Глинистые минералы. Глины и глинистые минералы

Подробности Создано 10.08.2011 21:00 Обновлено 30.05.2012 04:39 Автор: Admin

Минералогический состав глин характеризуется наличием некоторых специфических глинистых минералов.

К ним относятся каолинит, галлуазит, монотермит, гидрослюды, монтмориллонит, бейделлит и др. Наряду с ними в глинах содержатся и другие высокодисперсные минералы, присутствующие в них как примеси. Минералы, составляющие глины, принято группировать по характерным свойствам:

Основные свойства некоторых из них представлены в таблице ниже.

Каолинит - широко распространенный глинистый минерал, по составу водный алюмосиликат (моноклинный), имеет слоистое строение, в природе встречается в виде гексагональных или неправильной формы чешуек размером около 1 мк. Блеск чешуек и пластинок перламутровый, жирный на ощупь, объемный вес 1,8-2,2 г/см 3 , теплота смачивания 1-2 ккал/г, обладает гидрофильными свойствами, с водой образует пластичное тесто, но слабо набухает и мало адсорбирует воду и растворимые в ней вещества; в кислой среде устойчив; входит в состав различных глин.

Монотермит - в настоящее время не выделяется как самостоятельный глинистый минерал. По данным Ю. А. Русько и В. П. Ананьева, он представляет собой тонкую механическую смесь гидрослюды и каолинита. Набухаемость и емкость поглощения у монотермитов выражены сильнее, чем у каолинитов.

Этот минерал открыт Г. К. Куманиным в Часов-Ярской огнеупорной глине. Является составной частью весьма пластичных огнеупорных глин (Часов-Яр на Украине, Бускуль на Урале и пр.).

Гидрослюда - одна из разновидностей гидрослюд, наиболее распространенная в глинах. Характеризуется формой изометричных слюдоподобных пластинок или чешуек различной толщины, иногда со следами расщепления и скалывания; обладает гидрофильными свойствами. Минералы гидрослюдистой группы в легкоплавких глинах в основном содержатся во фракции с размером частиц менее микрона.

Монтмориллонит - широко распространенный глинистый минерал, имеющий несколько разновидностей по составу, строению и свойствам: тонкочешуйчатый, удлиненночешуйчатый, крупночешуйчатый. Отличаются друг от друга по степени набухания - первый сильно набухает (может увеличиваться в объеме до 20 раз), второй не набухает или плохо набухает, а третий занимает промежуточное положение между ними по степени набухания
монтмориллонита. Является составной частью отбеливающих (флоридиновых и бентонитовых) глин и глин, обладающих высокой пластичностью Чистые монтмориллонитовые глины добываются на Кавказе, в Крыму и других местах. Легкоплавкие глины содержат железистые разновидности монтмориллонита. Монтмориллонит более богат кремневой кислотой, чем каолинит. Минералы монтмориллонитовой группы, так же как и гидрослюдистые минералы в легкоплавких глинах, в основном содержатся во фракции с размером частиц менее одного микрона.

  • 5. Химическое выветривание. В чем оно выражается? Какие химические и структурные превращения происходят в ряду мусковит - гидромусковит- каолинит.
  • 6. Галогенез - понятие. Обстановка развития процесса. Основные этапы солеотложения. Соли- минеральный состав.
  • 7.Структуры биогенных пород. Минеральный состав биогенных пород.
  • 8. Вулканический тип литогенеза; характеристика, распространение на
  • 9. Как действует механизм физической дифференциации осадочного вещества, к образованию каких групп пород он приводит?
  • 10. Гумидный тип литогенеза, его характеристика. Какие генетические типы пород при этом возникают?
  • 11. Как действует механизм химической дифференциации осадочного вещества? к образованию каких пород она приводит?
  • 12. Диагенез. Характеристика. Диагенетические минералы, причины их возникновения.
  • 13. Как действует механизм биологической дифференциации осадочного вещества? Какие минералы и породы при этом образуются?
  • 14. Реликтовые минералы осадочных пород (перечень, условия сохранения на разных ступенях литогенеза, роль в осадочных породах).
  • 15. Генетическая классификация осадочных пород. По какому признаку классифицируются осадочные породы м.С. Швецовым? Какие классы осадочных пород при этом выделяются?
  • 16. Осадочная горная порода - определение. Формы геологических тел осадочных пород.
  • 17. По каким признакам систематизируются обломочные породы? Какие группы их выделяются?
  • 18. Какие виды осадочных пород используются в строительной индустрии (для производства каких стройматериалов?)?
  • 19. По каким признакам систематизируются хемогенные породы? Какие группы хемогенных пород выделяются?
  • 20. Какие осадочные породы используются для нужд агропромышленного комплекса? Где именно?
  • 21. По каким признакам систематизируются биогенные породы? Привести примеры.
  • Составные части осадочных пород
  • 23. Что такое полимиктовые обломочные породы? Какие среди них образуются группы? Какова геологическая обстановка их образования?
  • 24. Текстуры осадочных пород.
  • 27. Структурные признаки обломочных пород, примеры структур обломочных пород.
  • 28. Формы локализации полезных компонентов в осадках и осадочных породах.
  • 29. В какой последовательности изучаются и описываются обломочные породы?
  • 30. Бокситы. Минеральный состав. Условия образования. Формы залегания. Практическое использование.
  • 31. Кремнистые биогенные породы. Какими породообразующими организмами они формируются? Какие при этом образуются породы?
  • 32. Сульфатные породы. Минеральный состав. Условия образования. Формы залегания. Практическое использование.
  • 33. Условия растворения и выпадения в осадок карбонатных минералов (кальцита, доломита)? Структурные признаки карбонатных первично-осадочных пород.
  • 35. Биогенные карбонатные породы. Какими организмами они образуются? По каким признакам определяются скелеты этих организмов? Структурные разновидности.
  • 36. Соли. Минеральный состав. Условия образования соляных месторождений. Практическое использование.
  • 37. Какие осадочные породы являются полезными ископаемыми? Где они используются?
  • 38. Литология. Краткая история возникновения науки. Ее цели и задачи.
  • 39. Глинистые минералы (общие свойства). Чем объясняется влагоемкость глин? Их сорбционные свойства.
  • 40.Формы транспортирования продуктов физического выветривания.
  • 41. Глины. Минеральный состав. Генетические группы. Структуры и текстуры глин.
  • 42. Слойчатость и сланцеватость осадочных пород.
  • 43. Известняки. Минеральный состав. Генетические группы. Структуры известняков.
  • 44. Текстуры осадочных пород. Понятие. Группа текстур.
  • 45. Аридный тип литогенеза, его характеристика. Какие при этом возникают осадки? Распространение зон аридного литогенеза на земной поверхности.
  • 46. Структуры осадочных пород. Группы структур.
  • 47. Нивальный (ледовый) тип литогенеза, его характеристика. Какие при этом возникают осадки. Распространение на земной поверхности?
  • 48. Структуры осадочных пород. Группы структур.
  • 49. Принципы, подходы и виды классификаций осадочных пород.
  • 55.Стадиальный анализ. Его значение для изучения осадочных пород.
  • 56. Классификация структур карбонатных пород.
  • 57. Методы петрографического изучения осадочных пород, порядок их описания и наименования.
  • 58.Смешанные породы. Распространение в литосфере. Принципы классификации.
  • 39. Глинистые минералы (общие свойства). Чем объясняется влагоемкость глин? Их сорбционные свойства.

    Глинистые минералы. В осадочных породах глининстые минералы распространены широко. Они составляют большую и сложную группу слоистых и слоисто-ленточных силикатов и алюмосиликатов. Структура их слоистая или слоисто-ленточная. Отдельные слои образованы связанными между собой тетраэдрами и октаэдрами. В вершинах тетраэдров располагаются ионы кислорода, в центре - кремния (иногда алюминия в четверной координации). В вершинах октаэдров располагаются ионы кислорода и гидроксила, в центре -

    алюминия, железа, магния (шестерная координация). Октаэдрические слои могут быть полностью заселены (триоктаэдрические) и частично - из каждых трех заселены два (диоктаэдрические). Эти слои образуют двухслойные (один слой тетраэдров и один слой октаэдров) и трехслойные (два слоя тетраэдров с заключенным между ними слоем октаэдров) пакеты. Связь между слоями осуществляется через кислород и гидроксил, являющиеся общими вершинами тетраэдров и октаэдров. Пространственная решетка каолинита представляет собой набор двухслойных пакетов толщи­ной (межплоскостное расстояние) 0,71-0,72 нм. Базальные отра­жения 001 первого порядка 0,71 --0,72, второго - 0,355-0,360, четвертого - 0,1775-0,1800 нм.

    У гидрослюды решетка состоит из набора трехслойных пакетов толщиной 1,0-1,02 нм. Базальные отражения ОО1 первого порядка 1,00-1,02, второго - 0,50-0,51, четвертого - 0,250-0,255 нм.

    Пространственная решетка монтмориллонита образована трех­слойными пакетами, между которыми заключены слои воды и об­менных катионов. Содержание последних может сильно изменяться, поэтому и межплоскостное расстояние у монтмориллонита изме­няется в широких пределах - от 0,96-1,001 нм при отсутствии воды и обменных катионов до 1,7-1,8 нм и более при высоком содержании воды и обменных катионов (среднее значение при нормальной влажности примерно равно 1,40-1,50 нм).

    Наряду с обычными глинистыми минералами существуют более сложные образования - смешанно-слойные сростки минералов. Пространственная решетка таких сростков состоит из пакетов, принадлежащих различным минералам: монтмориллониту и хлориту (У=2,80 нм), гидрослюде и каолиниту (й=1,70 нм), монтморилло­ниту и каолиниту (с1 = 2,10-2,30 нм) и др. Эти минеральные образо­вания представляют собой своеобразные «гибриды» и рядом ученых рассматриваются как эпитаксические срастания. В изучении их особенно большое значение имеет рентгеновский анализ - един­ственный метод, позволяющий выявлять эти сростки.

    По происхождению глинистые минералы могут быть как аутиген-ными, так и аллотигенными образованиями. Из-за высокой степени ■ дисперсности диагностика их затруднительна обычными методами кристаллооптического и химического анализа. Изучение глинистых минералов при массовой работе петрографа должно быть комплекс­ным с применением оптического, хроматического и капельного ана­лизов. Параллельно некоторая часть образцов должна изучаться точными методами: рентгеновским, термическим и электронномик-роскопическим. Сводка оптических и некоторых других свойств глинистых минералов дана в табл. 72-74.

    Общими чертами всех глинистых ми­нералов являются: 1) незначительные раз­меры их кристалликов; 2) химический со­став (АI2О3, SiO2, Н2О, иногда К, причем АI и Si в некоторых минералах замеща­ются другими элементами, особенно Мg, Fе); 3) пластинчатая или чешуйчатая фор­ма, обусловленная строением решетки, и 4) некоторые оптические свойства - не­высокие показатели преломления, боль­шей частью немного более высокие, реже немного более низкие, чем у канадского бальзама; у кристаллических-моноклин­ная сингония.

    Твердость (2,5) и уд. вес (2,40-2,59) определены точно только для каолинита. Цвет у каолинита и галлуазита белый (бесцветный), у других минералов этой группы иногда наблюдается желтоватая, красноватая, синеватая или зеленоватая окраска.

    СВОЙСТВА ГЛИНИСТЫХ ПОРОД

    Зная факторы, определяющие свойства глинистых пород, и методы оценки минерального состава и микроструктуры, попытаемся объяснить природу некоторых важных и весьма специфических свойств глин, имеющих большое значение в жизни людей.

    Набухаемость

    Под набухаемостью понимают способность глинистых пород увеличивать объем в процессе взаимодействия с водой или водными растворами. Процесс набухания сопровождается увеличением влажности, объема породы и возникновением давления набухания.

    Набухаемость глинистых пород является их важным свойством, которое необходимо учитывать при проведении строительных работ и эксплуатации инженерных сооружений. Недооценка набухающей способности глин может привести к серьезным последствиям и авариям. Объясняя природу набухания глин, следует отметить, что этот процесс проходит в две стадии: первая стадия - адсорбционное или внутрикристаллическое набухание, вторая - макроскопическое или "осмотическое" набухание. На первой стадии глинистая порода впитывает влагу за счет адсорбции молекул воды поверхностью глинистых частиц и межслоевыми промежутками кристаллической решетки глинистых минералов. Эта стадия практически не влияет на изменение объема породы. На второй стадии набухания поглощение влаги осуществляется с помощью осмотического давления. Оно возникает вблизи поверхности глинистых частиц за счет избыточной концентрации многочисленных обменных катионов отдиссоциированных (отошедших) с поверхности глинистых частиц в раствор. Основное увеличение объема набухающей глины происходит именно на этой макроскопической стадии.

    Величина и характер набухания глинистых пород определяются многими факторами, основными из которых являются минеральный состав, дисперсность и структура. Наибольшим набуханием обладают глинистые породы, в составе которых имеются глинистые минералы с подвижной кристаллической структурой (например, монтмориллонит), наименьшим - минералы с более жесткой кристаллической структурой (каолинит). Сильное влияние на набухание глин оказывает и их структура, при этом определяющее значение имеет характер структурных связей.

    Глинистые породы, обладающие преимущественной ориентацией структурных элементов, характеризуются ярко выраженной анизотропией набухания. Наибольшее набухание отмечается в направлении, перпендикулярном ориентации частиц. В ходе процесса набухания происходит существенная перестройка исходной микроструктуры глинистой породы.

    Особую трудность представляет рассмотрение прочностных свойств глинистых пород в связи с их специфическим поведением при взаимодействии с водой. Хорошо известна потеря прочности при увлажнении глин, когда они из плотных и высокопрочных пород превращаются в пластичные или жидкотекучие тела.

    И алюмосиликаты гл. обр. А1 и Mg, а также Cu, Fe, K, Na; иногда в них присутствуют Cr, Zn, Li, Ni и др. элементы. Различают Г. м., состоящие: а) из двухэтажных силикатных слоев (гр. каолинита), б) из трехэтажных силикатных слоев (гр. монтмориллонита, гр. гидрослюд) и в) из пакетов, сложенных одним одноэтажным и одним трехэтажным силикатными слоями. Существует также гр. смешаннослойных м-лов, в которой перечисленных типов сочетаются в одной структуре. Г. м. имеют слоистую структуру. Смачивание водой делает их пластичными. При нагревании они теряют адсорбированную и конституционную воду, а при высоких температурах образуют огнеупорные материалы. Частицы Г. м. бывают кристаллическими и аморфными. К Г. м. относятся м-лы гр. каолинита, монтмориллонита, палыгорскита, многочисленные упорядоченные и неупорядоченные смешаннослойные образования, а также тонкочешуйчатые агр. гидрослюд, вермикулита и реже хлоритов и слюд. Г. м. слагают главную часть осад. глинистых п., кор выветривания, почв и составляют дисперсную часть ряда обломочных, карбонатных и др. г. п., а также некоторых гидротерм. образований. В осад. п. различают Г. м. аутигенные и терригенные (аллогенные).

    Геологический словарь: в 2-х томах. - М.: Недра . Под редакцией К. Н. Паффенгольца и др. . 1978 .

    Глинистые минералы

    (a. clay minerals, argillaceous minerals; н. Tonminerale; ф. mineraux argileux; и. minerales arcillosos ) - минералов, гл. обр. слоистых силикатов, входящих в состав глин в качестве осн. составляющей. Главные Г. м. - , Монтмориллонит, Серпентин, в меньшей степени и палыгорскит.
    Г. м. характеризуются тонкодисперсностью (размер частиц в основном Л. К. Яхонтова.


    Горная энциклопедия. - М.: Советская энциклопедия . Под редакцией Е. А. Козловского . 1984-1991 .

    Смотреть что такое "Глинистые минералы" в других словарях:

      Глинистые минералы группа водных силикатов, слагающих основную массу глинистых отложений и большей части почв и опр … Википедия

      глинистые минералы - molio mineralai statusas T sritis chemija apibrėžtis Al, Mg, Cu, Fe, K, Na hidrosilikatai ir aliumosilikatai. atitikmenys: angl. clay minerals rus. глинистые минералы … Chemijos terminų aiškinamasis žodynas

      Группа водных силикатов, слагающих основную массу глин и определяющих их физико химические, механические и др. свойства. Г. м. являются продуктом выветривания преимущественно алюмосиликатов и силикатов магматических и метаморфических… …

      ГЛИНИСТЫЕ МИНЕРАЛЫ - вторичные водные силикаты, алюмосиликаты и ферросиликаты, а также простые окислы и гидраты окислов кремния, железа и алюминия, слагающие основную массу глин, аргиллитов и тонких (< 0,005 мм) фракций некоторых других осадочных пород. Наиболее… … Словарь по гидрогеологии и инженерной геологии

      ГЛИНИСТЫЕ МИНЕРАЛЫ - – водные силикаты, главным образом алюминия и магния, а также железа, калия, натрия. Слагают основную часть осадочных глинистых пород, кор выветривания, почв, составляют дисперсную часть ряда обломочных, карбонатных и других горных пород и… … Палеомагнитология, петромагнитология и геология. Словарь-справочник.

      Минералы твердые природные образования, входящие в состав горных пород Земли, Луны и некоторых других планет, а также метеоритов и астероидов. Минералы, как правило, довольно однородные кристаллические вещества с упорядоченной внутренней… … Энциклопедия Кольера

      Глинистые частицы - – содержащиеся в песке частицы с размерами менее 0,002 мм. [ГОСТ 32708 2014] Рубрика термина: Песок Рубрики энциклопедии: Абразивное оборудование, Абразивы, Автодороги, Автотехника …

      Глинистые, пылевидные и илистые примеси в песках - – присутствие в строительном песке глинистых и илистых примесей (частиц крупностью до 0,05 мм) может повлиять на прочность сцепления раствора с основанием, на когезионную прочность раствора, его усадочные деформации трещиностойкость и… … Энциклопедия терминов, определений и пояснений строительных материалов

      Минералы глинистые - М., имеющие слоистую или слоисто цепочечную структуру, класса водных силикатов и алюмосиликатов. Размер их кристаллитов по большей части не превышает 0,001 мм. К М.г. относятся минералы групп слюд гидрослюд, хлоритов, вермикулитов, палыгорскитов … Толковый словарь по почвоведению

      Минералы, возникающие в зоне гипергенеза, т. е. в самой поверхностной части земной коры, при низких значениях температур и давлений (см. Гипергенные процессы). Для Г. м. характерны гидратация (вхождение в кристаллическую решётку… … Большая советская энциклопедия

    Книги

    • Память почв. Почва как память биосферно-геосферно-антропосферных взаимодействий , . В настоящем издания почва и педосфера Земли рассматриваемся как память биосферно-геосферно-антропосферных взаимодействий. Впервые в монографической форме излагаются теоретические основы и…

    Глинистые минералы, их строение, свойства и значение в почвоведении.

    Почва более чем на девяносто процентов состоит из минеральных компонен­тов и содержит основной запас питательных веществ для растений. Почва являет­ся полидисперсной системой и имеет довольно сложный механический, минера­логический и химический состав. В качестве примера в табл. 1.1 приведен средний химический состав твердой фазы почвы (по А. П. Виноградову).

    Как видно из таблицы, почти половина твердой фазы почвы приходится на кислород, одна треть - на кремний, свыше 10% -на алюминий и железо и толь­ко 7% - на все остальные элементы. Из всех перечисленных элементов только азот (а также частично углерод, водород, кислород, фосфор и сера) содержится в органической части почвы. Все остальные элементы приходятся на минераль­ную часть почвы, которая состоит из большого числа различных минералов в виде частиц, имеющих размеры от 10 -9 до 10 -3 м и более.

    Все минералы, содержащиеся в почве, по происхождению подразделяются на первичные и вторичные. Первичные минералы имеют преимущественно магматиче­ское происхождение. Из них наиболее распространены в почвах кварц (окись кремния), полевые шпаты, амфиболы, пироксены и слюды, т. е. минералы, включающие

    Таблица 1.1 Средний химический состав твердой фазы почвы

    кислородные соединения кремния. Эти минералы составляют основную массу магматических и почвообразующих пород. В почвах первичные минералы обычно присутствуют в виде более или менее крупных частиц размером от 10 -3 до 10 -6 м, и только очень незначительная часть их имеет более высокую степень дисперсности.

    Первичные минералы в условиях земной поверхности неустойчивы и под дей­ствием сил выветривания переходят в более устойчивые соединения - вторичные минералы. Процесс выветривания протекает под влиянием как чисто физических (колебания температуры, ветер, движущая сила воды), так и химических и био­логических факторов. В результате этого из первичных минералов могут образо­ваться вторичные минералы простого состава: гидроксиды железа (II) и (III), алюминия, гидроксид кремния и некоторые другие соединения.

    Кроме того, в процессе выветривания образуются также вторичные минералы более сложного строения (алюмо- и феррисиликаты). Эти последние более высо­кодисперсны, чем первичные, и имеют исключительно важное значение в создании основного свойства почвы - ее плодородия.

    Все вторичные минералы сложного состава имеют пластинчатое строение и содержат химически связанную воду. Поскольку эти минералы являются важней­шей составной частью различных глин, они получили название глинистых или глинных минералов .

    Число глинистых минералов довольно велико, но в почвах наиболее широкое распространение и значение для плодородия имеют в основном три группы мине­ралов: каолинитовая, монтмориллонитовая и гидрослюдистая.

    К минералам каолинитовой группы относятся каолинит и галлуазит , а также некоторые другие минералы. Каолинитовые глины содержат примерно 20-25% илистых частиц (меньше 0,001 мм), из них 5-10% частиц коллоидных размеров (меньше 0,25 микрона). Минералы этой группы довольно часто встречаются во многих типах почв. Они имеют сравни­тельно небольшую набухаемость и липкость.

    Из минералов монтмориллонитовой группы в почвах наиболее распростране­ны монтмориллонит , бейделлит , нонтронит и некоторые другие. Монтмориллонитовые гли­ны обладают в отличие от каолинитовых высокой набухаемостью, липкостью и связностью. Для них весьма характерным признаком является высокая степень дисперсности (до 80% частиц меньше 0,001 мм, из которых 40-45% меньше 0,25 микрона).

    Среди глинистых минералов, встречающихся в почвах, большое место принад­лежит минералам группы гидрослюд. В эту группу входят гидромусковит (иллит) {KAl 2 [(Si, Al) 4 O 10 ](OH) 2 ·nH 2 O}, гидробиотит {K(Mg, Fe) 3 [(Al, Si) 4 O 10 ] (OH) 2 ·nH 2 O} и вермикулит {(Mg, Fe 2+ , Fe 3+) 2 [(A1, Si) 4 O 10 ](OH) 2 ·4H 2 O}.

    Глинистые минералы различаются по структуре.

    Кристаллическая решетка различных глинистых минералов построена из од­них и тех же элементарных структурных единиц, состоящих из атомов кремния и кислорода, а также из атомов алюминия, кислорода и водорода. Кроме перечис­ленных выше элементов в состав глинистых минералов могут входить Fe, Mg, К, Мn и др. В подавляющем большинстве глинистые минералы имеют слоистое строе­ние и относятся к слоистым силикатам. Как показали новейшие рентгенографиче­ские и электронографические исследования, слои глинистых минералов состоят из сочетания кремнекислородных и кислород-гидроксилалюминиевых соединений.

    Установлено, что важнейшие физико-химические и водно-физические свойст­ва почвы - емкость поглощения, гидрофильность, связность, липкость, реакция среды и многие другие - находятся в прямой зависимости от минералогического состава. Теперь известно, что доступность для растений тех или иных питатель­ных элементов в значительной мере зависит от вида минералов, содержащихся в почве, и от степени их дисперсности.

    Глинистые минералы в основном сосредоточены в илистой (менее 1 мкм) фракции почв. Составом и строением минералов этой фракции в значительной сте­пени определяется поглотительная способность почвы по отношению к катионам и анионам. Чем выше емкость поглощения почвы, тем больший запас питательных элементов в ней сосредоточен, следовательно, лучше ее потенциальное плодоро­дие.

    Минералы группы монтмориллонита обладают не только наибольшей степенью дисперсности, но и наибольшей поглотительной способностью (1,0-1,5 мкг-экв/кг). Эти минералы способны сильно набухать и содержат до 30% связанной воды, ко­торая не может усваиваться растениями. Присутствие минералов монтмориллони­товой группы в почвах всегда положительно сказывается на растениях, обеспечи­вает большее содержание в них необходимых питательных элементов. Однако поч­вы, очень богатые монтмориллонитом, имеют невысокую агрономическую ценность. При высыхании таких почв образуются трещины, водопроницаемость их становит­ся неодинаковой, на поверхности образуется прочная корка. Эти отрицательные свойства монтмориллонита особенно сильно проявляются на почвах, бедных гу­мусом. При достаточном количестве гумуса физико-химические свойства такой поч­вы значительно улучшаются за счет образования водопрочных органо-минеральных агрегатов. Практика показывает, что добавление в сильно деградированные песчаные почвы глин, содержащих минералы монтмориллонитовой группы, по­ложительно сказывается на плодородии.



    Минералы каолинитовой группы по своим свойствам резко отличаются от монтмориллонита. Каолинит обладает очень малой емкостью поглощения (0,07- 0,10 мкг-экв/кг); он практически не набухает и содержит весьма незначительное количество воды. Почвы, в которых много этого минерала, вследствие малой ем­кости поглощения отличаются низким плодородием. Сам каолинит не содержит поглощенных оснований и поэтому не является источником питания для растений. Почвы, содержащие много каолинита, хорошо отзываются на внесение в них ка­лия и других оснований.

    Минералы группы гидрослюд чрезвычайно богаты легкодоступным для расте­ний калием (до 6-7%). Емкость поглощения гидрослюд в несколько раз выше, чем у каолинита, но в два-три раза меньше, чем у монтмориллонита. Почвы, содержащие много гидрослюдистых минералов, практически не нуждаются в калий­ных удобрениях.

    В трудах многих ученых отмечается активное участие глинистых минералов в повышении степени доступности фосфатов почвы, калия и микроэлементов. На­личие в почвах полуторных оксидов, а также токсичного для растений подвижно­го алюминия обусловлено составом и строением высокодисперсных (в том числе и глинистых) минералов. Таким образом, качественный и количественный состав вторичных минералов имеет одно из первостепенных значений в создании основно­го свойства почвы - ее плодородия.

    §7. Характеристика жидкого агрегатного состояния.

    Жидкости по своим свойствам занимают промежуточное поло­жение между твердыми телами и газами и сходны как с теми, так ис другими. По некоторым свойствам жидкости сходны с газами: они текучи, не имеют определенной формы, аморфны и изотропны, т. е. однородны по своим свойствам в любом направлении. С дру­гой стороны, жидкости обладают объемной упругостью, как твер­дые тела. Они упруго противодействуют не только всестороннему сжатию, но и всестороннему растяжению. Молекулы их стремятся к некоторому упорядоченному расположению в пространстве, т. е. жидкости имеют зачатки кристаллического строения.

    Жидко­сти отличаются высокой текучестью и принимают форму того сосу­да, в котором они находятся.

    Средней кинетической энергии молекулы жидкости вполне хва­тает, чтобы совершать перескоки из одного положения равновесия в другое, но этой энергии явно недостаточно для того, чтобы пол­ностью преодолеть силы взаимодействия окружающих молекул. Из жидкости вырывается лишь небольшое число наиболее быстрых молекул (процесс испарения). Тепловые движения молекул жидкости не выходят за пределы действия когезионных сил, поэтому жидкости имеют постоянный объем.

    Огромную роль в свойствах жидкостей играет объем молекул, их форма и полярность. Если молекулы жидкости полярны, то происходит ассоциация (объединение) двух или более молекул в сложный комплекс (рис. 1.5). В таких жидкостях, как вода, жидкий аммиак, большую роль в ассоциа­ции молекул играет наличие так называе­мой водородной связи.

    Свойства жидкостей в значительной ме­ре зависят от степени ассоциации их моле­кул. Как показывает опыт, ассоциирован­ные жидкости обладают более высокой тем­пературой кипения, меньшей летучестью. С повышением температуры комплексы распадаются и тем сильнее, чем слабее силы взаимодействия мо­лекул в комплексе.

    Как уже упоминалось в начале этой главы, существуют и так называемые кристаллические жидкости или жидкие кристаллы , которые, будучи жидкостями, обладают, как и кристаллические вещества, анизотропными свойствами. Различают термотропные и лиотропные жидкие кристаллы.

    Следует отметить, что частичная упорядоченность молекул характерна для целого ряда биологически важных веществ - белково-липидных систем, холесте­рина, некоторых солей жирных кислот и т. п. Строгая упорядоченность, вообще ха­рактерная для биологических систем, также определяется особым типом органи­зации макромолекулярных структур и по своей сущности является динамической. В живом организме эта упорядоченность поддерживается за счет равновесия между непрерывно идущими процессами распада и образования вещества и свя­зана с увеличением энтропии той системы, в которой находится организм.

    §8. Внутреннее трение (вязкость) жидкостей.

    Всякое тело при движении испытывает сопротивление среды, в которой оно движется. Если перемешивать стеклянной палочкой воду, сахарный сироп, глицерин, мед и т. п., ощущается сопротив­ление движению палочки. Сила, противодействующая движению тела, носит название силы трения.

    Когда тело испытывает сопротивление движению со стороны своих же частиц, противодействующая сила называется внутрен­ним трением или вязкостью . Таким образом, вязкость - это внут­реннее трение, проявляющееся при относительном движении со­седних слоев жидкости и зависящее от сил сцепления (взаимодей­ствия) между молекулами . Во всех жидкостях при перемещении одних слоев относительно других возникают более или менее зна­чительные силы трения, направленные по касательной к поверхно­сти этих слоев. Сила внутреннего трения F прямо пропорциональна площади S трущихся друг о друга слоев жидкости и скорости их движения dU и обратно пропорциональна расстоянию этих слоев dx один от другого:

    При выражении силы трения F в ньютонах, dx в м, dU в м/с, a S в м 2 , получим

    Вязкость является величиной, характерной для данной жид­кости.

    Жидкости, подчиняющиеся уравнению (I.31), получили назва­ние ньютоновских. Однако есть жидкости, которые не подчиняются этому уравнению, например растворы высокомолекулярных соеди­нений.

    Вязкость жидкостей в значительной степени зависит от темпе­ратуры: с повышением её вязкость жидкости понижается.

    Величина, обратная вязкости, т. е. 1/η, называется текучестью. Эфир, этиловый спирт являются легкотекучими или легкопо­движными, а глицерин, деготь - труднотекучими, или, иначе, ма­лоподвижными жидкостями.

    Значение вязкости в природе очень велико. В биологических системах она влияет на протекание ряда важнейших процессов в живом организме. Большую роль вязкость играет в различных технологических процессах в промышленности. В частности, ско­рость движения различных жидкостей по трубам в основном зави­сит от вязкости транспортируемой жидкости.

    С понижением вязкости жидкости при нагревании связано по­вышение электрической проводимости растворов электролитов (проводников второго рода).

    Глины и глинистые минералы
    Различают понятия "глинистые породы", "глинистые минералы", "глины". В то же время четких определений этих понятий не существует. У разных авторов они трактуются с теми или иными видоизменениями. Излагаемый ниже материал дается по работам П.П. Авдусина, Е.М. Сергеева, Р.Е. Гримма, Ж. Милло, Л.И. Кульчицкого, Н.Я. Денисова, В.Д. Ломтадзе, A.M. Ломтадзе, А.К. Ларионова и др.
    Глинистые породы - это обширная группа тонкодисперсных осадочных пород, занимающая промежуточное положение между породами обломочного и химического происхождения. В их составе наряду с обломочными.частицами содержатся тонкодисперсные, размером менее 0,002 мм.
    Среди пелитовой фракции обломочных пород, к которой относятся глинистые частицы, различают грубые пелиты (0,002-0,001 мм) и тонкие пелиты (менее 0,001 мм).
    Именно у пород, состоящих из частиц размеры которых менее 0,002 мм, наиболее четко проявляются характерные "глинистые" свойства (пластичность, липкость,. низкая водопроницаемость, большая емкость поглощения).
    По условиям образования глинистые породы могут быть континентальными, лагунными и морскими.
    В работе дается классификация глинистых пород по отдельным признакам: 1) по степени литификации - глинистый ил, глина мягкая, глина уплотненная, аргиллит, аргиллит сланцевый; 2) по содержанию глинистых (менее 0,002 мм) и пылеватых (от 0,002 до 0,05 мм) частиц - глина, глина пылеватая, глина песчаная, суглинок, суглинок пылеватый, супесь; 3) по составу глинистых минералов - , гидрослюдистые, монтмориллонитовые, полиминеральные; 4) по содержанию карбонатного материала - глина, глина известковая мергелистая, мергель глинистый, мергель, мергель известковистый.
    Глинами в инженерно-геологической практике называют токодисперсные осадочные породы, в составе которых содержится не менее 30 % частиц диаметром менее 0,002 мм. Глины обладают связностью и пластичностью в природном состоянии или при искусственном увлажнении водой, а при высыхании сохраняют приданную им форму. Из всех известных признаков глин только эти признаки являются устойчивыми и легко устанавливаемыми. Согласно Р.Е. Гримму, термин "глина" употребляется как название породы, а также для обозначения пород, имеющих определенный размер частиц (менее 2 мкм). В общем под глиной подразумевают природный землистый, тонкозернистый материал, который при смешении с ограниченным количеством воды обнаруживает пластичность.
    Основную роль в формировании присущих глинам свойств играют глинистые минералы, под которыми понимаются компоненты, составляющие основу глин, представляющие собой группу слоистых и слоисто-ленточных силикатов и имеющие кристаллическую структуру.
    Среди глинистых минералов наиболее распространены , гидрослюды (иллиты) и монтмориллониты. Между собой они различаются строением кристаллической решетки с вытекающими из этого различия особенностями свойств минералов и, следовательно, свойств глин и глинистых пород.
    Глинистые минералы образуются в результате изменения первичных минералов (полевых шпатов, слюд, хлоритов и т. п.) а также в результате выпадения в виде гелей из коллоидных и химических рестворов.
    С учетом преобладающего содержания того или иного глинистого минерала выделяют следующие основные типы глин: , гидрослюдистые и монтмориллонитовые. Каолинитовые глины имеют континентальное происхождение (глины коры выветривания, озерные, болотные, речные, опресненных лагун) и образуются обычно в кислой среде; гидрослюдистые могут быть как континентальными, так и морскими, формируются в кислой, нейтральной и щелочной средах; монтмориллонитовые имеют морское происхождение и образуются преимущественно в щелочной среде.
    Свойства глин и их отличия от неглинистых материалов в значительной степени зависят от кристаллохимии их поверхностей. Этот фактор был включен в определение понятия "глинистый минерал", данное Е.М. Сергеевым и Р.И. Злочевской . Под глинистым минералом предлагается понимать высокодисперсные и относительно стабильные минеральные соединения групп водных силикатов слоистого или слоисто-ленточного строения, образовавшиеся преимущественно в процессе химического выветривания горных пород. Их высокая дисперсность, характеризующаяся коллоидными и близкими к ним размерами частиц, достигается благодаря специфике свойств базальных поверхностей микрокристаллов этих частиц.
    Развернутое определение глинистого минерала с позиций гидратации базальных поверхностей дано Л.И. Кульчицким . Глинистыми минералами он называет кристаллические водные силикаты, характеризующиеся следующими критериями: 1) слоистым или цепочечно-слоистым типом структуры; 2) высокой степенью дисперсности (размеры кристаллов менее 1-5 мкм); 3) преобладанием адсорбционных центров относительно катионов и молекул воды на базальных поверхностях; 4) меньшей энергией адсорбции на центрах первой категории (базальных поверхностях) по сравнению с энергией адсорбции на центрах второй категории, что служит причиной относительно большой поверхностной дйссоциации глинистых минералов в воде; 5) поверхностной диссоциацией обменных катионов в водной среде, вследствие чего вблизи базисов развиваются глинистые частицы диффузно-гидратного слоя; 6) сильным набуханием при взаимодействии с водой и водными растворами электролитов. Считается, что такое многостороннее раскрытие понятия "глинистый минерал" определяет специфику этой группы минералов как с точки зрения крис-таллохимии и коллоидной химии, так и с точки зрения инженерной геологии.
    Под глиной Л.И. Кульчицкий понимает высокодисперсную систему "глинистые минералы - вода", обладающую определенной коагуляционной структурой, все контакты между элементами которой могут осуществляться через прослойки воды с аномальными реологическими свойствами.
    Каковы же форма и размеры глинистых частиц? Как уже отмечалось, к глинам относятся породы с преобладанием частиц размером менее 0,002 мм.
    Приведем размеры глинистых частиц, полученные Р.Е. Гриммом с использованием электронной микрофотографии. Частицы каолинита представляют собой хорошо образованные шестиугольные чешуйки, часто с преобладающим удлинением в одном направлении. Наибольшие размеры в плоскости чешуек колеблются от 0,3 до 4 мкм, а толщина - от 0,05 до 2 мкм. Могут быть и более крупные частицы. Монтмориллонит на фотографиях предстает в виде беспорядочно расплывчатой массы чрезвычайно малых частиц. Отдельные частицы имеют толщину порядка 0,002 мкм. Некоторые монтмориллониты сравнительно легко разрушаются до чешуек с толщиной, приближащейся к высоте одной элементарной ячейки. Размеры поверхности чешуек примерно в 10-100 раз превышают толщину частиц. Иллит проявляется в виде небольших нечетко обозначенных чешуек, некоторые из, них имеют отчетливую гексагональную форму. Толщина самых тонких частиц приблизительно 3 нм, диаметр от 0,1 до 0,3 мкм. В целом, согласно Р.Е. ГримМу, для частиц каолинита отношение диаметра чешуйки к толщине составляет (2-25),:1, а для монтмориллонита -(100-300): 1.
    Глинистая порода, как и любая горная порода, представляет собой естественную трехфазную систему, включающую минеральный компонент, воду и газовую составляющую . Эта система непрерывно изменяется во времени под влиянием внешних и внутренних причин (в основном температуры и давления). Как отмечают Г.К. Бондарик, A.M. Царева и В.В. Пономарев , состав, состояние и свойства горной породы (в том числе и проницаемость) зависят от условий ее формирования и последующей истории развития. Это особенно ярко проявляется в глинистых породах, которые по сравнению с другими породами представляют собой наиболее динамичные системы, достаточно интенсивно изменяющие свой облик на разных стадиях литогенеза и чрезвычайно восприимчивые в отношении структурно-текстурных особенностей и свойств к внешним и внутренним воздействиям. В этой связи кратко остановимся на понятиях структуры и текстуры глинистых пород, используя для этого представления, развитые в работе .
    Под структурой горной породы вообще, и глинистой в частности, понимается ее строение, определяемое размером и формой структурных элементов (блоков, агрегатов, зерен и др.), характером их поверхностей и количественным соотношением между разными структурными элементами. Под текстурой горной породы понимается взаимное расположение структурных элементов и их пространственная ориентация. Структура системы, ее текстура и свойства взаимосвязаны.
    Текстура породы наследует и отражает черты обстановки литогенеза. Поэтому заслуживает внимания установление зависимостей между коли-чественными показателями структуры породы и процессов, обусловивших формирование горной породы, в том числе ее текстуры. Это в свою очередь позволило бы подойти к реконструкции обстановки, в которой происходило формирование породы.
    В работе высказывается интересная мысль о том, что деформация породы представляет собой как бы "память" породы, в которой запечатлены сведения об ее формировании и развитии,