хламидомонада размножается бесполым способом. При этом ее клетка отбрасывает жгутики и делится, образуя 4 или 8 новых клеток. В результате хламидомонада достаточно быстро размножается, что приводит к так называемому цветению воды.

В неблагоприятных условиях (холод, засуха) хламидомонада под своей оболочкой образует гаметы в количестве 32 или 64 штук. Гаметы выходят в воду и сливаются попарно. В результате образуются зиготы, которые покрываются плотной оболочкой. В таком виде хламидомонада переносит неблагоприятные условия среды. Когда условия становятся благоприятными (весной, период дождей), зигота делится, образуя четыре клетки-хламидомонады.

Хлорелла

Одноклеточная водоросль хлорелла обитает в пресных водоемах и влажной почве. Хлорелла имеет шаровидную форму без жгутиков. Также у нее нет светочувствительного глазка. Таким образом, хлорелла неподвижна.

Оболочка хлореллы плотная, в ее состав входит целлюлоза.

В цитоплазме присутствует ядро и хроматофор с хлорофиллом. Фотосинтез протекает весьма интенсивно, поэтому хлорелла выделяет много кислорода и производит много органического вещества. Также как хламидомонада, хлорелла способна усваивать готовые органические вещества, присутствующие в воде.

Для хлореллы характерно бесполое размножение делением.

Плеврококк

Плеврококк образует зеленый налет на почве, коре деревьев, скалах. Представляет собой одноклеточную водоросль.

Клетка плеврококка имеет ядро, вакуоль, хроматофор в виде пластинки.

Плеврококк не образует подвижные споры. Размножается путем деления клетки надвое.

Клетки плеврококка могут образовывать небольшие группы (по 4-6 клеток).

Многоклеточные водоросли

Улотрикс

Улотрикс представляет собой зеленую многоклеточную нитчатую водоросль. Обычно обитает в реках на поверхностях расположенных недалеко от поверхности воды. Улотрикс имеет ярко-зеленый цвет.

Нити улотрикса не ветвятся, одним концом они прикрепляются к субстрату. Каждая нить состоит из ряда небольших клеток. Нити растут за счет поперечного деления клеток.

Хроматофор у улотрикса имеет вид незамкнутого кольца.

В благоприятных условиях некоторые клетки нити улотрикса образуют зооспоры. У спор по 2 или 4 жгутика. Когда плавающая зооспора прикрепляется к предмету, она начинает делится, образуя нить водоросли.

В неблагоприятных условиях улотрикс способен размножаться половым путем. В некоторых клетках его нити образуются гаметы, имеющие по два жгутика. После выхода из клеток они попарно сливаются, образуя зиготы. В последствие зигота разделится на 4 клетки, каждая из которых даст начало отдельной нити водоросли.

Спирогира

Спирогира, также как улотрикс, является зеленой нитчатой водорослью. В пресных водоемах именно спирогира встречается чаще всего. Скапливаясь, она образует тину.

Нити спирогиры не ветвятся, состоят из цилиндрических клеток. Клетки покрыты слизью и имеют плотные целлюлозные оболочки.

Хроматофор спирогиры выглядит как спирально закрученная лента.

Ядро спирогиры подвешено в цитоплазме на протоплазменных нитях. Также в клетках есть вакуоль с клеточным соком.

Бесполое размножение у спирогиры осуществляется вегетативным способом: путем деления нити на фрагменты.

У спирогиры наблюдается половой процесс в форме конъюгации. При этом две нити располагаются рядом, между их клетками образуется канал. По этому каналу содержимое из одной клетки переходит в другую. После этого образуется зигота, которая, покрывшись плотной оболочкой, перезимовывает. Весной из нее вырастает новая спирогира.

Значение водорослей

Водоросли активно участвуют в круговороте веществ в природе. В результате фотосинтеза они выделяют большое количество кислорода и связывают углерод в органические вещества, которыми питаются животные.

Водоросли участвуют в образовании почвы и формировании осадочных пород.

Многие виды водоросли используются человеком. Так из морских водорослей получают агар-агар, йод, бром, калийные соли, клеящие вещества.

В сельском хозяйстве водоросли используются как кормовая добавка в рацион животных, а также как калийное удобрение.

С помощью водорослей очищают загрязненные водоемы.

Некоторые виды водорослей используются человеком в пищу (ламинария, порфира).

Весьма своеобразные искусственные луга образуют одноклеточные планктонные водоросли, выращиваемые в самых различных районах земного шара.

В морской среде планктонные водоросли иногда достигают чрезвычайно большой численности, размножаясь Делением с огромной скоростью. При благоприятных условиях в одном литре воды может находиться до не скольких десятков миллионов микроскопических растений. Обильное их размножение придает, в зависимости от вида водорослей, воде разнообразные оттенки: желтый, зеленый, бурый, красный и до. В таких случаях говорят о цветении моря. В течение месяца потомство одной диатомовой водоросли может достигнуть 100 млн. Клеток, но планктонные водоросли не живут долго и Колоссальной численности достигают лишь на протяжении короткого периода времени. Массовое размножение микроскопических водорослей иногда приводит к заморам в отдельных районах морей, т. е. к массовой гибели большинства животных и растений.

Мелкие планктонные водоросли, находясь во взвешенном состоянии, для своего размножения и роста могут использовать многометровую водную толщу. Установлено, что на единицу биомассы планктонных водорослей приходится большая работа по связыванию солнечной энергии, чем у крупных водных растений. Планктонные водоросли используют от 3 до 7% солнечной энергии, т. е. в несколько раз больше, чем наземные растения. По некоторым расчетам только диатомовые водоросли в течение одного года образуют на 1 км 2 площади до 1500 т живой массы.

В морском фитопланктоне содержатся практически все незаменимые аминокислоты, жиры, углеводы, много различных витаминов, но, несмотря на его огромное количество, добыча микроскопических растений в Мировом океане по ряду технических причин нерентабельна. Во многих странах разрабатываются методы искусственного разведения одноклеточных водорослей.

Примерно из 6 тыс. различных видов планктонных водорослей для культивирования наибольший интерес представляют пока протококковые, к которым относятся прежде всего хлорелла (Chlorella vulgaris), сценедесмус (Scenedesmus asumitatus) и др.

Несмотря на то что хлорелла является пресноводной водорослью, экспериментально доказано, что ее с большим успехом можно выращивать и в соленой морской воде.

Смешанная культура хлореллы и хламидомонады, так называемая зеленая вода, широко используется в Японии и других странах для кормления зоопланктонных организмов, служащих в свою очередь кормом для личинок рыб и креветок. Одноклеточные водоросли применяются для кормления устриц, мидий, морских гребешков и других моллюсков. Оказалось, что планктонные водоросли можно культивировать в сточных водах, что значительно удешевляет выращивание морских животных.

Искусственно изменяя условия содержания (температуру, освещенность, солевой и газовый состав и др.), можно получать водорослевую массу с различным содержанием органических и минеральных веществ. Таким образом, регулируя условия, удается направлять процесс фотосинтеза, добиваясь продуцирования живого вещества требуемого химического состава. В одной и той же культуре хлореллы удавалось менять содержание жира в клетках от 4,5 до 85,6% (в пересчете на сухое вещество), белков - от 8,7 до 58%, углеводов - от 5,7 до 37,5%.

Хлореллу обычно выращивают в бассейнах глубиной 10-15 см до достижения концентрации водорослей, равной 1-2 г биомассы в 1 л воды. На некоторых установках получают с 1 м 2 площади 20-30 г сухого вещества водорослей, содержащего до 50% белковых веществ. В хлорелле белковых веществ вдвое больше, чем в бобовых, и в четыре раза больше, чем в пшенице.

Ученые Академии наук Узбекистана разработали промышленную установку для выращивания хлореллы. С одного гектара ее площади можно получать до 300-500 ц сухой, или до 1200-2000 ц сырой биомассы. В этом количестве хлореллы содержится 150-250 ц белка. Пока ни одна сельскохозяйственная культура не дает таких огромных урожаев.

Созданная в 1971 г. установка для выращивания хлореллы могла производить более 6 т зеленой массы в сутки. Исследования узбекских ученых показали, что с одного гектара водорослевого хозяйства можно получать столько белка, сколько дает эксплуатация 20-25 га земли, засеянной пшеницей, или 10 га картофельного поля.

В ФРГ выведена культура протококковых водорослей с продолжительностью роста 2 дня. В них содержится до 50% белка. Стоимость однодневного рациона человека на основе этих водорослей не превышает 0,035 марки.

Установлено, что 100 г высушенной хлореллы при ежедневном использовании в пищу поставляют человеку необходимое количество витаминов.

Белковые продукты, производимые из одноклеточных водорослей, могут использоваться как для питания людей, так и в качестве прибавки к кормам сельскохозяйственных животных. Введение в рацион животных суспензии из хлореллы позволяет повышать ежесуточные привесы на 15-20%. Получая белок из одноклеточных водорослей, можно использовать его в качестве заменителя рыбной и соевой муки в животноводстве. Для этих целей в Японии строится завод по производству белкового концентрата производительностью до 200 тыс. т в год.

Оболочки клеток хлореллы (без соответствующе обработки) устойчивы к действию желудочного сока, что мешает перевариванию водорослей в желудках сельскохозяйственных животных и человека. Сухую клеточную массу водорослей размалывают на шаровых мельницах, обрабатывают перекисью водорода, сырые водоросли, продавливаются через перфорированный диск и т. д. Весьма эффективный метод разрушения клеточных оболочек предложен чехословацкими учеными. Сырая мяса хлореллы загружается в особые установки и под давлением 0,5 МПа (5 кгс/см 2) подвергается термообработке. В результате получается зеленый порошок, содержащий легко усвояемые человеком и животными питательные вещества.

Применение одноклеточных водорослей в сельском хозяйстве не ограничивается животноводством. Внесение их в почву позволяет повышать урожай некоторых зерновых культур в среднем на 15%.

Для выращивания одноклеточных водорослей в широком масштабе необходимо решить еще целый ряд проблем. Так, несмотря на высокую концентрацию водорослей в водоемах для культивирования, процесс их сбора требует больших затрат труда. Вначале водоросли подвергают предварительному концентрированию затем окончательному концентрированию и сушке.

На первом этапе водоросли сгущают посредством флотации или центрифугирования на центрифугах постоянного действия. Окончательное концентрирование одноклеточных водорослей осуществляют на центрифугах периодического действия, фильтрованием через фильтры из синтетических материалов, выпариванием воды на солнце и т. д. В результате получается масса, содержащая 8-10% сухого вещества. После окончательного концентрирования клеточную массу высушивают до содержания в ней влаги 10-12% следующими методами: сублимационной сушкой, азеотропной сушкой, сушкой с распылением клеточной массы и сушкой в сушилках конвейерного типа.

Хлорелла при идеальных условиях за одни сутки может увеличиваться в объеме в 10 тыс. раз, и с единице площади устройств для ее выращивания можно снижать ежегодно до 240 урожаев. Многочисленные удачныe эксперименты по культивированию одноклеточных водорослей указывают на один из весьма перспективных путей получения пищевых и кормовых веществ.

Морские растения являются прекрасным объектом культивирования, благодаря способности усваивать углекислоту, минеральные соли, воду и синтезировать различные органические соединения. Росту водорослей способствуют соли азота, фосфора, калия и соединения, содержащие микроэлементы. Весьма ценным свойством водорослей является их способность усваивать питательные вещества из воды всей своей поверхностью.

Широкое распространение водорослей во всех морях создает предпосылки для их искусственного выращивания. Культивируя морские растения в наиболее благоприятных регулируемых условиях, человечество может получать ежегодно на морских плантациях миллионы тонн цепной продукции.

В настоящее время на подводных лугах различных государств мира ежегодно выращивается около 800 тыс. т водорослей.