Звёздная эволюция. Эволюции звезд

Рождение звезд и целых Галактик происходит перманентно, равно как и их смерть. Исчезновение одной звезды компенсирует появление другой, посему нам кажется, что на небе постоянно одни и те же светила.

Своему рождению звезды обязаны процессу сжатия межзвездного облака, на которое влияет сильное падение давления газа. В зависимости от массы сжимающегося газа меняется количество рождающихся звезд: если она маленькая, то рождается одно светило, если большая, то возможно образование целого скопления.

Этапы возникновения звезды


Здесь нужно выделить два основных этапа – быстрое сжатие протозвезды и медленное. В первом случае отличительной чертой является гравитация: вещество протозвезды совершает практически свободное падение к ее центру. На этом этапе температура газа остается неизменной, его длительность составляет порядка 100 тысяч лет, и за это время размер протозвезды сокращается очень существенно.

И если на первом этапе избыток тепла постоянно уходил постоянно, то затем протозвезда становится более плотной. Отвод тепла происходит уже не такими высокими темпами, газ продолжает сжиматься и быстро нагреваться. Медленное сжатие протозвезды длиться еще дольше – более десяти миллионов лет. По достижению сверхвысокой температуры (более миллиона градусов) свое слово берут термоядерные реакции, ведущие к прекращению сжатия. После чего образуется новая звезда из протозвезды.

Жизненный цикл звезды


Звезды подобно живому организму: они рождаются, достигают своего пика развития, а затем умирают. Крупные перемены начинаются, когда в центральной части звезды заканчивается водород. Он начинает перегорать уже в оболочке, постепенно увеличивая ее размеры, и звезда может превратиться в красного гиганта или даже в сверхгиганта.

Все звезды имеют совершенно разный жизненный цикл, все зависит от массы. Те, что имеют большой вес, живут дольше и, в конце концов, взрываются. Наше солнце не относится к массивным звездам, посему небесные тела подобного типа ожидает другой конец: они постепенно угасают, превращаются плотную структуру, именуемую белым карликом.

Красный гигант

Израсходовавшие запас водорода звезды могут приобрести колоссальные размеры. Такие светила называют красным гигантом. Их отличительной чертой, помимо размера, является протяженная атмосфера и очень низкая температура поверхности. Исследования показали, что отнюдь не все звезды проходят такой этап развития. Красными гигантами становятся только те светила, имеющие солидную массу.

Наиболее яркие представители – Арктур и Антаре, видимые слоя которых имеют относительно невысокую температуру, а разряженная оболочка обладает солидной протяженностью. Внутри тел происходит процесс поджигания гелия, отличающийся отсутствием резких колебаний светимости.

Белый карлик

Небольшие по размеру и массе звезды превращаются в белого карлика. Их плотность чрезвычайно высока (примерно в миллион раз выше плотности воды), из-за чего вещество светила переходит в состояние, именуемое «вырожденным газом». Внутри белого карлика не наблюдается никаких термоядерных реакций, а свет ему дает только факт остывания. Размер звезды в таком состоянии крайне мал. Например, многие белые карлики имеют схожий Земле размер.

Наше Солнце светит уже более 4,5 млрд. лет. При этом оно постоянно расходует водород. Абсолютно ясно, что как бы не велики были его запасы, но когда-то они будут исчерпаны. И что же произойдёт со светилом? На этот вопрос есть ответ. Жизненный цикл звезды можно изучить по другим аналогичным космическим образованиям. Ведь в космосе существуют настоящие патриархи, возраст которых составляет 9-10 млрд. лет. А есть совсем юные звёздочки. Им от роду не более нескольких десятков млн. лет.

Следовательно, наблюдая за состояние различных звёзд, которыми "усыпана" Вселенная, можно понять, как они себя ведут с течением времени. Здесь можно провести аналогию с наблюдателем-инопланетянином. Он прилетел на Землю и стал изучать людей: детей, взрослых, стариков. Таким образом, за совсем короткий период времени он понял, какие изменения происходят с людьми в течение жизни.

В настоящее время Солнце является жёлтым карликом - 1
Пройдут миллиарды лет, и оно станет красным гигантом - 2
А затем превратится в белого карлика - 3

Поэтому можно со всей уверенностью сказать, что когда запасы водорода в центральной части Солнца будут исчерпаны, термоядерная реакция не прекратится . Зона, где будет продолжаться этот процесс, начнёт сдвигаться к поверхности нашего светила. Но при этом силы гравитации уже не смогут влиять на давление, которое образуется в результате термоядерной реакции.

Как следствие, звезда начнёт разрастаться в размерах и постепенно превратится в красного гиганта . Это космический объект поздней стадии эволюции. Но таковым же он бывает и на ранней стадии во время звёздообразования. Только во втором случае красный гигант сжимается и превращается в звезду главной последовательности . То есть в такую, в которой идёт реакция синтеза гелия из водорода. Одним словом, с чего жизненный цикл звезды начинается, тем и заканчивается.

Наше Солнце увеличится в размерах настолько, что поглотит ближайшие планеты. Это Меркурий , Венера и Земля . Но не надо пугаться. Умирать светило начнёт через несколько млрд. лет. За это время сменятся десятки, а может и сотни цивилизаций. Человек ещё не раз возьмёт в руки дубину, а по прошествию тысячелетий опять сядет за компьютер. Это обычная цикличность, на которой базируется вся Вселенная.

Но превращение в красного гиганта ещё не означает конец. Термоядерная реакция будет отбрасывать в космос внешнюю оболочку. А в центре будет оставаться лишённое энергии гелиевое ядро. Под действием сил тяготения оно будет сжиматься и, в конце концов, превратится в чрезвычайно плотное с большой массой космическое образование. Такие остатки потухших и медленно остывающих звёзд называются белыми карликами .

У нашего белого карлика радиус будет в 100 раз меньше радиуса Солнца, а светимость уменьшится в 10 тыс. раз. При этом масса будет сравнимой с нынешней солнечной, а плотность будет больше в миллион раз. Таких белых карликов в нашей Галактике очень много. Их численность составляет 10% от общего числа звёзд.

Надо отметить, что белые карлики бывают водородными и гелиевыми. Но мы не будем лезть в дебри, а только заметим, что при сильном сжатии может наступить гравитационный коллапс. А это чревато колоссальным взрывом. При этом наблюдается вспышка сверхновой звезды. Термин "сверхновый" характеризует не возраст, а яркость вспышки. Просто белого карлика долго не было видно в космической бездне, и вдруг появилось яркое свечение.

Большая часть взорвавшейся сверхновой звезды разлетается в пространстве с огромной скоростью. А оставшаяся центральная часть сжимается в ещё более плотное образование и называется нейтронной звездой . Это конечный продукт звёздной эволюции. Его масса сравнима с солнечной, а радиус достигает всего лишь нескольких десятков км. Один куб. см нейтронной звезды может весить миллионы тонн. В космосе таких образований довольно много. Их количество примерно в тысячу раз меньше обычных солнц, которыми усыпано ночное небо Земли.

Надо сказать, что жизненный цикл звезды напрямую связан с её массой. Если она соответствует массе нашего Солнца или меньше её, то в конце жизни появляется белый карлик. Однако существуют светила, которые в десятки и сотни раз больше Солнца.

Когда такие гиганты сжимаются в процессе старения, то они так искажают пространство и время, что вместо белого карлика появляется чёрная дыра . Её гравитационное притяжение так велико, что его не могут преодолеть даже те объекты, которые движутся со скоростью света. Размеры дыры характеризует гравитационный радиус . Это радиус сферы, ограниченной горизонтом событий . Он представляет собой пространственно-временной предел. Любое космическое тело, преодолев его, исчезает навсегда и никогда не возвращается обратно.

О чёрных дырах существует много теорий. Все они базируются на теории гравитации, так как именно гравитация является одной из важнейших сил Вселенной. А основное её качество - универсальность . По-крайней мере, в наши дни не обнаружено ни одного космического объекта, у которого бы отсутствовало гравитационное взаимодействие.

Есть предположение, что через чёрную дыру можно попасть в параллельный мир. То есть это канал в другое измерение. Всё возможно, но любое утверждение требует практических доказательств. Однако пока ещё никто из смертных не смог осуществить подобный эксперимент.

Таким образом, жизненный цикл звезды состоит из нескольких стадий. В каждой из них светило выступает в определённом качестве, которое кардинально отличается от предыдущих и будущих. В этом и заключается неповторимость и таинственность космического пространства. Знакомясь с ним, невольно начинаешь думать, что человек тоже проходит несколько стадий в своём развитии. А та оболочка, в которой мы существуем сейчас, является лишь переходным этапом к какому-то иному состоянию. Но это умозаключение опять же требует практического подтверждения .

Рассмотрим кратко основные этапы эволюции звезд.

Изменение физических характеристик, внутреннего строения и химического состава звезды со временем.

Фрагментация вещества. .

Предполагается, что звезды образуются при гравитационном сжатии фрагментов газопылевого облака. Так, местами звездообразования могут являться так называемые глобулы.

Глобула - плотное непрозрачное молекулярно-пылевое (газопылевое) межзвездное облако, которое наблюдается на фоне светящихся облаков газа и пыли в виде темного круглого образования. Состоит преимущественно из молекулярного водорода (H 2) и гелия (He ) с примесью молекул других газов и твердых межзвездных пылинок. Температура газа в глобуле (в основном, температура молекулярного водорода) T ≈ 10 ÷ 50К, средняя плотность n ~ 10 5 частиц/см 3 , что на несколько порядков больше, нежели в самых плотных обычных газопылевых облаках, диаметр D ~ 0,1 ÷ 1 . Масса глобул М ≤ 10 2 × M ⊙ . В некоторых глобулах наблюдаются молодые типа T Тельца.

Облако сжимается под действием собственной гравитации из-за гравитационной неустойчивости, которая может возникнуть либо самопроизвольно, либо как результат взаимодействия облака с ударной волной от сверхзвукового потока звездного ветра от находящегося неподалеку другого источника звездообразования. Возможны и другие причины возникновения гравитационной неустойчивости.

Теоретические исследования показывают, что в условиях, которые существуют в обычных молекулярных облаках (T ≈ 10 ÷ 30К и n ~ 10 2 частиц/см 3), первоначальное может происходить в объемах облака с массой М ≥ 10 3 × M ⊙ . В таком сжимающемся облаке возможен дальнейший распад на менее массивные фрагменты, каждый из которых будет также сжиматься под действием собственной гравитации. Наблюдения показывают, что в Галактике в процессе звездообразования рождается не одна , а группа звезд с разными массами, например, рассеянное звездное скопление.

При сжатии в центральных районах облака плотность возрастает, в результате чего наступает момент, когда вещество этой части облака становится непрозрачным к собственному излучению. В недрах облака возникает устойчивое плотное сгущение, которое астрономы называют ой.

Фрагментация вещества – распад молекулярно-пылевого облака на более ме ие части, дальнейшее которых приводит к появлению .

– астрономический объект, находящийся в стадии , из которого спустя некоторое время (для солнечной массы это время T ~ 10 8 лет) образуется нормальная .

При дальнейшем падении вещества из газовой оболочки на ядро (аккреция) масса последнего, а следовательно, температура и увеличиваются настолько, что газовое и лучистое давление сравниваются с силами . Сжатие ядра останавливается. Формирующаяся окружена непрозрачной для оптического излучения газопылевой оболочкой, пропускающей наружу лишь инфракрасное и более длинноволновое излучение. Такой объект ( -кокон) наблюдается как мощный источник радио и инфракрасного излучений.

При дальнейшем росте массы и температуры ядра световое давление останавливает аккрецию, а остатки оболочки рассеиваются в космическом пространстве. Появляется молодая , физические характеристики которой зависят от ее массы и начального химического состава.

Основным источником энергии рождающейся звезды является, по-видимому, энергия, высвобождающаяся при гравитационном сжатии. Это предположение следует из теоремы вириала: в стационарной системе сумма потенциальной энергии E п всех членов системы и удвоенной кинетической энергии 2 E к этих членов равна нулю:

E п + 2 E к = 0. (39)

Теорема справедлива для систем частиц, движущихся в ограниченной области пространства под действием сил, величина которых обратно пропорциональна квадрату расстояния между частицами. Отсюда следует, что тепловая (кинетическая) энергия равна половине гравитационной (потенциальной) энергии. При сжатии звезды полная энергия звезды уменьшается, при этом уменьшается гравитационная энергия: половина изменения гравитационной энергии уходит от звезды через излучение, за счет второй половины увеличивается тепловая энергия звезды.

Молодые звёзды малой массы (до трёх масс Солнца), находящиеся на подходе к главной последовательности, полностью конвективны; процесс конвекции охватывает все области светила. Это ещё по сути протозвёзды, в центре которых только-только начинаются ядерные реакции, и всё излучение происходит, в основном, из-за . Пока ещё не установлено, звезды убывает при неизменной эффективной температуре. На диаграмме Герцшпрунга-Рассела такие звёзды формируют почти вертикальный трек, называемый треком Хаяши. По мере замедления сжатия молодая приближается к главной последовательности.

По мере сжатия звезды начинает увеличиваться давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста центральной температуры, вызываемого сжатием, а затем и к её понижению. Для звёзд меньше 0,0767 масс Солнца этого не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы уравновесить внутреннее давление и . Такие «недозвёзды» излучают энергии больше, чем образуется в ходе ядерных реакций, и относятся к так называемым ; их судьба - это постоянное сжатие, пока давление вырожденного газа не остановит его, и, затем, постепенное остывание с прекращением всех начавшихся ядерных реакций .

Молодые звёзды промежуточной массы (от 2 до 8 массы Солнца) качественно эволюционируют точно так же, как и их меньшие сестры, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Звезды с массой больше 8 солнечных масс уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, чтобы они компенсировали потери энергии на излучение, пока накапливалась масса ядра. У этих звёзд истечение массы и настолько велики, что не просто останавливают коллапсирование ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, отта ивает их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака.

Главная последовательность

Температура звезды растет, пока в центральных областях не достигнет значений, достаточных для включения термоядерных реакций, которые затем становятся главным источником энергии звезды. Для массивных звезд (M > 1 ÷ 2 × M ⊙ ) – это «сгорание» водорода в углеродном цикле; для звезд с массой, равной или меньшей массы Солнца, энергия выделяется в протон-протонной реакции. переходит в стадию равновесия и занимает свое место на главной последовательности диаграммы Герцшпрунга-Рессела: у звезды большой массы температура в ядре очень высокая (T ≥ 3 × 10 7 K ), выработка энергии весьма интенсивна, – на главной последовательности занимает место выше Солнца в области ранних (O … A , (F )); у звезды небольшой массы температура в ядре сравнительно невысока (T ≤ 1,5 × 10 7 K ), выработка энергии не столь интенсивна, – на главной последовательности занимает место рядом или ниже Солнца в области поздних ((F ), G , K , M ).

На главной последовательности проводит до 90% времени, отпущенного природой на ее существование. Время нахождения звезды на стадии главной последовательности также зависит от массы. Так, с массой M ≈ 10 ÷ 20 × M ⊙ O или B находится в стадии главной последовательности около 10 7 лет, в то время как красный карлик K 5 с массой M ≈ 0,5 × M ⊙ находится в стадии главной последовательности около 10 11 лет, то есть время, сравнимое с возрастом Галактики. Массивные горячие звезды быстро переходят в следующие этапы эволюции, холодные карлики находятся в стадии главной последовательности все время существования Галактики. Можно предположить, что красные карлики являются основным типом населения Галактики.

Красный гигант (сверхгигант).

Быстрое выгорание водорода в центральных районах массивных звезд приводит к появлению у них гелиевого ядра. При доле массы водорода в несколько процентов в ядре практически полностью прекращается углеродная реакция превращения водорода в гелий. Ядро сжимается, что приводит к увеличению его температуры. В результате разогрева, вызванного гравитационным сжатием гелиевого ядра, «загорается» водород и начинается энерговыделение в тонком слое, расположенном между ядром и протяженной оболочкой звезды. Оболочка расширяется, радиус звезды увеличивается, эффективная температура уменьшается, растет. «уходит» с главной последовательности и переходит в следующую стадию эволюции – в стадию красного гиганта или, если масса звезды M > 10 × M ⊙ , в стадию красного сверхгиганта.

С ростом температуры и плотности в ядре начинает «гореть» гелий. При T ~ 2 × 10 8 K и r ~ 10 3 ¸ 10 4 г/см 3 начинается термоядерная реакция, которая называется тройным a -процессом: из трех a -частиц (ядер гелия 4 He ) образуется одно устойчивое ядро углерода 12 C . При массе ядра звезды M < 1,4 × M ⊙ тройной a -процесс приводит к взрывному характеру энерговыделения - гелиевой вспышке, которая для конкретной звезды может повторяться неоднократно.

В центральных областях массивных звезд, находящихся в стадии гиганта или сверхгиганта, увеличение температуры приводит к последовательному образованию углеродного, углеродно-кислородного и кислородного ядер. После выгорания углерода наступают реакции, в результате которых образуются более тяжелые химические элементы, возможно и ядра железа. Дальнейшая эволюция массивной звезды может привести к сбросу оболочки, вспышке звезды как Новой или , с последующим образованием объектов, которые являются заключительной стадией эволюции звезд: белого карлика, нейтронной звезды или черной дыры.

Завершающая стадия эволюции – стадия эволюции всех нормальных звезд после исчерпания этими ми термоядерного горючего; прекращение термоядерных реакций как источника энергии звезды; переход звезды в зависимости от ее массы в стадию белого карлика, или черной дыры.

Белые карлики - последняя стадия эволюции всех нормальных звезд с массой M < 3 ÷ 5 × M ⊙ после исчерпания этими ми термоядерного горючего. Пройдя стадию красного гиганта (или субгиганта), такая сбрасывает оболочку и оголяет ядро, которое, остывая, и становится белым карликом. Небольшой радиус (R б.к ~ 10 -2 × R ⊙ ) и белый или бело-голубой цвет (T б.к ~ 10 4 К) определили название этого класса астрономических объектов. Масса белого карлика всегда меньше 1,4 × M ⊙ - доказано, что белые карлики с большими массами существовать не могут. При массе, сравнимой с массой Солнца, и размерах, сравнимых с размерами больших планет Солнечной системы, белые карлики обладают огромной средней плотностью: ρ б.к ~ 10 6 г/см 3 , то есть гирька объемом 1 см 3 вещества белого карлика весит тонну! Ускорение свободного падения на поверхности g б.к ~ 10 8 см/с 2 (сравни с ускорением на поверхности Земли - g з ≈ 980 см/с 2). При такой гравитационной нагрузке на внутренние области звезды равновесное состояние белого карлика поддерживается давлением вырожденного газа (в основном, вырожденного электронного газа, так как вклад ионной компоненты мал). Напомним, что вырожденным называется газ, в котором отсутствует максвелловское распределение частиц по скоростям. В таком газе при определенных значениях температуры и плотности число частиц (электронов), имеющих любую скорость в пределах от v = 0 до v = v max , будет одинаковым. v max определяется плотностью и температурой газа. При массе белого карлика M б.к > 1,4 × M ⊙ максимальная скорость электронов в газе сравнима со скоростью света, вырожденный газ становится релятивистским и его давление уже неспособно противостоять гравитационному сжатию. Радиус карлика стремится к нулю - “схлопывается” в точку.

Тонкие горячие атмосферы белых карликов состоят либо из водорода, при этом других элементов в атмосфере практически не обнаруживается; либо из гелия, при этом водорода в атмосфере в сотни тысяч раз меньше, нежели в атмосферах нормальных звезд. По виду спектра белые карлики относятся к спектральным классам O, B, A, F. Чтобы “отличить” белые карлики от нормальных звезд, перед обозначением ставится буква D (DOVII, DBVII и т.д. D - первая буква в английском слове Degenerate - вырожденный). Источником излучения белого карлика является запас тепловой энергии, который белый карлик получил, будучи ядром звезды-родительницы. Многие белые карлики получили в наследство от родительницы и сильное магнитное поле, напряженность которого H ~ 10 8 Э. Полагают, что число белых карликов составляет около 10% от общего числа звезд Галактики.

На рис. 15 приведена фотография Сириуса - ярчайшей звезды неба (α Большого Пса; m v = -1 m ,46; класс A1V). Видимый на снимке диск является следствием фотографической иррадиации и дифракции света на объективе телескопа, то есть диск самой звезды на фотографии не разрешается. Лучи, идущие от фотографического диска Сириуса, - следы искажения волнового фронта светового потока на элементах оптики телескопа. Сириус находится на расстоянии 2,64 от Солнца, свет от Сириуса идет до Земли 8,6 лет - таким образом, это одна из самых близких к Солнцу звезд. Сириус в 2,2 раза массивнее Солнца; его M v = +1 m ,43, то есть наш сосед излучает энергии в 23 раза больше, нежели Солнце.

Рисунок 15.

Уникальность фотографии заключается в том, что вместе с изображением Сириуса удалось получить изображение его спутника – спутник яркой точкой “светится” слева от Сириуса. Сириус – телескопически : сам Сириус обозначается буквой А, а его спутник буквой В. Видимая звездная величина Сириуса В m v = +8 m ,43, то есть он почти в 10 000 раз слабее Сириуса А. Масса Сириуса В почти точно равна массе Солнца, радиус около 0,01 радиуса Солнца, температура поверхности около 12000К, однако излучает Сириус В в 400 раз меньше Солнца. Сириус В - типичный белый карлик. Более того, это первый белый карлик, обнаруженный, кстати, Альвеном Кларком в 1862 г при визуальном наблюдении в телескоп.

Сириус А и Сириус В обращаются вокруг общего с периодом 50 лет; расстояние между компонентами А и В всего 20 а.е.

По меткому замечанию В.М.Липунова, ““вызревают” внутри массивных звезд (с массой более 10 × M ⊙ )”. Ядра звезд, эволюционирующих в нейтронную звезду, имеют 1,4 × M ⊙ ≤ M ≤ 3 × M ⊙ ; после того, как иссякнут источники термоядерных реакций и -родительница вспышкой сбросит значительную часть вещества, эти ядра станут самостоятельными объектами звездного мира, обладающими весьма специфическими характеристиками. Сжатие ядра звезды-родительницы останавливается при плотности, сравнимой с ядерной (ρ н . з ~ 10 14 ÷ 10 15 г/см 3). При таких массе и плотности радиус родившейся всего 10 состоит из трех слоев. Наружный слой (или внешняя кора) образован кристаллической решеткой из атомных ядер железа (Fe ) с возможной небольшой примесью атомных ядер других металлов; толщина внешней коры всего около 600 м при радиусе 10 км. Под внешней корой находится еще одна внутренняя твердая кора, состоящая из атомов железа (Fe ), но эти атомы переобогащены нейтронами. Толщина этой коры 2 км. Внутренняя кора граничит с жидким нейтронным ядром, физические процессы в котором определяются замечательными свойствами нейтронной жидкости - сверхтекучестью и, при наличии в ней свободных электронов и протонов, сверхпроводимостью. Возможно, что в самом центре вещество может содержать мезоны и гипероны.

Быстро вращаются вокруг оси - от одного до сотен оборотов в секунду. Такое вращение при наличии магнитного поля (H ~ 10 13 ÷ 10 15 Э) часто приводит к наблюдаемому эффекту пульсации излучения звезды в разных диапазонах электромагнитных волн. Один из таких пульсаров мы видели внутри Крабовидной туманности.

Общее число скорость вращения уже недостаточна для эжекции частиц, поэтому такая не может быть радиопульсаром. Однако она всё ещё велика, и захваченная магнитным полем окружающая нейтронную звезду не может упасть, то есть аккреция вещества не происходи.

Аккретор (рентгеновский пульсар). Скорость вращения снижается до такой степени, что веществу теперь ничего не мешает падать на такую нейтронную звезду. Плазма, падая, движется по линиям магнитного поля и ударяется о твёрдую поверхность в районе полюсов , разогреваясь до десятков миллионов градусов. Вещество, нагретое до столь высоких температур, светится в рентгеновском диапазоне. Область, в которой происходит сто новение падающего вещества с поверхностью звезды, очень мала - всего около 100 метров. Это горячее пятно из-за вращения звезды периодически пропадает из вида, что наблюдатель воспринимает как пульсации. Такие объекты называются рентгеновскими пульсарами.

Георотатор. Скорость вращения таких нейтронных звёзд мала и не препятствует аккреции. Но размеры магнитосферы таковы, что плазма останавливается магнитным полем раньше, чем она будет захвачена гравитацией.

Если является компонентой тесной двойной системы, то происходит “перекачка” вещества от нормальной звезды (второй компоненты) на нейтронную. Масса может превысить критическую (M > 3 × M ⊙ ), тогда нарушается гравитационная устойчивость звезды, уже ничто не может противостоять гравитационному сжатию, и “уходит” под свой гравитационный радиус

r g = 2 × G × M/c 2 , (40)

превращаясь в “черную дыру“. В приведенной формуле для r g: M - масса звезды, c - скорость света, G - гравитационная постоянная.

Черная дыра - объект, поле тяготения которого настолько велико, что ни частица, ни фотон, ни любое материальное тело не могут достигнуть второй космической скорости и вырваться во внешнее пространство.

Черная дыра является сингулярным объектом в том смысле, что характер протекания физических процессов внутри ее пока недоступен теоретическому описанию. Существование черных дыр следует из теоретических соображений, реально они могут находиться в центральных районах шаровых скоплений, квазаров, гигантских галактик, в том числе, и в центре Нашей галактики.

Если где-то во Вселенной накапливается достаточно вещества, оно сжимается в плотный комок, в котором начинается термоядерная реакция. Так зажигаются звёзды. Первые вспыхнули во тьме юной Вселенной 13,7 миллиардов (13,7*10 9) лет назад, а наше Солнце — всего каких-то 4,5 миллиарда лет назад. Срок жизни звезды и процессы, происходящие в конце этого срока, зависят от массы звезды.

Пока в звезде продолжается термоядерная реакция превращения водорода в гелий, она находится на главной последовательности . Время нахождения звезды на главной последовательности зависит от массы: самые большие и тяжёлые быстро доходят до стадии красного гиганта, а затем сходят с главной последовательности в результате взрыва сверхновой или образования белого карлика.

Судьба гигантов

Самые большие и массивные звёзды сгорают быстро и взрываются сверхновыми. После взрыва сверхновой остаётся нейтронная звезда или чёрная дыра, а вокруг них — материя, выброшенная колоссальной энергией взрыва, которая после становится материалом для новых звёзд. Из наших ближайших звёздных соседей такая судьба ждёт, например, Бетельгейзе , однако когда она взорвётся, подсчитать невозможно.

Туманность, образовавшаяся в результате выброса материи при взрыве сверхновой. В центре туманности — нейтронная звезда.

Нейтронная звезда — это страшный физический феномен. Ядро взорвавшейся звезды сжимается — примерно так же, как газ в двигателе внутреннего сгорания, только в очень большом и эффективном: шар диаметром в сотни тысяч километров превращается в шарик от 10 до 20 километров в поперечнике. Сила сжатия так велика, что электроны падают на атомные ядра, образуя нейтроны — отсюда название.


NASA Нейтронная звезда (видение художника)

Плотность материи при таком сжатии вырастает примерно на 15 порядков, а температура поднимается до непредставимых 10 12 К в центре нейтронной звезды и 1 000 000 К на периферии. Часть этой энергии излучается в форме фотонного излучения, часть уносят с собой нейтрино, образующииеся в ядре нейтронной звезды. Но даже за счёт очень эффективного нейтринного охлаждения нейтронная звезда остывает очень медленно: для полного исчерпания энергии требуется 10 16 или даже 10 22 лет. Что останется на месте остывшей нейтронной звезды, сказать сложно, а пронаблюдать — невозможно: мир слишком для этого слишком молод. Существует предположение о том, что на месте остывшей звезды опять-таки образуется чёрная дыра.


Черные дыры возникают в результате гравитационного коллапса очень массивных объектов — например, при взрывах сверхновых. Возможно, через триллионы лет в чёрные дыры превратятся остывшие нейтронные звёзды.

Участь звёзд средних масштабов

Другие, менее массивные звёзды дольше, чем самые большие, остаются на главной последовательности, зато, сойдя с неё, умирают гораздо быстрее, чем их нейтронные родственники. Больше 99% звёзд во Вселенной никогда взорвутся и не превратятся ни в черные дыры, ни в нейтронные звёзды — их ядра слишком малы для таких космических драм. Вместо этого звёзды средней массы в конце жизни превращаются в красные гиганты, которые, в зависимости от массы, превращаются в белые карлики, взрываются, полностью рассеиваясь, или становятся нейтронными звёздами.

Белые карлики составляют сейчас от 3 до 10% звёздного населения Вселенной. Их температура очень велика — более 20 000 К, более чем втрое больше, чем температура поверхности Солнца — но всё-таки меньше, чем у нейтронных звёзд, и благодаря более низкой температуре и большей площади белые карлики остывают быстрее — за 10 14 — 10 15 лет. Это означает, что в ближайшие 10 триллионов лет — когда Вселенная станет в тысячу раз старше, чем сейчас, — во вселенной появится новый тип объекта: чёрный карлик, продукт остывания белого карлика.

Пока черных карликов в космосе нет. Даже самые старые остывающие звёзды на сегодняшний день потеряли максимум 0,2% своей энергии; для белого карлика с температурой в 20 000 К это означает остывание до 19 960 K.

Для самых маленьких

О том, что происходит, когда остывают самые маленькие звёзды — такие, как наш ближайший сосед, красный карлик Проксима Центавра, науке известно ещё меньше, чем о сверхновых и чёрных карликах. Термоядерный синтез в их ядрах идёт медленно, и на главной последовательности они остаются дольше остальных — по некоторым расчётам, до 10 12 лет, а после, предположительно, продолжат жизнь как белые карлики, то есть будут сиять еще 10 14 — 10 15 лет до превращения в чёрный карлик.

Астрофизика уже достаточно продвинулась в изучении эволюции звезд. Теоретические модели подкреплены надежными наблюдениями, и несмотря на наличие некоторых пробелов, общая картина жизненного цикла звезды давно известна.

Рождение

Все начинается с молекулярного облака. Это огромные области межзвездного газа, достаточно плотные для того, чтобы в них сформировались молекулы водорода.

Затем происходит событие. Возможно, оно будет вызвано ударной волной от взорвавшейся рядом сверхновой, а может и естественной динамикой внутри молекулярного облака. Однако исход один – гравитационная неустойчивость приводит к формированию центра тяжести где-то внутри облака.

Поддаваясь соблазну гравитации, окружающее вещество начинает вращаться вокруг этого центра и наслаивается на его поверхность. Постепенно образуется уравновешенное сферическое ядро с растущей температурой и светимостью – протозвезда.

Газопылевой диск вокруг протозвезды вращается все быстрее, из-за ее растущей плотности и массы все больше частиц сталкиваются в ее недрах, температура продолжает расти.

Как только она достигает миллионов градусов, в центре протозвезды происходит первая термоядерная реакция. Два ядра водорода преодолевают кулоновский барьер и соединяются, образуя ядро гелия. Затем – другие два ядра, потом – другие… пока цепная реакция не охватит всю область, в которой температура позволяет водороду синтезировать гелий.

Энергия термоядерных реакций затем стремительно достигает поверхности светила, резко увеличивая его яркость. Так протозвезда, если обладает достаточной массой, превращается в полноценную молодую звезду.

Область активного звездообразования N44 / ©ESO, NASA

Ни детства, ни отрочества, ни юности

Все протозвезды, которые разогреваются достаточно для запуска термоядерной реакции в своих недрах, затем вступают в самый продолжительный и стабильный период, занимающий 90% всего времени их существования.

Все, что с ними происходит на данном этапе, это постепенное выгорание водорода в зоне термоядерных реакций. Буквальное «прожигание жизни». Звезда очень медленно – в течение миллиардов лет – будет становиться горячее, станет расти интенсивность термоядерных реакций, как и светимость, но не более того.

Конечно, возможны события, которые ускоряют звездную эволюцию – например, близкое соседство или даже столкновение с другой звездой, однако от жизненного цикла отдельного светила это никак не зависит.

Есть и своеобразные «мертворожденные» звезды, которые не могут выйти на главную последовательность – то есть не способны справляться с внутренним давлением термоядерных реакций.

Это маломассивные (менее 0,0767 от массы Солнца) протозвезды – те самые, которые называют коричневыми карликами. Из-за недостаточного гравитационного сжатия они теряют энергии больше, чем образуется в результате синтеза водорода. Со временем термоядерные реакции в недрах этих звезд прекращаются, и все, что им остается, это продолжительное, но неизбежное остывание.

Коричневый карлик в представлении художника / ©ESO/I. Crossfield/N. Risinger

Неспокойная старость

В отличие от людей, самая активная и интересная фаза в «жизни» массивных звезд начинается к концу их существования.

Дальнейшая эволюция каждого отдельного светила, достигшего конца главной последовательности – то есть точки, когда водорода для термоядерного синтеза в центре звезды уже не осталось – напрямую зависит от массы светила и его химического состава.

Чем меньшей массой обладает звезда на главной последовательности, тем более продолжительной будет ее «жизнь», и менее грандиозным будет ее финал. Например, звезды с массой менее половины от массы Солнца – такие, которые называются красными карликами – вообще еще ни разу не «умирали» с момента Большого взрыва. Согласно вычислениям и компьютерному моделированию, такие звезды из-за слабой интенсивности термоядерных реакций могут спокойно сжигать водород от десятков миллиардов до десятков триллионов лет, а в конце своего пути, вероятно, потухнут так же, как коричневые карлики.

Звезды со средней массой от половины до десяти масс Солнца после выгорания водорода в центре оказываются способны сжигать более тяжелые химические элементы в своем составе – сначала гелий, затем углерод, кислород и далее, насколько повезло с массой, вплоть до железа-56 (изотоп железа, который иногда называют «пеплом термоядерного горения»).

Для таких звезд фаза, следующая за главной последовательностью, называется стадией красного гиганта. Запуск гелиевых термоядерных реакций, затем углеродных и т.д. каждый раз приводит к значительным трансформациям звезды.

В каком-то смысле это предсмертная агония. Звезда то расширяется в сотни раз и краснеет, то снова сжимается. Светимость тоже меняется – то в тысячи раз увеличивается, то снова уменьшается.

В конце этого процесса внешняя оболочка красного гиганта сбрасывается, образуя зрелищную планетарную туманность. В центре остается обнаженное ядро - белый гелиевый карлик с массой приблизительно в половину солнечной и радиусом, примерно равным радиусу Земли.

Белые карлики обладают судьбой, схожей с красными карликами – спокойное выгорание в течение миллиардов-триллионов лет, если, конечно, рядом нет звезды-компаньона, за счет которой белый карлик может увеличить свою массу.

Система KOI-256, состоящая из красного и белого карликов / ©NASA/JPL-Caltech

Экстремальная старость

Если звезде особенно повезло с массой, и она равна примерно 12 солнечным и более, то финальные стадии ее эволюции характеризуются значительно более экстремальными событиями.

Если масса ядра красного гиганта превышает предел Чандрасекара, равный 1,44 солнечной массы, то звезда не просто сбрасывают свою оболочку в финале, но высвобождает скопившуюся энергию в мощнейшем термоядерном взрыве – сверхновой.

В сердце остатков сверхновой, разбрасывающей звездное вещество с огромной силой на многие световые годы вокруг, остается в этом случае уже не белый карлик, а сверхплотная нейтронная звезда, радиусом всего в 10-20 километров.

Однако если масса красного гиганта больше 30 солнечных масс (вернее, уже сверхгиганта), а масса его ядра превышает предел Оппенгеймера-Волкова, равный примерно 2,5-3 массам Солнца, то не образуется уже ни белый карлик, ни нейтронная звезда.

В центре останков сверхновой появляется нечто куда более впечатляющее – черная дыра, так как ядро взорвавшейся звезды сжимается настолько сильно, что коллапсировать начинают даже нейтроны, и больше уже ничто, включая свет, не может покинуть пределов новорожденной черной дыры – вернее, ее горизонта событий.

Особо массивные звезды – голубые сверхгиганты – могут миновать стадию красного сверхгиганта и также взорваться в сверхновой.

Сверхновая SN 1994D в галактике NGC 4526 (яркая точка в нижнем левом углу) / ©NASA

А что ждет наше Солнце?

Солнце относится к звездам средней массы, так что если вы внимательно читали предыдущую часть статьи, то уже сами можете предсказать, на каком именно пути находится наша звезда.

Однако человечество еще до превращения Солнца в красного гиганта ждет ряд астрономических потрясений. Жизнь на Земле станет невозможна уже через миллиард лет, когда интенсивность термоядерных реакций в центре Солнца станет достаточной, чтобы испарить земные океаны. Параллельно с этим условия для жизни на Марсе будут улучшаться, что в определенный момент может сделать его пригодным для обитания.

Примерно через 7 миллиардов лет Солнце разогреется достаточно, чтобы термоядерная реакция была запущена в его внешних областях. Радиус Солнца увеличится примерно в 250 раз, а светимость в 2700 раз – произойдет превращение в красного гиганта.

Из-за усилившегося солнечного ветра звезда на этом этапе потеряет до трети своей массы, однако успеет поглотить Меркурий.

Масса солнечного ядра за счет выгорания водорода вокруг него увеличится затем настолько, что произойдет так называемая гелиевая вспышка, и начнется термоядерный синтез ядер гелия в углерод и кислород. Радиус звезды значительно уменьшится, до 11 стандартных солнечных.

Солнечная активность / ©NASA/Goddard/SDO

Однако уже 100 миллионов лет спустя реакция с гелием перейдет на внешние области звезды, и та снова увеличится до размеров, светимости и радиуса красного гиганта.

Солнечный ветер на этой стадии станет настолько сильным, что унесет внешние области звезды в космическое пространство, и они образуют обширную планетарную туманность.

А там, где было Солнце, останется белый карлик размером с Землю. Сначала крайне яркий, но с течением времени все более и более тусклый.