ค่าที่ใหญ่ที่สุดและน้อยที่สุดของฟังก์ชันบนเซ็กเมนต์ ค่าที่ใหญ่ที่สุดและเล็กที่สุดของฟังก์ชันบนเซ็กเมนต์

อัลกอริธึมมาตรฐานสำหรับการแก้ปัญหาดังกล่าวหลังจากค้นหาศูนย์ของฟังก์ชันแล้ว จะต้องกำหนดสัญญาณของอนุพันธ์ตามช่วงเวลา จากนั้นจึงคำนวณค่าที่จุดสูงสุด (หรือต่ำสุด) ที่พบ และที่ขอบเขตของช่วงเวลา ขึ้นอยู่กับคำถามที่อยู่ในเงื่อนไข

ฉันแนะนำให้คุณทำสิ่งที่แตกต่างออกไปเล็กน้อย ทำไม ฉันเขียนเกี่ยวกับเรื่องนี้

ฉันเสนอให้แก้ไขปัญหาดังกล่าวดังนี้:

1. ค้นหาอนุพันธ์
2. ค้นหาศูนย์ของอนุพันธ์
3. พิจารณาว่ารายการใดอยู่ในช่วงนี้
4. เราคำนวณค่าของฟังก์ชันที่ขอบเขตของช่วงเวลาและจุดของขั้นตอนที่ 3
5. เราได้ข้อสรุป (ตอบคำถามที่ถูกวาง)

ในขณะที่แก้ตัวอย่างที่นำเสนอนั้น ไม่ได้พิจารณาวิธีแก้ปัญหาอย่างละเอียด สมการกำลังสองคุณต้องสามารถทำเช่นนี้ได้ พวกเขาควรรู้ด้วย

ลองดูตัวอย่าง:

77422. ค้นหาค่าที่ใหญ่ที่สุดของฟังก์ชัน y=x 3 –3x+4 บนเซ็กเมนต์ [–2;0]

มาหาศูนย์ของอนุพันธ์กัน:

จุด x = –1 อยู่ในช่วงที่ระบุในเงื่อนไข

เราคำนวณค่าของฟังก์ชันที่จุด –2, –1 และ 0:

ค่าที่ใหญ่ที่สุดของฟังก์ชันคือ 6

คำตอบ: 6

77425. ค้นหาค่าที่น้อยที่สุดของฟังก์ชัน y = x 3 – 3x 2 + 2 บนเซ็กเมนต์

มาหาอนุพันธ์ของฟังก์ชันที่กำหนด:

มาหาศูนย์ของอนุพันธ์กัน:

จุด x = 2 เป็นของช่วงที่ระบุในเงื่อนไข

เราคำนวณค่าของฟังก์ชันที่จุดที่ 1, 2 และ 4:

ค่าที่น้อยที่สุดของฟังก์ชันคือ –2

คำตอบ: –2

77426. ค้นหาค่าที่ใหญ่ที่สุดของฟังก์ชัน y = x 3 – 6x 2 บนเซ็กเมนต์ [–3;3]

มาหาอนุพันธ์ของฟังก์ชันที่กำหนด:

มาหาศูนย์ของอนุพันธ์กัน:

ช่วงเวลาที่ระบุในเงื่อนไขมีจุด x = 0

เราคำนวณค่าของฟังก์ชันที่จุด –3, 0 และ 3:

ค่าที่น้อยที่สุดของฟังก์ชันคือ 0

คำตอบ: 0

77429. ค้นหาค่าที่น้อยที่สุดของฟังก์ชัน y = x 3 – 2x 2 + x +3 บนเซกเมนต์

มาหาอนุพันธ์ของฟังก์ชันที่กำหนด:

3x 2 – 4x + 1 = 0

เราได้ราก: x 1 = 1 x 1 = 1/3

ช่วงเวลาที่ระบุในเงื่อนไขมีเพียง x = 1

มาหาค่าของฟังก์ชันที่จุดที่ 1 และ 4:

เราพบว่าค่าที่น้อยที่สุดของฟังก์ชันคือ 3

คำตอบ: 3

77430. ค้นหาค่าที่ใหญ่ที่สุดของฟังก์ชัน y = x 3 + 2x 2 + x + 3 บนเซ็กเมนต์ [– 4; -1].

มาหาอนุพันธ์ของฟังก์ชันที่กำหนด:

มาหาศูนย์ของอนุพันธ์แล้วแก้สมการกำลังสอง:

3x 2 + 4x + 1 = 0

มารับรากกันเถอะ:

ราก x = –1 เป็นของช่วงที่ระบุในเงื่อนไข

เราค้นหาค่าของฟังก์ชันที่จุด –4, –1, –1/3 และ 1:

เราพบว่าค่าสูงสุดของฟังก์ชันคือ 3

คำตอบ: 3

77433. ค้นหาค่าที่น้อยที่สุดของฟังก์ชัน y = x 3 – x 2 – 40x +3 บนเซ็กเมนต์

มาหาอนุพันธ์ของฟังก์ชันที่กำหนด:

มาหาศูนย์ของอนุพันธ์แล้วแก้สมการกำลังสอง:

3x 2 – 2x – 40 = 0

มารับรากกันเถอะ:

ช่วงเวลาที่ระบุในเงื่อนไขมีราก x = 4

ค้นหาค่าฟังก์ชันที่จุดที่ 0 และ 4:

เราพบว่าค่าที่น้อยที่สุดของฟังก์ชันคือ –109

คำตอบ: –109

ลองพิจารณาวิธีกำหนดค่าฟังก์ชันที่ใหญ่ที่สุดและเล็กที่สุดโดยไม่มีอนุพันธ์ สามารถใช้วิธีนี้ได้หากคุณมีปัญหาใหญ่ในการกำหนดอนุพันธ์ หลักการนั้นง่าย - เราแทนที่ค่าจำนวนเต็มทั้งหมดจากช่วงเวลาลงในฟังก์ชัน (ความจริงก็คือในต้นแบบดังกล่าวทั้งหมดคำตอบคือจำนวนเต็ม)

77437. ค้นหาค่าที่น้อยที่สุดของฟังก์ชัน y=7+12x–x 3 บนเซกเมนต์ [–2;2]

คะแนนทดแทนจาก –2 ถึง 2: ดูโซลูชัน

77434. ค้นหาค่าที่ใหญ่ที่สุดของฟังก์ชัน y=x 3 + 2x 2 – 4x + 4 บนเซ็กเมนต์ [–2;0]

นั่นคือทั้งหมดที่ ขอให้โชคดี!

ขอแสดงความนับถือ Alexander Krutitskikh

ป.ล. ฉันจะขอบคุณถ้าคุณบอกฉันเกี่ยวกับเว็บไซต์บนโซเชียลเน็ตเวิร์ก

กระบวนการค้นหาค่าที่เล็กที่สุดและใหญ่ที่สุดของฟังก์ชันบนเซ็กเมนต์นั้นชวนให้นึกถึงการบินที่น่าสนใจรอบวัตถุ (กราฟของฟังก์ชัน) ในเฮลิคอปเตอร์ ยิงที่จุดใดจุดหนึ่งจากปืนใหญ่ระยะไกลและเลือกอย่างมาก คะแนนพิเศษจากจุดเหล่านี้สำหรับการควบคุมช็อต คะแนนจะถูกเลือกด้วยวิธีใดวิธีหนึ่งและตาม กฎบางอย่าง- ตามกฎเกณฑ์อะไร? เราจะพูดถึงเรื่องนี้ต่อไป

ถ้าฟังก์ชั่น = (x) มีความต่อเนื่องในช่วงเวลา [ , ] ก็มาถึงส่วนนี้แล้ว น้อยที่สุด และ ค่าสูงสุด - สิ่งนี้สามารถเกิดขึ้นได้ทั้งใน จุดสุดขั้วหรือที่ส่วนท้ายของส่วน ดังนั้นจึงต้องหา. น้อยที่สุด และ ค่าที่ใหญ่ที่สุดของฟังก์ชัน ต่อเนื่องตามช่วงเวลา [ , ] คุณต้องคำนวณค่าของมันทั้งหมด จุดวิกฤติและที่ส่วนท้ายของส่วน จากนั้นเลือกส่วนที่เล็กที่สุดและใหญ่ที่สุดจากส่วนเหล่านั้น

ตัวอย่างเช่น คุณต้องการหาค่าที่ใหญ่ที่สุดของฟังก์ชัน (x) บนส่วน [ , - ในการทำเช่นนี้ คุณจะต้องค้นหาจุดวิกฤติทั้งหมดที่วางอยู่บน [ , ] .

จุดวิกฤติ เรียกว่าจุดที่ ฟังก์ชั่นที่กำหนดไว้, และเธอ อนุพันธ์เท่ากับศูนย์หรือไม่มีอยู่จริง จากนั้นคุณควรคำนวณค่าของฟังก์ชันที่จุดวิกฤติ และสุดท้าย เราควรเปรียบเทียบค่าของฟังก์ชันที่จุดวิกฤติและที่ส่วนท้ายของเซ็กเมนต์ ( () และ (- ตัวเลขที่ใหญ่ที่สุดเหล่านี้จะเป็น ค่าที่ใหญ่ที่สุดของฟังก์ชันบนเซ็กเมนต์ [, ] .

ปัญหาในการค้นหา ค่าฟังก์ชันที่เล็กที่สุด .

เรามองหาค่าที่เล็กที่สุดและใหญ่ที่สุดของฟังก์ชันด้วยกัน

ตัวอย่างที่ 1 ค้นหาค่าที่เล็กที่สุดและ มูลค่าสูงสุดฟังก์ชั่น บนส่วน [-1, 2] .

สารละลาย. ค้นหาอนุพันธ์ของฟังก์ชันนี้ ลองเทียบอนุพันธ์ให้เป็นศูนย์ () และรับจุดวิกฤติสองจุด: และ . หากต้องการค้นหาค่าที่เล็กที่สุดและใหญ่ที่สุดของฟังก์ชันในส่วนที่กำหนดก็เพียงพอที่จะคำนวณค่าที่ส่วนท้ายของส่วนและ ณ จุดนั้นเนื่องจากจุดนั้นไม่ได้อยู่ในส่วน [-1, 2]. ค่าฟังก์ชันเหล่านี้คือ: , , . มันเป็นไปตามนั้น ค่าฟังก์ชันที่เล็กที่สุด(แสดงด้วยสีแดงบนกราฟด้านล่าง) เท่ากับ -7 ทำได้ที่ด้านขวาสุดของส่วน - ที่จุด และ ที่ยิ่งใหญ่ที่สุด(บนกราฟยังเป็นสีแดง) เท่ากับ 9 - ที่จุดวิกฤติ

ถ้าฟังก์ชันมีความต่อเนื่องในช่วงเวลาหนึ่งและช่วงเวลานี้ไม่ใช่เซ็กเมนต์ (แต่คือ ตัวอย่างเช่น ช่วงเวลา ความแตกต่างระหว่างช่วงเวลาและเซ็กเมนต์: จุดขอบเขตของช่วงเวลาจะไม่รวมอยู่ในช่วงเวลา แต่ จุดขอบเขตของเซ็กเมนต์จะรวมอยู่ในเซ็กเมนต์) จากนั้นในบรรดาค่าของฟังก์ชันอาจไม่มีค่าน้อยที่สุดและยิ่งใหญ่ที่สุด ตัวอย่างเช่น ฟังก์ชันที่แสดงในรูปด้านล่างจะต่อเนื่องกันที่ ]-∞, +∞[ และไม่มีค่าที่มากที่สุด

อย่างไรก็ตาม สำหรับช่วงเวลาใดๆ (ปิด เปิด หรือไม่มีที่สิ้นสุด) คุณสมบัติของฟังก์ชันต่อเนื่องต่อไปนี้จะเป็นจริง

ตัวอย่างที่ 4 ค้นหาค่าที่เล็กที่สุดและใหญ่ที่สุดของฟังก์ชัน บนส่วน [-1, 3] .

สารละลาย. เราพบว่าอนุพันธ์ของฟังก์ชันนี้เป็นอนุพันธ์ของผลหาร:

.

เราเทียบอนุพันธ์ให้เป็นศูนย์ ซึ่งให้จุดวิกฤติจุดหนึ่งแก่เรา: มันอยู่ในส่วน [-1, 3] . ในการค้นหาค่าที่เล็กที่สุดและใหญ่ที่สุดของฟังก์ชันบนเซ็กเมนต์ที่กำหนด เราจะค้นหาค่าที่ส่วนท้ายของเซ็กเมนต์และที่จุดวิกฤติที่พบ:

ลองเปรียบเทียบค่าเหล่านี้กัน สรุป: เท่ากับ -5/13 ณ จุดและ มูลค่าสูงสุดเท่ากับ 1 ที่จุด

เรายังคงมองหาค่าที่เล็กที่สุดและใหญ่ที่สุดของฟังก์ชันร่วมกันต่อไป

มีครูบางคนในหัวข้อการหาค่าที่เล็กที่สุดและใหญ่ที่สุดของฟังก์ชัน อย่ายกตัวอย่างให้นักเรียนแก้โจทย์ที่ซับซ้อนกว่าที่เพิ่งพูดถึงไป นั่นก็คือค่าที่ฟังก์ชันเป็นพหุนามหรือ a เศษส่วนซึ่งมีทั้งเศษและส่วนเป็นพหุนาม แต่เราจะไม่ จำกัด ตัวเองอยู่เพียงตัวอย่างดังกล่าวเนื่องจากในหมู่ครูมีคนที่ชอบบังคับให้นักเรียนคิดให้ครบถ้วน (ตารางอนุพันธ์) ดังนั้นจะใช้ฟังก์ชันลอการิทึมและตรีโกณมิติ

ตัวอย่างที่ 6 ค้นหาค่าที่เล็กที่สุดและใหญ่ที่สุดของฟังก์ชัน บนส่วน .

สารละลาย. เราหาอนุพันธ์ของฟังก์ชันนี้ได้เป็น อนุพันธ์ของผลิตภัณฑ์ :

เราถือเอาอนุพันธ์ให้เป็นศูนย์ ซึ่งให้จุดวิกฤติจุดหนึ่ง: มันอยู่ในส่วน ในการค้นหาค่าที่เล็กที่สุดและใหญ่ที่สุดของฟังก์ชันบนเซ็กเมนต์ที่กำหนด เราจะค้นหาค่าที่ส่วนท้ายของเซ็กเมนต์และที่จุดวิกฤติที่พบ:

ผลลัพธ์ของการกระทำทั้งหมด: ฟังก์ชันถึงค่าต่ำสุดแล้วเท่ากับ 0 ณ จุด และ ณ จุด และ มูลค่าสูงสุด, เท่ากัน ² ณ จุดนั้น

ตัวอย่างที่ 7 ค้นหาค่าที่เล็กที่สุดและใหญ่ที่สุดของฟังก์ชัน บนส่วน .

สารละลาย. ค้นหาอนุพันธ์ของฟังก์ชันนี้:

เราถือเอาอนุพันธ์เป็นศูนย์:

จุดวิกฤติเพียงจุดเดียวที่เป็นของกลุ่ม ในการค้นหาค่าที่เล็กที่สุดและใหญ่ที่สุดของฟังก์ชันบนเซ็กเมนต์ที่กำหนด เราจะค้นหาค่าที่ส่วนท้ายของเซ็กเมนต์และที่จุดวิกฤติที่พบ:

บทสรุป: ฟังก์ชันถึงค่าต่ำสุดแล้ว, เท่ากับ , ณ จุด และ มูลค่าสูงสุดเท่ากัน ณ จุดนั้น

ในปัญหาสุดขั้วที่ใช้ ตามกฎแล้วการค้นหาค่าที่เล็กที่สุด (สูงสุด) ของฟังก์ชันจะลดลงเพื่อค้นหาค่าต่ำสุด (สูงสุด) แต่ไม่ใช่ค่าต่ำสุดหรือค่าสูงสุดที่น่าสนใจในทางปฏิบัติมากกว่า แต่เป็นคุณค่าของการโต้แย้งที่พวกเขาบรรลุผล เมื่อแก้ไขปัญหาที่ใช้จะเกิดปัญหาเพิ่มเติม - การเขียนฟังก์ชันที่อธิบายปรากฏการณ์หรือกระบวนการที่อยู่ระหว่างการพิจารณา

ตัวอย่างที่ 8ถังที่มีความจุ 4 ที่มีรูปร่างเป็นรูปสี่เหลี่ยมจัตุรัสและมีฐานสี่เหลี่ยมเปิดด้านบนต้องบรรจุกระป๋อง ถังควรมีขนาดเท่าใดจึงจะใช้วัสดุปิดฝาน้อยที่สุด?

สารละลาย. อนุญาต x- ด้านฐาน ชม.- ความสูงของถัง - พื้นที่ผิวไม่มีสิ่งปกคลุม วี- ปริมาณของมัน พื้นที่ผิวของถังแสดงโดยสูตรเช่น เป็นฟังก์ชันของตัวแปรสองตัว เพื่อแสดงออก เป็นฟังก์ชันของตัวแปรตัวหนึ่ง เราใช้ข้อเท็จจริงที่ว่า จากที่ไหน . แทนที่นิพจน์ที่พบ ชม.ลงในสูตรสำหรับ :

ลองตรวจสอบฟังก์ชันนี้จนถึงจุดสุดขั้วกัน มันถูกกำหนดและหาอนุพันธ์ได้ทุกที่ใน ]0, +∞[ และ

.

เราถืออนุพันธ์ให้เป็นศูนย์ () และค้นหาจุดวิกฤติ นอกจากนี้ เมื่อไม่มีอนุพันธ์อยู่ แต่ค่านี้ไม่รวมอยู่ในขอบเขตของคำจำกัดความ ดังนั้นจึงไม่สามารถเป็นจุดสุดขั้วได้ นี่เป็นจุดวิกฤติเพียงจุดเดียว ลองตรวจสอบดูว่ามีสุดขั้วหรือไม่โดยใช้เครื่องหมายเพียงพออันที่สอง ลองหาอนุพันธ์อันดับสองกัน เมื่ออนุพันธ์อันดับสองมีค่ามากกว่าศูนย์ () ซึ่งหมายความว่าเมื่อฟังก์ชันถึงจุดต่ำสุดแล้ว - ตั้งแต่นี้เป็นต้นมา ค่าต่ำสุดคือค่าสูงสุดเพียงค่าเดียวของฟังก์ชันนี้ ซึ่งเป็นค่าที่น้อยที่สุด- ดังนั้นด้านข้างของฐานถังควรเป็น 2 ม. และความสูงควรเป็น .

ตัวอย่างที่ 9จากจุด ตั้งอยู่บนเส้นทางรถไฟถึงจุดนั้น กับซึ่งอยู่ห่างจากที่นั่น จะต้องขนส่งสินค้า ค่าใช้จ่ายในการขนส่งหน่วยน้ำหนักต่อหน่วยระยะทางโดยทางรถไฟเท่ากับ และทางทางหลวงเท่ากับ ถึงจุดไหน เส้น ทางรถไฟควรสร้างทางหลวงเพื่อขนส่งสินค้า วี กับประหยัดที่สุด (มาตรา เอบีทางรถไฟถือว่าตรง)?

ค่าที่ใหญ่ที่สุดและน้อยที่สุดของฟังก์ชัน

ค่าที่ยิ่งใหญ่ที่สุดของฟังก์ชันคือค่าที่ยิ่งใหญ่ที่สุด ค่าน้อยที่สุดคือค่าที่น้อยที่สุดในบรรดาค่าทั้งหมด

ฟังก์ชันสามารถมีค่าที่ใหญ่ที่สุดได้เพียงค่าเดียวและค่าน้อยที่สุดเพียงค่าเดียวเท่านั้น หรืออาจไม่มีค่าเลยก็ได้ การค้นหาค่าที่ใหญ่ที่สุดและน้อยที่สุดของฟังก์ชันต่อเนื่องจะขึ้นอยู่กับคุณสมบัติของฟังก์ชันเหล่านี้:

1) หากในช่วงเวลาหนึ่ง (จำกัดหรือไม่มีที่สิ้นสุด) ฟังก์ชัน y=f(x) มีความต่อเนื่องและมีเพียงหนึ่งจุดสุดขั้ว และหากนี่คือค่าสูงสุด (ต่ำสุด) มันจะเป็นค่าที่ใหญ่ที่สุด (น้อยที่สุด) ของฟังก์ชัน ในช่วงเวลานี้

2) ถ้าฟังก์ชัน f(x) ต่อเนื่องกันในช่วงใดช่วงหนึ่ง แสดงว่าฟังก์ชันนั้นมีค่ามากที่สุด และ ค่าที่น้อยที่สุด- ถึงค่าเหล่านี้ที่จุดปลายสุดซึ่งอยู่ภายในส่วนหรือที่ขอบเขตของส่วนนี้

หากต้องการค้นหาค่าที่ใหญ่ที่สุดและเล็กที่สุดในเซ็กเมนต์ ขอแนะนำให้ใช้โครงร่างต่อไปนี้:

1. ค้นหาอนุพันธ์

2. ค้นหาจุดวิกฤตของฟังก์ชันที่มี =0 หรือไม่มีอยู่

3. ค้นหาค่าของฟังก์ชันที่จุดวิกฤติและที่ส่วนท้ายของเซ็กเมนต์แล้วเลือกค่า f max ที่ใหญ่ที่สุดและค่า f max ที่เล็กที่สุด

เมื่อแก้ไขปัญหาที่ใช้ โดยเฉพาะการปรับให้เหมาะสม ปัญหาในการค้นหาค่าที่ใหญ่ที่สุดและน้อยที่สุด (สูงสุดทั่วโลกและต่ำสุดทั่วโลก) ของฟังก์ชันในช่วงเวลา X มีความสำคัญ ในการแก้ปัญหาดังกล่าว ควรทำตามเงื่อนไข เลือกตัวแปรอิสระและแสดงค่าที่กำลังศึกษาผ่านตัวแปรนี้ จากนั้นหาค่าที่ใหญ่ที่สุดหรือน้อยที่สุดที่ต้องการของฟังก์ชันผลลัพธ์ ในกรณีนี้ ช่วงการเปลี่ยนแปลงของตัวแปรอิสระซึ่งอาจมีขอบเขตหรือไม่มีที่สิ้นสุดก็ถูกกำหนดจากเงื่อนไขของปัญหาด้วย

ตัวอย่าง.ถังที่มีรูปทรงสี่เหลี่ยมด้านบนเปิดและมีก้นสี่เหลี่ยมจัตุรัส จะต้องบรรจุกระป๋องไว้ด้านใน ขนาดของถังควรเป็นเท่าใดหากความจุ 108 ลิตร? น้ำเพื่อให้ต้นทุนในการกักเก็บน้อยที่สุด?

สารละลาย.ค่าใช้จ่ายในการเคลือบถังด้วยดีบุกจะน้อยที่สุดหากพื้นที่ผิวของถังมีน้อยตามความจุที่กำหนด ให้เราแสดงด้วย dm ด้านข้างของฐาน b dm ความสูงของถัง แล้วพื้นที่ S ของพื้นผิวจะเท่ากับ

และ

ความสัมพันธ์ที่เกิดขึ้นจะสร้างความสัมพันธ์ระหว่างพื้นที่ผิวของอ่างเก็บน้ำ S (ฟังก์ชัน) และด้านข้างของฐาน a (อาร์กิวเมนต์) ให้เราตรวจสอบฟังก์ชัน S สำหรับส่วนปลายสุด ลองหาอนุพันธ์ตัวแรก จัดให้เป็นศูนย์แล้วแก้สมการผลลัพธ์:

ดังนั้น a = 6 (a) > 0 สำหรับ a > 6, (a)< 0 при а < 6. Следовательно, при а = 6 функция S имеет минимум. Если а = 6, то b = 3. Таким образом, затраты на лужение резервуара емкостью 108 литров будут наименьшими, если он имеет размеры 6дм х 6дм х 3дм.

ตัวอย่าง- ค้นหาค่าที่ใหญ่ที่สุดและเล็กที่สุดของฟังก์ชัน ในช่วงเวลา

สารละลาย: ฟังก์ชันที่กำหนดจะต่อเนื่องตลอดเส้นจำนวนทั้งหมด อนุพันธ์ของฟังก์ชัน

อนุพันธ์สำหรับและสำหรับ มาคำนวณค่าฟังก์ชันที่จุดเหล่านี้:

.

ค่าของฟังก์ชันที่ส่วนท้ายของช่วงเวลาที่กำหนดจะเท่ากัน ดังนั้น ค่าที่ใหญ่ที่สุดของฟังก์ชันจะเท่ากับ at ค่าที่น้อยที่สุดของฟังก์ชันจะเท่ากับ at

คำถามทดสอบตัวเอง

1. กำหนดกฎของโลปิตาลสำหรับการเปิดเผยความไม่แน่นอนของแบบฟอร์ม รายการ หลากหลายชนิดความไม่แน่นอนที่สามารถใช้กฎของโลปิตาลได้

2. กำหนดสัญญาณของการเพิ่มขึ้นและลดลงของฟังก์ชัน

3. กำหนดค่าสูงสุดและต่ำสุดของฟังก์ชัน

4. กำหนดเงื่อนไขที่จำเป็นสำหรับการมีอยู่ของสุดขั้ว

5. ค่าใดของอาร์กิวเมนต์ (จุดใด) ที่เรียกว่าวิกฤต? จะหาจุดเหล่านี้ได้อย่างไร?

6. อะไรคือสัญญาณที่เพียงพอของการมีอยู่ของฟังก์ชันสุดขั้ว? เขียนโครงร่างการศึกษาฟังก์ชันที่จุดสุดขั้วโดยใช้อนุพันธ์อันดับ 1

7. สรุปโครงร่างการศึกษาฟังก์ชันที่จุดสุดขีดโดยใช้อนุพันธ์อันดับสอง

8. กำหนดความนูนและความเว้าของเส้นโค้ง

9. จุดเปลี่ยนเว้าของกราฟของฟังก์ชันเรียกว่าอะไร? ระบุวิธีการหาจุดเหล่านี้

10. กำหนดสัญญาณที่จำเป็นและเพียงพอของความนูนและความเว้าของเส้นโค้งบนส่วนที่กำหนด

11. กำหนดเส้นกำกับของเส้นโค้ง จะค้นหาเส้นกำกับแนวตั้ง แนวนอน และแนวเฉียงของกราฟของฟังก์ชันได้อย่างไร

12. โครงร่าง โครงการทั่วไปค้นคว้าฟังก์ชันและวาดกราฟของมัน

13. กำหนดกฎสำหรับการค้นหาค่าที่ใหญ่ที่สุดและน้อยที่สุดของฟังก์ชันในส่วนที่กำหนด

ค่าสุดขีดของฟังก์ชันคืออะไร และเงื่อนไขที่จำเป็นสำหรับค่าสุดขีดคืออะไร?

ปลายสุดของฟังก์ชันคือค่าสูงสุดและต่ำสุดของฟังก์ชัน

ข้อกำหนดเบื้องต้นค่าสูงสุดและต่ำสุด (สุดขีด) ของฟังก์ชันจะเป็นดังนี้: หากฟังก์ชัน f(x) มีปลายสุดที่จุด x = a แล้ว ณ จุดนี้อนุพันธ์จะเป็นศูนย์หรืออนันต์ หรือไม่มีอยู่จริง

เงื่อนไขนี้จำเป็นแต่ไม่เพียงพอ อนุพันธ์ที่จุด x = a สามารถไปถึงศูนย์ อนันต์ หรือไม่มีอยู่ได้หากไม่มีฟังก์ชันสุดขั้ว ณ จุดนี้

เงื่อนไขที่เพียงพอสำหรับส่วนปลายของฟังก์ชัน (สูงสุดหรือต่ำสุด) คืออะไร?

เงื่อนไขแรก:

หากอยู่ใกล้จุด x = a มากพอ อนุพันธ์ของ f?(x) เป็นบวกทางด้านซ้ายของ a และเป็นลบทางด้านขวาของ a แล้วที่จุด x = a ฟังก์ชัน f(x) จะมี ขีดสุด

หากอยู่ใกล้จุด x = a มากพอ อนุพันธ์ของ f?(x) เป็นลบทางด้านซ้ายของ a และเป็นบวกทางด้านขวาของ a แล้วที่จุด x = a ฟังก์ชัน f(x) จะมี ขั้นต่ำโดยมีเงื่อนไขว่าฟังก์ชัน f(x) ในที่นี้เป็นฟังก์ชันต่อเนื่อง

คุณสามารถใช้เงื่อนไขที่สองที่เพียงพอสำหรับส่วนปลายของฟังก์ชันแทนได้:

ให้ ณ จุด x = a อนุพันธ์อันดับหนึ่ง f?(x) หายไป; ถ้าอนุพันธ์อันดับสอง f??(a) เป็นลบ แสดงว่าฟังก์ชัน f(x) จะมีค่าสูงสุดที่จุด x = a หากเป็นบวก ก็จะมีค่าต่ำสุด

จุดวิกฤตของฟังก์ชันคืออะไร และจะค้นหาได้อย่างไร

นี่คือค่าของอาร์กิวเมนต์ของฟังก์ชันที่ฟังก์ชันมีจุดสิ้นสุด (เช่น สูงสุดหรือต่ำสุด) เพื่อค้นหาสิ่งที่คุณต้องการ หาอนุพันธ์ฟังก์ชัน f?(x) และเมื่อเท่ากับศูนย์ แก้สมการ f?(x) = 0 รากของสมการนี้รวมถึงจุดที่อนุพันธ์ของฟังก์ชันนี้ไม่มีอยู่เป็นจุดวิกฤตเช่นค่าของอาร์กิวเมนต์ที่สามารถมีจุดสุดยอดได้ พวกเขาสามารถระบุได้ง่ายโดยการดู กราฟอนุพันธ์: เราสนใจค่าของการโต้แย้งที่กราฟของฟังก์ชันตัดกับแกน Abscissa (แกน Ox) และค่าที่กราฟประสบความไม่ต่อเนื่อง

เช่น เรามาค้นหากัน ส่วนปลายของพาราโบลา.

ฟังก์ชัน y(x) = 3x2 + 2x - 50

อนุพันธ์ของฟังก์ชัน: y?(x) = 6x + 2

แก้สมการ: y?(x) = 0

6x + 2 = 0, 6x = -2, x = -2/6 = -1/3

ใน ในกรณีนี้จุดวิกฤติคือ x0=-1/3 มันขึ้นอยู่กับค่าอาร์กิวเมนต์นี้ที่ฟังก์ชันมี สุดขั้ว- ให้เขา หาให้แทนที่ตัวเลขที่พบในนิพจน์สำหรับฟังก์ชันแทน "x":

y0 = 3*(-1/3)2 + 2*(-1/3) - 50 = 3*1/9 - 2/3 - 50 = 1/3 - 2/3 - 50 = -1/3 - 50 = -50.333.

วิธีกำหนดค่าสูงสุดและต่ำสุดของฟังก์ชัน เช่น ค่าที่ใหญ่ที่สุดและเล็กที่สุดคืออะไร?

หากเครื่องหมายของอนุพันธ์เมื่อผ่านจุดวิกฤติ x0 เปลี่ยนจาก "บวก" เป็น "ลบ" แล้ว x0 คือ จุดสูงสุด- ถ้าเครื่องหมายของอนุพันธ์เปลี่ยนจากลบเป็นบวก แล้ว x0 คือ จุดต่ำสุด- หากเครื่องหมายไม่เปลี่ยนแปลง เมื่อถึงจุด x0 จะไม่มีทั้งค่าสูงสุดและค่าต่ำสุด

สำหรับตัวอย่างที่พิจารณา:

เราใช้ค่าอาร์กิวเมนต์ตามอำเภอใจทางด้านซ้ายของจุดวิกฤติ: x = -1

ที่ x = -1 ค่าของอนุพันธ์จะเป็น y?(-1) = 6*(-1) + 2 = -6 + 2 = -4 (นั่นคือ เครื่องหมายคือ “ลบ”)

ตอนนี้เรารับค่าอาร์กิวเมนต์ตามอำเภอใจทางด้านขวาของจุดวิกฤติ: x = 1

ที่ x = 1 ค่าของอนุพันธ์จะเป็น y(1) = 6*1 + 2 = 6 + 2 = 8 (นั่นคือ เครื่องหมายคือ “บวก”)

อย่างที่คุณเห็น อนุพันธ์เปลี่ยนเครื่องหมายจากลบเป็นบวกเมื่อผ่านจุดวิกฤติ ซึ่งหมายความว่าที่ค่าวิกฤต x0 เรามีจุดต่ำสุด

ค่าที่ใหญ่ที่สุดและน้อยที่สุดของฟังก์ชัน ในช่วงเวลา(บนเซ็กเมนต์) พบโดยใช้ขั้นตอนเดียวกันโดยคำนึงถึงความจริงที่ว่าบางทีจุดวิกฤติทั้งหมดอาจไม่อยู่ข้างใน ช่วงเวลาที่กำหนด- จุดวิกฤตเหล่านั้นที่อยู่นอกช่วงเวลาจะต้องถูกแยกออกจากการพิจารณา หากมีจุดวิกฤติเพียงจุดเดียวภายในช่วงเวลา จะมีค่าสูงสุดหรือต่ำสุด ในกรณีนี้ เพื่อกำหนดค่าที่ใหญ่ที่สุดและเล็กที่สุดของฟังก์ชัน เรายังคำนึงถึงค่าของฟังก์ชันที่ส่วนท้ายของช่วงเวลาด้วย

ตัวอย่างเช่น ลองหาค่าที่ใหญ่ที่สุดและน้อยที่สุดของฟังก์ชัน

y(x) = 3ซิน(x) - 0.5x

เป็นระยะ:

แล้วอนุพันธ์ของฟังก์ชันคือ

y?(x) = 3cos(x) - 0.5

เราแก้สมการ 3cos(x) - 0.5 = 0

คอส(x) = 0.5/3 = 0.16667

x = ±อาร์คคอส(0.16667) + 2πk

เราพบจุดวิกฤตในช่วงเวลา [-9; 9]:

x = ส่วนโค้ง (0.16667) - 2π*2 = -11.163 (ไม่รวมในช่วงเวลา)

x = -อาร์คคอส(0.16667) - 2π*1 = -7.687

x = ส่วนโค้ง (0.16667) - 2π*1 = -4.88

x = -อาร์คคอส(0.16667) + 2π*0 = -1.403

x = ส่วนโค้ง (0.16667) + 2π*0 = 1.403

x = -อาร์คคอส(0.16667) + 2π*1 = 4.88

x = ส่วนโค้ง (0.16667) + 2π*1 = 7.687

x = -arccos(0.16667) + 2π*2 = 11.163 (ไม่รวมในช่วงเวลา)

เราหาค่าของฟังก์ชันได้ที่ ค่าวิกฤตการโต้แย้ง:

y(-7.687) = 3cos(-7.687) - 0.5 = 0.885

y(-4.88) = 3cos(-4.88) - 0.5 = 5.398

y(-1.403) = 3cos(-1.403) - 0.5 = -2.256

y(1.403) = 3cos(1.403) - 0.5 = 2.256

y(4.88) = 3cos(4.88) - 0.5 = -5.398

y(7.687) = 3cos(7.687) - 0.5 = -0.885

จะเห็นได้ว่าในช่วง [-9; 9] ฟังก์ชันมีค่ามากที่สุดที่ x = -4.88:

x = -4.88, y = 5.398,

และเล็กที่สุด - ที่ x = 4.88:

x = 4.88, y = -5.398

ในช่วงเวลา [-6; -3] เรามีจุดวิกฤตเพียงจุดเดียว: x = -4.88 ค่าของฟังก์ชันที่ x = -4.88 เท่ากับ y = 5.398

ค้นหาค่าของฟังก์ชันที่ส่วนท้ายของช่วงเวลา:

y(-6) = 3cos(-6) - 0.5 = 3.838

y(-3) = 3cos(-3) - 0.5 = 1.077

ในช่วงเวลา [-6; -3] เรามีค่ามากที่สุดของฟังก์ชัน

y = 5.398 ที่ x = -4.88

ค่าน้อยที่สุด -

y = 1.077 ที่ x = -3

จะค้นหาจุดเปลี่ยนของกราฟฟังก์ชันและกำหนดด้านนูนและด้านเว้าได้อย่างไร

ในการค้นหาจุดเปลี่ยนเว้าทั้งหมดของเส้น y = f(x) คุณต้องค้นหาอนุพันธ์อันดับสอง จัดให้มันเป็นศูนย์ (แก้สมการ) และทดสอบค่าทั้งหมดของ x ซึ่งอนุพันธ์อันดับสองเป็นศูนย์ อนันต์หรือไม่มีอยู่จริง เมื่อส่งผ่านค่าใดค่าหนึ่งเหล่านี้ หากอนุพันธ์อันดับสองเปลี่ยนสัญญาณ กราฟของฟังก์ชันจะมีการเปลี่ยนแปลง ณ จุดนี้ ถ้าไม่เปลี่ยนก็ไม่มีโค้งงอ

รากของสมการ f? (x) = 0 รวมถึงจุดที่เป็นไปได้ของความไม่ต่อเนื่องของฟังก์ชันและอนุพันธ์อันดับสอง ให้แบ่งโดเมนของคำจำกัดความของฟังก์ชันออกเป็นช่วงจำนวนหนึ่ง ความนูนในแต่ละช่วงเวลาถูกกำหนดโดยเครื่องหมายของอนุพันธ์อันดับสอง หากอนุพันธ์อันดับสอง ณ จุดหนึ่งในช่วงเวลาที่กำลังศึกษาเป็นบวก เส้น y = f(x) จะเว้าขึ้น และหากเป็นลบ ก็จะเว้าลง

จะค้นหา extrema ของฟังก์ชันของตัวแปรสองตัวได้อย่างไร?

ในการค้นหาเอ็กซ์ตรีมของฟังก์ชัน f(x,y) ซึ่งหาอนุพันธ์ได้ในโดเมนของข้อกำหนดเฉพาะ คุณจะต้อง:

1) ค้นหาจุดวิกฤตและเพื่อสิ่งนี้ - แก้ระบบสมการ

ฉะ? (x,y) = 0, แล้ว? (x,y) = 0

2) สำหรับแต่ละจุดวิกฤต P0(a;b) ตรวจสอบว่าสัญญาณของความแตกต่างยังคงไม่เปลี่ยนแปลงหรือไม่

สำหรับทุกจุด (x;y) ใกล้กับ P0 เพียงพอ หากความแตกต่างยังคงอยู่ สัญญาณบวกแล้วที่จุด P0 เรามีค่าต่ำสุด ถ้าเป็นลบ เราก็จะมีค่าสูงสุด หากความแตกต่างไม่คงเครื่องหมายไว้ แสดงว่าไม่มีจุดสิ้นสุดที่จุด P0

ส่วนสุดขีดของฟังก์ชันถูกกำหนดในทำนองเดียวกันสำหรับ มากกว่าข้อโต้แย้ง

มาดูวิธีการตรวจสอบฟังก์ชันโดยใช้กราฟกัน ปรากฎว่าเมื่อดูกราฟเราสามารถค้นหาทุกสิ่งที่เราสนใจได้ กล่าวคือ:

  • โดเมนของฟังก์ชัน
  • ช่วงฟังก์ชัน
  • ฟังก์ชันศูนย์
  • ช่วงเวลาของการเพิ่มขึ้นและลดลง
  • คะแนนสูงสุดและต่ำสุด
  • ค่าที่ใหญ่ที่สุดและเล็กที่สุดของฟังก์ชันบนเซ็กเมนต์

มาชี้แจงคำศัพท์กัน:

แอบซิสซาคือพิกัดแนวนอนของจุด
บวช- พิกัดแนวตั้ง
แกนแอบซิสซา- แกนนอนส่วนใหญ่มักเรียกว่าแกน
แกน Y- แกนตั้งหรือแกน

การโต้แย้ง- ตัวแปรอิสระที่ค่าฟังก์ชันขึ้นอยู่กับ ส่วนใหญ่มักระบุ
กล่าวอีกนัยหนึ่ง เราเลือก แทนที่ฟังก์ชันลงในสูตรและรับ

โดเมนฟังก์ชั่น - ชุดของค่าอาร์กิวเมนต์เหล่านั้น (และเฉพาะเหล่านั้น) ที่มีฟังก์ชันอยู่
ระบุโดย: หรือ .

ในรูปของเรา โดเมนของคำจำกัดความของฟังก์ชันคือเซ็กเมนต์ อยู่ในส่วนนี้ที่วาดกราฟของฟังก์ชัน นี่เป็นที่เดียวที่มีฟังก์ชันนี้อยู่

ช่วงฟังก์ชันคือชุดของค่าที่ตัวแปรรับ ในรูปของเรา นี่คือส่วน - จากค่าต่ำสุดไปจนถึงค่าสูงสุด

ฟังก์ชันศูนย์- จุดที่ค่าของฟังก์ชันเป็นศูนย์นั่นคือ ในรูปของเรานี่คือจุด และ .

ค่าฟังก์ชันเป็นบวกที่ไหน . ในรูปของเรานี่คือช่วงเวลา และ
ค่าฟังก์ชันเป็นลบที่ไหน . สำหรับเรา นี่คือช่วงเวลา (หรือช่วงเวลา) จาก ถึง

แนวคิดที่สำคัญที่สุด - ฟังก์ชั่นการเพิ่มและลดในบางชุด เมื่อรวมกันเป็นเซต คุณสามารถใช้เซกเมนต์ ช่วงเวลา การรวมกันของช่วงเวลา หรือเส้นจำนวนทั้งหมด

การทำงาน เพิ่มขึ้น

กล่าวอีกนัยหนึ่ง ยิ่งมาก ยิ่งมาก นั่นคือกราฟจะไปทางขวาและขึ้น

การทำงาน ลดลงบนเซต ถ้ามีค่าใดค่าหนึ่งและเป็นของเซต ความไม่เท่าเทียมกันจะบ่งบอกถึงความไม่เท่าเทียมกัน

สำหรับฟังก์ชันที่ลดลง ค่าที่มากขึ้นจะสอดคล้องกับค่าที่น้อยลง กราฟไปทางขวาและลง

ในรูปของเรา ฟังก์ชันจะเพิ่มขึ้นตามช่วงเวลา และลดลงตามช่วงเวลา และ

มากำหนดกันว่ามันคืออะไร จุดสูงสุดและต่ำสุดของฟังก์ชัน.

จุดสูงสุด- นี่คือจุดภายในของโดเมนของคำจำกัดความ โดยที่ค่าของฟังก์ชันในนั้นมากกว่าจุดทั้งหมดที่อยู่ใกล้มันอย่างเพียงพอ
กล่าวอีกนัยหนึ่ง จุดสูงสุดคือจุดที่ค่าของฟังก์ชัน มากกว่ากว่าในบริเวณใกล้เคียง นี่คือ "เนินเขา" ในท้องถิ่นในแผนภูมิ

ในรูปของเรามีจุดสูงสุด

จุดต่ำสุด- จุดภายในของโดเมนของคำจำกัดความ โดยค่าของฟังก์ชันในนั้นน้อยกว่าจุดทั้งหมดที่อยู่ใกล้มันอย่างเพียงพอ
นั่นคือจุดต่ำสุดคือค่าของฟังก์ชันในนั้นน้อยกว่าเพื่อนบ้าน นี่คือ "รู" ในพื้นที่บนกราฟ

ในรูปของเรามีจุดต่ำสุด

ประเด็นคือขอบเขต ไม่ใช่จุดภายในของขอบเขตของคำจำกัดความ ดังนั้นจึงไม่เหมาะสมกับคำจำกัดความของจุดสูงสุด ท้ายที่สุดเธอไม่มีเพื่อนบ้านทางด้านซ้าย ในทำนองเดียวกัน บนกราฟของเราไม่สามารถมีจุดต่ำสุดได้

เรียกว่าคะแนนสูงสุดและต่ำสุดรวมกัน จุดปลายสุดของฟังก์ชัน- ในกรณีของเรานี่คือ และ

จะทำอย่างไรถ้าคุณต้องการค้นหาเช่น ฟังก์ชั่นขั้นต่ำในส่วนนี้เหรอ? ในกรณีนี้คำตอบคือ: . เพราะ ฟังก์ชั่นขั้นต่ำคือมูลค่าของมันที่จุดต่ำสุด

ในทำนองเดียวกัน ฟังก์ชั่นสูงสุดของเราคือ . ก็ถึงจุดนั้นแล้ว

เราสามารถพูดได้ว่าสุดขั้วของฟังก์ชันเท่ากับ และ .

บางครั้งปัญหาก็ต้องค้นหา ค่าที่ใหญ่ที่สุดและเล็กที่สุดของฟังก์ชันในส่วนที่กำหนด ไม่จำเป็นต้องตรงกับความสุดขั้วเสมอไป

ในกรณีของเรา ค่าฟังก์ชันที่เล็กที่สุดบนเซ็กเมนต์จะเท่ากับและเกิดขึ้นพร้อมกับฟังก์ชันขั้นต่ำ แต่มูลค่าสูงสุดในส่วนนี้คือเท่ากับ ไปถึงที่ด้านซ้ายสุดของส่วน

ไม่ว่าในกรณีใด ค่าที่ใหญ่ที่สุดและเล็กที่สุดของฟังก์ชันต่อเนื่องบนเซ็กเมนต์จะเกิดขึ้นที่จุดปลายสุดหรือที่ส่วนท้ายของเซ็กเมนต์