Углекислый газ плюс углерод. Углекислый газ и активная реакция воды

(IV), диоксид углерода или же двуокись углерода. Также его еще называют угольным ангидридом. Он является совершенно бесцветным газом, который не имеет запаха, с кисловатым вкусом. Углекислый газ тяжелее воздуха и плохо растворяется в воде. При температуре ниже - 78 градусов Цельсия кристаллизуется и становится похожим на снег.

Из газообразного состояния это вещество переходит в твердое, поскольку не может существовать в жидком состоянии в условиях атмосферного давления. Плотность углекислого газа в нормальных условиях составляет 1,97 кг/м3 - в 1,5 раза выше Диоксид углерода в твердом виде называется «сухой лед». В жидкое состояние, в котором его можно хранить длительное время, он переходит при повышении давления. Рассмотрим подробнее данное вещество и его химическое строение.

Углекислый газ, формула которого CO2, состоит из углерода и кислорода, а получается он в результате сжигания или гниения органических веществ. Оксид углерода содержится в воздухе и подземных минеральных источниках. Люди и животные тоже выделяют углекислый газ при выдыхании воздуха. Растения без освещения выделяют его, а во время фотосинтеза интенсивно поглощают. Благодаря процессу метаболизма клеток всех живых существ оксид углерода является одним из главных составляющих окружающей природы.

Этот газ не токсичен, но если он скапливается в большой концентрации, может начаться удушье (гиперкапния), а при его недостатке развивается противоположное состояние - гипокапния. Диоксид углерода пропускает и отражает инфракрасные. Он является который непосредственно влияет на глобальное потепление. Это происходит из-за того, что уровень его содержания в атмосфере постоянно растет, что и приводит к парниковому эффекту.

Диоксид углерода получают промышленным путем из дымных или печных газов, или же путем разложения карбонатов доломита и известняка. Смесь этих газов тщательно промывается специальным раствором, состоящим из карбоната калия. Далее она переходит в гидрокарбонат и при нагревании разлагается, в результате чего высвобождается углекислота. Углекислота (H2CO3) образуется из углекислого газа, растворенного в воде, но в современных условиях получают ее и другими, более прогрессивными методами. После того как углекислый газ очищен, его сжимают, охлаждают и закачивают в баллоны.

В промышленности это вещество широко и повсеместно применяется. Пищевики используют его как разрыхлитель (например, для приготовления теста) или в качестве консерванта (Е290). С помощью углекислого газа производят различные тонизирующие напитки и газировки, которые так любимы не только детьми, но и взрослыми. Диоксид углерода используют при изготовлении пищевой соды, пива, сахара, шипучих вин.

Углекислый газ применяется и при производстве эффективных огнетушителей. С помощью углекислого газа создается активная среда, необходимая при При высокой температуре сварочной дуги углекислый газ распадается на кислород и угарный газ. Кислород взаимодействует с жидким металлом и окисляет его. Углекислота в баллончиках применяется в пневматических ружьях и пистолетах.

Авиамоделисты используют это вещество в качестве топлива для своих моделей. С помощью углекислого газа можно значительно повысить урожайность культур, выращиваемых в оранжерее. Также в промышленности широко используется в котором продукты питания сохраняются значительно лучше. Его применяют в качестве хладагента в холодильниках, морозильных камерах, электрических генераторах и других теплоэнергетических установках.

Вещество с химическое формулой СО2 и молекулярной массой 44,011 г/моль, которое может существовать в четырёх фазовых состояниях - газообразном, жидком, твёрдом и сверхкритическом.

Газообразное состояние СО2 носит общеупотребительное название «углекислый газ». При атмосферном давлении это бесцветный газ без цвета и запаха, при температуре +20 ?С плотностью 1,839 кг/м? (в 1,52 раза тяжелее воздуха), хорошо растворяется в воде (0,88 объёма в 1 объёме воды), частично взаимодействуя в ней с образованием угольной кислоты. Входит в состав атмосферы в среднем 0,035% по объёму. При резком охлаждении за счёт расширения (детандирование) СО2 способен десублимироваться - переходить сразу в твёрдое состояние, минуя жидкую фазу.

Газообразный диоксид углерода ранее нередко хранили в стационарных газгольдерах. В настоящее время такой способ хранения не применяется; углекислый газ в необходимом количестве получают непосредственно на месте - путём испарения жидкой углекислоты в газификаторе. Далее газ можно легко перекачать по любому газопроводу под давлением 2-6 атмосфер.

Жидкое состояние СО2 носит техническое название «жидкая углекислота » или просто «углекислота». Это бесцветная жидкость без запаха, средней плотностью 771 кг/м3, которая существует только под давлением 3 482…519 кПа при температуре 0…-56,5 град.С («низкотемпературная углекислота»), либо под давлением 3 482…7 383 кПа при температуре 0…+31,0 град.С («углекислота высокого давления»). Углекислоту высокого давления получают чаще всего путём сжатия углекислого газа до давления конденсации, при одновременном охлаждении водой. Низкотемпературную углекислоту, являющейся основной формой диоксида углерода для промышленного потребления, чаще всего получают по циклу высокого давления путём трехступенчатого охлаждения и дросселирования в специальных установках.

При небольшом и среднем потреблении углекислоты (высокого давления),т для её хранения и транспортировки используют разнообразные стальные баллоны (от баллончиков для бытовых сифонов до ёмкостей вместимостью 55 л). Самым распространенным является 40 л баллон с рабочим давление 15 000 кПа, вмещающим 24 кг углекислоты. За стальными баллонами не требуется дополнительный уход, углекислота сохраняется без потерь в течение длительного времени. Баллоны с углекислотой высокого давления окрашивают в чёрный цвет.

При значительном потреблении, для хранения и транспортировки низкотемпературной жидкой углекислоты используют изотермические цистерны самой разнообразной вместимости, оснащённые служебными холодильными установками. Существуют накопительные (стационарные) вертикальные и горизонтальные цистерны вместимостью от 3 до 250 т, транспортируемые цистерны вместимостью от 3 до 18 т. Цистерны вертикального исполнения требуют строительства фундамента и используются преимущественно в условиях ограниченного пространства для размещения. Применение горизонтальных цистерн позволяет снизить затраты на фундаменты, особенно при наличии общей рамы с углекислотной станцией. Цистерны состоят из внутреннего сварного сосуда, изготовленного из низкотемпературной стали и имеющего пенополиуретановую или вакуумную теплоизоляцию; наружного кожуха из пластика, оцинкованной или нержавеющей стали; трубопроводов, арматуры и приборов контроля. Внутренняя и наружная поверхности сварного сосуда подвергаются специальной обработке, благодаря чему снижена до вероятность поверхностной коррозии металла. В дорогих импортных моделях наружный герметичный кожух выполнен из алюминия. Использование цистерн обеспечивает заправку и слив жидкой углекислоты; хранение и транспортировку без потерь продукта; визуальный контроль массы и рабочего давления при заправке, в процессе хранения и выдачи. Все типы цистерн оснащены многоуровневой системой безопасности. Предохранительные клапаны позволяют производить проверку и ремонт без остановки и опорожнения цистерны.

При мгновенном снижении давления до атмосферного, происходящем при впрыске в специальную расширительную камеру (дросселировании), жидкий диоксид углерода мгновенно превращается в газ и тончайшую снегообразную массу, которую прессуют и получают диоксид углерода в твёрдом состоянии, который носит общеупотребительное название «сухой лёд». При атмосферном давлении это белая стекловидная масса плотностью 1 562 кг/м?, с температурой -78,5 ?С, которая на открытом воздухе сублимируется - постепенно испаряется, минуя жидкое состояние. Сухой лёд может быть также получен непосредственно на установках высокого давления, применяемых для получения низкотемпературной углекислоты, из газовых смесей, содержащих СО2 в количестве не менее 75-80%. Объёмная холодопроизводительность сухого льда почти в 3 раза больше, чем у водяного льда, и составляет 573,6 кДж/кг.

Твёрдый диоксид углерода обычно выпускают в брикетах размером 200?100?20-70 мм, в гранулах диаметром 3, 6, 10, 12 и 16 мм, редко в виде тончайшего порошка («сухой снег»). Брикеты, гранулы и снег хранят не более 1-2 суток в стационарных заглублённых хранилищах шахтного типа, разбитых на небольшие отсеки; перевозят в специальных изотермических контейнерах с предохранительным клапаном. Используются контейнеры разных производителей вместимостью от 40 до 300 кг и более. Потери на сублимацию составляют, в зависимости от температуры окружающего воздуха 4-6% и более в сутки.

При давлении свыше 7,39 кПа и температуре более 31,6 град.С диоксид углерода находится в так называемом сверхкритическом состоянии, при котором его плотность как у жидкости, а вязкость и поверхностное натяжение как у газа. Эта необычная физическая субстанция (флюид) является отличным неполярным растворителем. Сверхкритический CO2 способен полностью или выборочно экстрагировать любые неполярные составляющие с молекулярной массой менее 2 000 дальтон: терпеновые соединения, воски, пигменты, высокомолекулярные насыщенные и ненасыщенные жирные кислоты, алкалоиды, жирорастворимые витамины и фитостерины. Нерастворимыми веществами для сверхкритического CO2 являются целлюлоза, крахмал, органические и неорганические полимеры с высоким молекулярным весом, сахара, гликозидные вещества, протеины, металлы и соли многих металлов. Обладая подобными свойствами, сверхкритический диоксид углерода всё шире применяется в процессах экстракции, фракционирования и импрегнации органических и неорганических веществ. Он является также перспективным рабочим телом для современных тепловых машин.

  • Удельный вес . Удельный вес углекислоты зависит от давления, температуры и агрегатного состояния, в котором она находится.
  • Критическая температура углекислоты +31 град. Удельный вес углекислого газа при 0 град и давлении 760 мм рт.ст. равен 1, 9769 кг/м3.
  • Молекулярный вес углекислого газа 44,0. Относительный вес углекислого газа по сравнению с воздухом составляет 1,529.
  • Жидкая углекислота при температурах выше 0 град. значительно легче воды, и ее можно хранить только под давлением.
  • Удельный вес твердой углекислоты зависит от метода ее получения. Жидкая углекислота при замораживании превращается в сухой лед, представляющий прозрачное, стеклообразное твердое тело. В этом случае твердая углекислота имеет наибольшую плотность (при нормальном давлении в сосуде, охлаждаемом до минус 79 град., плотность равна 1,56). Промышленная твердая углекислота имеет белый цвет, по твердости близка к мелу,
  • ее удельный вес колеблется в зависимости от способа получения в пределах 1,3 - 1,6.
  • Уравнение состояния. Связь между объемом, температурой и давлением углекислого газа выражается уравнением
  • V= R T/p - A, где
  • V - объем, м3/кг;
  • R - газовая постоянная 848/44 = 19,273;
  • Т - температура, К град.;
  • р давление, кг/м2;
  • А - дополнительный член, характеризующий отклонение от уравнения состояния для идеального газа. Он выражается зависимостью А =(0, 0825 + (1,225)10-7 р)/(Т/100)10/3.
  • Тройная точка углекислоты. Тройная точка характеризуется давлением 5,28 ата (кг/см2) и температурой минус 56,6 град.
  • Углекислота может находиться во всех трех состояниях (твердом, жидком и газообразном) только в тройной точке. При давлениях ниже 5,28 ата (кг/см2) (или при температуре ниже минус 56,6 град.) углекислота может находиться только в твердом и газообразном состояниях.
  • В парожидкостной области, т.е. выше тройной точки, справедливы следующие соотношения
  • i" x + i"" у = i,
  • x + у = 1, где,
  • x и у - доля вещества в жидком и парообразном виде;
  • i" - энтальпия жидкости;
  • i"" - энтальпия пара;
  • i - энтальпия смеси.
  • По этим величинам легко определить величины x и у. Соответственно для области ниже тройной точки будут действительны следующие уравнения:
  • i"" у + i"" z = i,
  • у + z = 1, где,
  • i"" - энтальпия твердой углекислоты;
  • z - доля вещества в твердом состоянии.
  • В тройной точке для трех фаз имеются также только два уравнения
  • i" x + i"" у + i""" z = i,
  • x + у + z = 1.
  • Зная значения i," i"," i""" для тройной точки и используя приведенные уравнения можно определить энтальпию смеси для любой точки.
  • Теплоемкость. Теплоемкость углекислого газа при температуре 20 град. и 1 ата составляет
  • Ср = 0,202 и Сv = 0,156 ккал/кг*град. Показатель адиабаты k =1,30.
  • Теплоемкость жидкой углекислоты в диапазоне температур от -50 до +20 град. характеризуется следующими значениями, ккал/кг*град. :
  • Град.С -50 -40 -30 -20 -10 0 10 20
  • Ср, 0,47 0,49 0,515 0,514 0,517 0,6 0,64 0,68
  • Точка плавления. Плавление твердой углекислоты происходит при температурах и давлениях, соответствующих тройной точке (t = -56,6 град. и р = 5,28 ата) или находящихся выше ее.
  • Ниже тройной точки твердая углекислота сублимирует. Температура сублимации является функцией давления: при нормальном давлении она равна -78,5 град., в вакууме она может быть -100 град. и ниже.
  • Энтальпия. Энтальпию пара углекислоты в широком диапазоне температур и давлений определяют по уравнению Планка и Куприянова.
  • i = 169,34 + (0,1955 + 0,000115t)t - 8,3724 p(1 + 0,007424p)/0,01T(10/3), где
  • I - ккал/кг, р - кг/см2, Т - град.К, t - град.С.
  • Энтальпию жидкой углекислоты в любой точке можно легко определить путем вычитания из энтальпии насыщенного пара величины скрытой теплоты парообразования. Точно так же, вычитая скрытую теплоту сублимации, можно определить энтальпию твердой углекислоты.
  • Теплопроводность . Теплопроводность углекислого газа при 0 град. составляет 0,012 ккал/м*час*град.С, а при температуре -78 град. она понижается до 0,008 ккал/м*час*град.С.
  • Данные о теплопроводности углекислоты в 10 4 ст. ккал/м*час*град.С при плюсовых температурах приведены в таблице.
  • Давление, кг/см2 10 град. 20 град. 30 град. 40 град.
  • Газообразная углекислота
  • 1 130 136 142 148
  • 20 - 147 152 157
  • 40 - 173 174 175
  • 60 - - 228 213
  • 80 - - - 325
  • Жидкая углекислота
  • 50 848 - - -
  • 60 870 753 - -
  • 70 888 776 - -
  • 80 906 795 670
    Теплопроводность твердой углекислоты может быть вычислена по формуле:
    236,5/Т1,216 ст., ккал/м*час*град.С.
  • Коэффициент теплового расширения. Объемный коэффициент расширения а твердой углекислоты рассчитывают в зависимости от изменения удельного веса и температуры. Линейный коэффициент расширения определяют по выражению b = a/3. В диапазоне температур от -56 до -80 град. коэффициенты имеют следующие значения: а *10*5ст. = 185,5-117,0, b* 10* 5 cт. = 61,8-39,0.
  • Вязкость. Вязкость углекислоты 10 *6ст. в зависимости от давления и температуры (кг*сек/м2)
  • Давление, ата -15 град. 0 град. 20 град. 40 град.
  • 5 1,38 1,42 1,49 1,60
  • 30 12,04 1,63 1,61 1,72
  • 75 13,13 12,01 8,32 2,30
  • Диэлектрическая постоянная. Диэлектрическая постоянная жидкой углекислоты при 50 - 125 ати, находится в пределах 1,6016 - 1,6425.
  • Диэлектрическая постоянная углекислого газа при 15 град. и давлении 9,4 - 39 ати 1,009 - 1,060.
  • Влагосодержание углекислого газа. Содержание водяных паров во влажном углекислом газе определяют с помощью уравнения,
  • Х = 18/44 * p’/p - p’ = 0,41 p’/p - p’ кг/кг, где
  • p’ - парциальное давление водяных паров при 100%-м насыщении;
  • р - общее давление паро-газовой смеси.
  • Растворимость углекислоты в воде. Растворимость газов измеряется объемами газа, приведенными к нормальным условиям (0 град, С и 760 мм рт. ст.) на объем растворителя.
  • Растворимость углекислоты в воде при умеренных температурах и давлениях до 4 - 5 ати подчиняется закону Генри, который выражается уравнением
  • Р = Н Х, где
  • Р - парциальное давление газа над жидкостью;
  • Х - количество газа в молях;
  • Н - коэффициент Генри.
  • Жидкая углекислота как растворитель. Растворимость смазочного масла в жидкой углекислоте при температуре -20град. до +25 град. составляет 0,388 г в100 СО2,
  • и увеличивается до 0,718 г в 100 г СО2 при температуре +25 град. С.
  • Растворимость воды в жидкой углекислоте в диапазоне температур от -5,8 до +22,9 град. составляет не более 0,05% по весу.

Техника безопасности

По степени воздействия на организм человека газообразный диоксид углерода относится к 4-му классу опасности по ГОСТу 12.1.007-76 «Вредные вещества. Классификация и общие требования безопасности». Предельно допустимая концентрация в воздухе рабочей зоны не установлена, при оценке этой концентрации следует ориентироваться на нормативы для угольных и озокеритовых шахт, установленные в пределах 0,5%.

При применении сухого льда, при использовании сосудов с жидкой низкотемпературной углекислотой должно обеспечиваться соблюдение мер безопасности, предупреждающих обморожение рук и других участков тела работника.


Упадок сил, слабость, больная голова, депрессия - знакомо такое состояние? Чаще всего так бывает осенью и зимой, а плохое самочувствие списывают на нехватку солнечного света. Но дело не в нём, а в избыточном содержании углекислого газа в воздухе, которым вы дышите. Ситуация с уровнем СО₂ в жилых помещениях и транспорте в нашей стране поистине катастрофическая. Духота, повышенная влажность и плесень также являются следствием отсутствующей вентиляции. Герметичные пластиковые окна и кондиционеры лишь усугубляют ситуацию. А вы знаете, что при двухкратном превышении (относительно уличного фона) уровня углекислого газа в воздухе мозговая активность снижается в 2 раза? Кстати, именно зевающие студенты на лекциях являются показателем повышенного содержания CO₂ в аудитории. А очень часто вентиляция отсутствует и в офисных зданиях. О какой производительности может быть речь, если у человека просто не работают мозги?

Итак, начнём с основ. Человеку при дыхании поглощает кислород, а выделяет углекислый газ. Также углекислый газ выделяется при сжигании углеводородов. Средний уровень СО₂ на нашей планете в настоящий момент составляет около 400 PPM (Parts per million - частей на миллион, или 0,04%) и постоянно растет вследствие постоянного роста потребления нефтепродуктов. При этом стоит знать, что деревья поглощают углекислый газ и именно в этом заключается их главная функция (а не как ошибочно считают, что они лишь вырабатывают кислород).

Пока человек находится на открытом воздухе - проблем нет, но они начинаются когда он оказывается в помещении. Если человека запереть в герметичной комнате без притока свежего воздуха, то он умрет не от недостатка кислорода, как ошибочно считает большинство, а от многократного превышения уровня углекислого газа, который этот человек сам же и выработал в легких. Отставим проблемы вентиляции общественного транспорта (про это я напишу отдельно) и обратим наше внимание на городские квартиры/загородные дома, в которых массово отсутствует вентиляция.

При этом человек проводит в своем доме/квартире минимум треть своей жизни, а в реальности половину - нельзя экономить на своем собственном здоровье!


2. Проблема повышенного содержания CO₂ в воздухе особенно актуальна в холодное время года, т.к. летом практически у всех постоянно открыты форточки. А с наступлением холодов форточки открывают всё реже и реже, сводя в конечном итоге к эпизодическому проветриванию. И, какое совпадение, именно в холодное время года появляется депрессия, сонливость и упадок сил.

3. Раньше даже была такая традиция - заклеивать щели на окнах перед холодами. Часто вместе с форточками и полностью исключали поступение свежего воздуха в дом. Я еще раз акцентирую внимание, что свежий воздух нужен не потому, что в нём есть необходимый для дыхания кислород, а для того, чтобы путём замещения воздуха в помещении снизить избыточное содержание углекислого газа.

4. Многие думают, что у них же есть вытяжка (в квартирах как минимум на кухне и в санузле), вот через неё и будет вентилироваться помещение. Ага, вдобавок установив пластиковые окна, которые полностью герметичны. Но как воздух пойдет в вытяжку если у вас нет притока в виде либо щелей в рамах, либо открытого окна? А при хорошей тяге обычно тянет воздух из подъезда.

5. Хуже только поставить кондиционер в виде сплит-системы и пользоваться им при закрытых окнах. Запомните, при работе кондиционера НЕЛЬЗЯ закрывать окна! Вот современный герметичный загородный дом, у которого нет щелей в ограждающих конструкциях. И не надо вестись на рассказы о том, что дерево или газобетон "дышат" и следовательно можно наплевать на вентиляцию. Запомните, под этим термином подразумевается высокая паропроницаемость материала, а не способность подавать в дом свежий уличный воздух.

6. Большинство ограничивается вентилятором на вытяжке из санузла и кухни. Окей, включили вентилятор, в доме закрыты все окна и двери. Какой будет результат? Правильно, в доме будет разрежение, ведь новому воздуху неоткуда взяться. Чтобы естественная вентиляция работала, в дом должен поступать свежий воздух.

7. Для измерений уровня углекислого газа в воздухе сейчас появились относительно доступные датчики с NDIR-сенсором. Не дисперсионный инфракрасный метод (NDIR) основан на изменении интенсивности ИК-излучения до и после поглощения в инфракрасном детекторе с избирательной чувствительностью. Изначально я собирался купить такой датчик на aliexpress в прошлом году (тогда он стоил примерно 100 долларов), но выросшая цена вследствие роста курса доллара заставила задуматься и поискать альтернативные варианты. Неожиданно этот датчик нашелся в России под российским брендом за те же 100 долларов по прошлогоднему курсу. Итого, на Яндекс.Маркете я нашел самое выгодное предложение и приобрел датчик по цене 3500 рублей. Модель называется MT8057. Разумеется, у датчика есть погрешность, но она не важна, когда речь идет о том, что нам важны измерения с превышением концентрации углекислого газа в несколько раз выше нормы.

8. Закрытые пластиковые окна, кондиционеры - все это ерунда по сравнению с газовой плитой в квартире (для фото я зажег газовую горелку, т.к. для съемки плиты её надо было помыть).

9. Итак, всё внимание на график. Кухня 9 квадратных метров, потолки высотой 3 метра, открытая дверь на кухню (!), закрытое окно, имеется вытяжка с естественным побуждением (летом тяга слабая), один человек. Датчик стоит на высоте 1 метр от пола, на обеденном столе. "Нормальный" уровень СО₂ в помещении без людей около 600 PPM. Приходит один человек - уровень СО₂ моментально повышается. Уходит - падает. Приходит снова - опять повышается. И после этого включает одну (!) газовую конфорку. Уровнь СО₂ практически моментально поднимается выше 2000 PPM. Тревога! Открываем форточку. Наблюдаем как медленно понижается концентрация углекислого газа в воздухе. А добавьте сюда еще 1-2 человек. Даже если не включать газовую плиту, то 3 взрослых человека не выполняя тяжелую физическую работу поднимают уровень CO₂ в комнате до критической отметки за 30 минут.

Готовите на газовой плите? Обязательно нужно открыть форточку и включить вытяжку (сделать и то и другое одновременно).

Включили кондиционер? Обязательно открыть окно.

Просто находитесь в комнате? Обязательно открыть форточку. А если в комнате много людей - открыть окно.

И ночью, во время сна окно необходимо держать открытым.

Короче говоря, у вас либо должен быть приточный вентиляционный канал, либо постоянно открытое окно.

10. Что касается деревьев и чем они могут быть полезны. Их важнейшая функция в процессе роста - поглощение углекислого газа. Мало кто задумывается почему дрова горят и откуда в них столько энергии. Так эта энергия в виде углерода и накапливается в стволе дерева в результате поглощения углекислого газа. А кислород деревья вырабатывают как побочный продукт в реакции фотосинтеза.

11. Открыть окно в теплое время года не составляет труда и в целом летом проблема не так актуальна (кроме случаев использования кондиционеров с закрытыми окнами). Проблемы начинаются зимой, ведь постоянно открытой форточку никто не держит, это огромные неконтролируемые потери тепла и будет банально холодно. Вот именно в этот момент и стоит поднимать тревогу. Здоровье - бесценно.

Проблема очень серьезна и носит глобальный характер. Я, например, до осени прошлого года вообще не задумывался о важности вентиляции для здоровья: что в квартире, что в загородном доме. Если заглянуть в прошлое, то именно регулярные осенние депрессии, сонливость и плохое настроение в течение холодного времени года в городской квартире сподвигли думать в сторону того, что нужно так сказать уезжать из города и строить , т.к. осенью-зимой болела голова и была общая слабость организма при нахождении в городе. Но как только я выезжал на природу - проблема исчезала. Я списывал всё это не нехватку солнечного света, но дело было не в нём. Зимой я переставал держать открытым окно (холодно же) и получал многократное превышение СО₂ в квартире.

Самое простое и доступное решение проблемы - постоянно держать открытым окно, либо проветривать ориентируясь на показатели с датчика CO₂. Нормальным уровнем CO₂ в помещении может считаться концентрация до 1000 PPM, если выше - нужно срочно проветривать. Косвенным показателем высокой концентрации углекислого газа в воздухе можно считать влажность. Если без объективных причин и понижения температуры в помещении начинает повышаться влажность - значит и растет уровень CO₂.

Опасность повышенной концентрации углекислого газа в воздухе заключается в том, что человеческий организм реагирует с очень большой задержкой. К тому моменту, когда вы почувствовали, что в комнате душно и надо проветрить - вы уже минимум полчаса находились в помещении с повышенным содержанием CO₂ в воздухе.

В следующем посте я расскажу о том, какие проблемы есть с вентиляцией в общественном транспорте (автобусы, поезда, самолеты). А также покажу как правильно организовать вентиляцию в загородном доме, про которую все почему-то забывают.

Продолжение следует.

Статьи по теме, для самостоятельного изучения.

ОПРЕДЕЛЕНИЕ

Двуокись углерода (двуокись углерода, карбоновый ангидрид, диоксид углерода) - окись углерода (IV).

Формула представляет собой CO2. Молярная масса - 44 г / моль.

Химические свойства двуокиси углерода

Углекислый газ относится к классу оксидов кислот, то есть при взаимодействии с водой он образует кислоту, которая называется углем. Карбоновая кислота химически нестабильна и во время образования она немедленно разлагается на ее компоненты, то есть реакция взаимодействия двуокиси углерода с водой обратима:

CO2 + H2O ↔ CO2 × H2O (раствор) ↔ H2CO3.

При нагревании углекислый газ разлагается на монооксид углерода и кислород:

2CO2 = 2CO + O2.

Как и все кислотные оксиды, двуокись углерода характеризуется реакциями взаимодействия с основными оксидами (образованными только активными металлами) и основаниями:

CaO + CO2 = CaCO3;

Al2O3 + 3CO2 = Al2 (CO3) 3;

CO2 + NaOH (разбавленный) = NaHCO3;

CO2 + 2NaOH (конц) = Na2CO3 + H2O.

Углекислый газ не поддерживает горение, в нем горят только активные металлы:

CO2 + 2Mg = C + 2MgO (t ^ {\ circ});

CO2 + 2Ca = C + 2CaO (t ^ {\ circ}).

Двуокись углерода реагирует с простыми веществами, такими как водород и углерод:

CO2 + 4H2 = CH4 + 2H2O (t ^ {\ circ}, kat = Cu2O);

CO2 + C = 2CO (t ^ {\ circ}).

Когда диоксид углерода взаимодействует с перекисями активных металлов, образуются карбонаты и выделяется кислород:

2CO2 + 2Na2O2 = 2Na2CO3 + O2.

Качественная реакция на углекислый газ представляет собой реакцию его взаимодействия с известковой водой (молоком), то есть с гидроксидом кальция, в котором образуется белый осадок - карбонат кальция:

CO2 + Ca (OH) 2 = CaCO3 ↓ + H2O.

Физические свойства двуокиси углерода

Двуокись углерода представляет собой газообразное вещество без цвета или запаха. Тяжелее воздуха. Термостойкость. При сжатии и охлаждении легко переходит в жидкое и твердое состояние. Двуокись углерода в твердом состоянии агрегации называется «сухой лед» и легко сублимируется при комнатной температуре. Двуокись углерода плохо растворяется в воде, частично реагирует с ней. Плотность - 1,977 г / л.

Производство и использование диоксида углерода

Выделяют промышленные и лабораторные методы производства двуокиси углерода. Так, в промышленности он получается путем сжигания известняка (1) и в лаборатории под действием сильных кислот на карбонатных солях (2):

CaCO3 = CaO + CO2 (t ^ {\ circ}) (1);

CaCO3 + 2HCl = CaCl2 + CO2 + H2O (2).

Углекислый газ используется в пищевых продуктах (карбонизация лимонада), химическая (контроль температуры при производстве синтетических волокон), металлургический (защита окружающей среды, например, осаждение коричневого газа) и другие отрасли.

Примеры решения проблем

  • Задача

    Какой объем углекислого газа будет выделяться под действием 200 г 10% -ного раствора азотной кислоты на 90 г карбоната кальция, содержащего 8% примесей, нерастворимых в кислоте?

  • Решение

    Раствор Молярная масса азотной кислоты и карбоната кальция, рассчитанная с использованием таблицы химических элементов D.I. Менделеева - 63 и 100 г / моль соответственно.

    Запишем уравнение для растворения известняка в азотной кислоте:

    CaCO3 + 2HNO3 → Ca (NO3) 2 + CO2 + H2O.

    ω (CaCO3) cl = 100% - ωadmixture = 100% - 8% = 92% = 0,92.

    Затем масса чистого карбоната кальция:

    m (CaCO3) cl = mlimestone × ω (CaCO3) cl / 100%;

    м (CaCO3) Cl = 90 × 92/100% = 82,8 г

    Количество карбоната кальция:

    n (CaCO3) = m (CaCO3) cl / M (CaCO3);

    n (СаСО3) = 82,8 / 100 = 0,83 моль.

    Масса азотной кислоты в растворе будет равна:

    m (HNO3) = m (HNO3) раствор × ω (HNO3) / 100%;

    м (HNO3) = 200 × 10/100% = 20 г.

    Количество вещества азотной кислоты кальция:

    n (HNO3) = m (HNO3) / M (HNO3);

    n (HNO3) = 20/63 = 0,32 моль.

    Сравнивая количество веществ, входивших в реакцию, мы определяем, что азотная кислота в дефиците, поэтому мы проводим дальнейшие расчеты для азотной кислоты. Согласно уравнению реакции n (HNO3): n (CO2) = 2: 1, поэтому n (CO2) = 1/2 × n (HNO3) = 0,16 моль. Затем объем углекислого газа будет равен:

    V (CO2) = n (CO2) × Vm;

    V (CO2) = 0,16 × 22,4 = 3,58 г.

  • Ответ

    Объем двуокиси углерода - 3,58 г.

  • Задача

    Задайте количество диоксида углерода весом 35 г

  • Решение

    Раствор Масса вещества и его объем связаны между собой количеством вещества. Запишем формулы для расчета количества вещества по массе и объему:

    Приравнивает выражения, написанные справа, и мы будем выражать объем:

    V = m × Vm / M.

    Рассчитайте объем двуокиси углерода из полученной формулы. Молярная масса диоксида углерода, рассчитанная с использованием таблицы химических элементов D.I. Менделеева - 44 г / моль.

    V (CO2) = 35 × 22,4 / 44 = 17,82 л.

  • Ответ

    Объем диоксида углерода - 17,82 литра.

  • Цели:

    • Расширить представления об истории открытия, свойствах и практическом применении углекислого газа.
    • Познакомить учащихся с лабораторными способами получения углекислого газа.
    • Продолжить формирование экспериментальных навыков учащихся.

    Используемые приемы: “верные и неверные утверждения”, “зигзаг-1”, кластеры.

    Лабораторное оборудование: лабораторный штатив, прибор для получения газов, стакан на 50 мл, кусочки мрамора, соляная кислота (1:2), известковая вода, зажим Мора.

    I. Стадия вызова

    На стадии вызова используется прием “верные и неверные утверждения”.

    Утверждения

    II. Стадия осмысления

    1. Организация деятельности в рабочих группах, участники которых получают тексты по пяти основным темам “зигзага”:

    1. История открытия углекислого газа
    2. Углекислый газ в природе
    3. Получение углекислого газа
    4. Свойства углекислого газа
    5. Практическое применение углекислого газа

    Идет первоначальное знакомство с текстом, первичное чтение.

    2. Работа в экспертных группах.

    В экспертные группы объединяются “специалисты” по отдельным вопросам. Их задача – внимательное чтение текста, выделение ключевых фраз и новых понятий либо использование кластеров и различных схем для графического изображения содержания текста (работа ведется индивидуально).

    3. Отбор материала, его структурирование и дополнение (групповая работа)

    4. Подготовка к трансляции текста в рабочих группах

    • 1-я группа экспертов составляет опорный конспект “История открытия углекислого газа”
    • 2-я группа экспертов составляет схему распространения углекислого газа в природе
    • 3-я группа экспертов составляет схему получения углекислого газа и рисунок установки для его получения
    • 4-я группа экспертов составляет классификацию свойств углекислого газа
    • 5-я группа экспертов составляет схему практического применения углекислого газа

    5. Подготовка к презентации (плакат)

    III. Стадия рефлексии

    Возвращение в рабочие группы

    1. Трансляция в группе тем 1–5 последовательно. Сбор установки для получения углекислого газа. Получение углекислого газа и исследование его свойств.
    2. Обсуждение результатов эксперимента.
    3. Презентация отдельных тем.
    4. Возвращение к “верным и неверным утверждениям”. Проверка своих первоначальных предположений. Расстановка новых значков.

    Это может выглядеть так:

    Утверждения

    1. Углекислый газ – это “дикий газ”.
    2. В морях и океанах содержится в 60 раз больше углекислого газа, чем в земной атмосфере.
    3. Природные источники углекислого газа называются мофетами.
    4. В окрестностях Неаполя находится “Собачья пещера”, в которой не могут находиться собаки.
    5. В лабораториях углекислый газ получают действием серной кислоты на куски мрамора.
    6. Углекислый газ – это газ без цвета и запаха, легче воздуха, хорошо растворим в воде.
    7. Твёрдый углекислый газ получил название “сухого льда”.
    8. Известковая вода – это раствор гидроксида кальция в воде.

    Тексты по пяти основным темам “зигзага”

    1. История открытия углекислого газа

    Углекислый газ был первым между всеми другими газами противопоставлен воздуху под названием “дикого газа” алхимиком XVI в. Вант Гельмонтом.

    Открытием СО 2 было положено начало новой отрасли химии – пневматохимии (химии газов).

    Шотландский химик Джозеф Блэк (1728 – 1799 г.г.) в 1754 году установил, что известковый минерал мрамор (карбонат кальция) при нагревании разлагается с выделением газа и образует негашеную известь (оксид кальция):

    CaCO 3 CaO + CO 2
    карбонат кальция оксид кальция углекислый газ

    Выделяющийся газ можно было вновь соединить с оксидом кальция и вновь получить карбонат кальция:

    CaO + CO 2 CaCO 3
    оксид кальция углекислый газ карбонат кальция

    Этот газ был идентичен открытому Ван Гельмонтом “дикому газу”, но Блэк дал ему новое название – “связанный воздух” – так как этот газ можно было связать и вновь получить твердую субстанцию, а также он обладал способностью притягиваться известковой водой (гидроксидом кальция) и вызывать её помутнение:


    углекислый газ гидроксид кальция карбонат кальция вода

    Несколько лет спустя Кавендиш обнаружил еще два характерных физических свойства углекислого газа – его высокую плотность и значительную растворимость в воде.

    2. Углекислый газ в природе

    Содержание углекислого газа в атмосфере относительно небольшое, всего 0,04–0,03% (по объему). CO 2 , сосредоточенный в атмосфере, имеет массу 2200 биллионов тонн.
    В 60 раз больше углекислого газа содержится в растворенном виде в морях и океанах.
    В течение каждого года из атмосферы извлекается примерно 1/50 часть всего содержащегося в ней CO 2 растительным покровом земного шара в процессе фотосинтеза, превращающего минеральные вещества в органические.
    Основная масса углекислого газа в природе образуется в результате различных процессов разложения органических веществ. Углекислый газ выделяется при дыхании растений, животных, микроорганизмов. Непрерывно увеличивается количество углекислого газа, выделяемого различными производствами. Углекислый газ содержится в составе вулканических газов, выделяется он и из земли в вулканических местностях. Несколько столетий функционирует в качестве постоянно действующего генератора CO 2 “Собачья пещера” вблизи города Неаполя в Италии. Она знаменита тем, что собаки в ней не могут находиться, а человек может там пребывать в нормальном состоянии. Дело в том, что в этой пещере углекислый газ выделяется из земли, а так как он в 1,5 раза тяжелее воздуха, то располагается внизу, примерно на высоте роста собаки (0,5 м). В таком воздухе, где углекислого газа 14% , собаки (и другие животные, разумеется) дышать не могут, но стоящий на ногах взрослый человек не ощущает избытка углекислого газа в этой пещере. Такие же пещеры существуют в Йеллоустонском национальном парке (США).
    Природные источники углекислого газа называются мофетами. Мофеты характерны для последней, поздней стадии затухания вулканов в которой находится, в частности, знаменитый вулкан Эльбрус. Поэтому там наблюдаются многочисленные выходы пробивающихся сквозь снега и льды горячих источников, насыщенных углекислым газом.
    Вне земного шара оксид углерода (IV) обнаружен в атмосферах Марса и Венеры – планетах “земного типа”.

    3. Получение углекислого газа

    В промышленности углекислый газ получается главным образом как побочный продукт обжига известняка спиртового брожения и др.
    В химических лабораториях либо пользуются готовыми баллонами с жидким углекислым газом, либо получают CO 2 в аппаратах Киппа или приборе для получения газов действием соляной кислоты на куски мрамора:

    CaCO 3 + 2HCl CaCl 2 + CO 2 + H 2 O
    карбонат кальция соляная кислота хлорид кальция углекислый газ вода

    Пользоваться серной кислотой вместо соляной при этом нельзя, потому что тогда вместо растворимого в воде хлорида кальция получался бы гипс – сульфат кальция (CaSO 4) – соль, малорастворимая в воде. Отлагаясь на кусках мрамора, гипс крайне затрудняет доступ к ним кислоты и тем самым очень замедляет течение реакции.
    Для получения углекислого газа:

    1. Закрепите в лапке лабораторного штатива прибор для получения газов
    2. Выньте из пробирки с отростком пробку с воронкой
    3. Поместите в насадку 2–3 кусочка мрамора величиной? горошины
    4. Вставьте пробку с воронкой в пробирку снова. Откройте зажим
    5. Прилейте в воронку (осторожно!) соляную кислоту (1:2) так, чтобы кислота слегка покрывала мрамор
    6. Наполните оксидом углерода (IV) химический стакан и закройте зажим.

    4. Свойства углекислого газа

    CO 2 – это бесцветный газ, не имеет запаха, тяжелее воздуха в 1,5 раза, с трудом смешивается с ним (по выражению Д.И. Менделеева, “тонет” в воздухе), что можно доказать следующим опытом: над стаканом, в котором закреплена горящая свечка, опрокидывают стакан, наполненный углекислым газом. Свечка мгновенно гаснет.
    Оксид углерода (IV) обладает кислотными свойствами и при растворении этого газа в воде образуется угольная кислота. При пропускании CO 2 через подкрашенную лакмусом воду можно наблюдать изменение цвета индикатора с фиолетового на красный.
    Хорошая растворимость углекислого газа в воде делает невозможным собирание его методом “вытеснения воды”.
    Качественной реакцией на содержание углекислого газа в воздухе является пропускание газа через разбавленный раствор гидроксида кальция (известковую воду). Углекислый газ вызывает образование в этом растворе нерастворимого карбоната кальция, в результате чего раствор становится мутным:

    CO 2 + Ca(OH) 2 CaCO 3 + H 2 O
    углекислый газ гидроксид кальция карбонат кальция вода

    При добавлении избыточного количества CO2 мутный раствор снова становится прозрачным из-за превращения нерастворимого карбоната в растворимый гидрокарбонат кальция:

    CaCO 3 + H 2 O + CO 2 Ca(HCO 3) 2
    карбонат кальция вода углекислый газ гидрокарбонат кальция

    5. Практическое применение углекислого газа

    Прессованный твердый углекислый газ получил название “сухого льда”.
    Твердый CO 2 скорее похож на спрессованный плотный снег, по твердости напоминающий мел. Температура “сухого льда” –78 о С. Сухой лед, в отличие от водяного льда, плотный. Он тонет в воде, резко охлаждая её. Горящий бензин можно быстро потушить, бросив в пламя несколько кусочков сухого льда.
    Главное применение сухого льда – хранение и перевозка продуктов питания: рыбы, мяса, мороженого и др. Ценность сухого льда заключается не только в его охлаждающем действии, но и в том, что продукты в углекислом газе не плесневеют и не гниют.
    Сухим льдом испытывают в лабораториях детали, приборы, механизмы, которые будут служить в условиях пониженных температур. С помощью сухого льда испытывают морозоустойчивость резиновых покрышек автомобилей.
    Углекислый газ применяют для газирования фруктовых и минеральных вод, а в медицине – для углекислотных ванн.
    Жидкий углекислый газ используют в углекислотных огнетушителях, огнетушительных системах самолетов и кораблей и в пожарных углекислотных машинах. Он особенно эффективен в тех случаях, когда вода непригодна, например, при тушении загоревшихся огнеопасных жидкостей или при наличии в помещении невыключенной электропроводки или уникального оборудования, которое от воды может пострадать.
    Во многих случаях CO 2 используют не в готовом виде, а получают в процессе использования, например, хлебопекарных порошков, содержащих смесь бикарбоната натрия с кислым виннокислым калием. При смешивании таких порошков с тестом соли растворяются и возникает реакция с выделением CO 2 . В результате тесто всходит, наполняясь пузырьками углекислого газа, и выпеченный из него продукт получается мягким и вкусным.

    Литература

    1. Перемена // Международный журнал о развитии мышления через чтение и письмо. – 2000. – №№ 1, 2.
    2. Современный студент в поле информации и коммуникации: Учебно-методическое пособие. – СПб.: PETROC, 2000.
    3. Загашев И.О., Заир-Бек С.И. Критическое мышление: технология развития. – СПб.: Издательство “Альянс “Дельта”, 2003.