Logaritmus čísla k jeho rovnakému základu. Logaritmy: príklady a riešenia

Dnes budeme hovoriť o logaritmické vzorce a uveďte orientačné príklady riešenia.

Sami implikujú vzory riešení podľa základných vlastností logaritmov. Pred použitím logaritmických vzorcov na riešenie vám pripomenieme všetky vlastnosti:

Teraz si to na základe týchto vzorcov (vlastností) ukážeme príklady riešenia logaritmov.

Príklady riešenia logaritmov na základe vzorcov.

Logaritmus kladné číslo b na základ a (označené log a b) je exponent, na ktorý sa musí zvýšiť a, aby sa získalo b, pričom b > 0, a > 0 a 1.

Podľa definície log a b = x, čo je ekvivalent a x = b, teda log a a x = x.

Logaritmy, príklady:

log 2 8 = 3, pretože 2 3 = 8

log 7 49 = 2, pretože 72 = 49

log 5 1/5 = -1, pretože 5-1 = 1/5

Desatinný logaritmus- ide o obyčajný logaritmus, ktorého základňa je 10. Označuje sa ako lg.

log 10 100 = 2, pretože 102 = 100

Prirodzený logaritmus- tiež obyčajný logaritmus, logaritmus, ale so základom e (e = 2,71828... - iracionálne číslo). Označené ako ln.

Vzorce alebo vlastnosti logaritmov je vhodné si zapamätať, pretože ich budeme potrebovať neskôr pri riešení logaritmov, logaritmických rovníc a nerovníc. Prepracujme každý vzorec znova s ​​príkladmi.

  • Základná logaritmická identita
    a log a b = b

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Logaritmus súčinu sa rovná súčtu logaritmov
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1 * 10) = log 3 81 = 4

  • Logaritmus kvocientu sa rovná rozdielu logaritmov
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Vlastnosti mocniny logaritmického čísla a základu logaritmu

    Exponent logaritmického čísla log a b m = mlog a b

    Exponent základu logaritmu log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    ak m = n, dostaneme log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Prechod na nový základ
    log a b = log c b/log c a,

    ak c = b, dostaneme log b b = 1

    potom log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Ako vidíte, vzorce pre logaritmy nie sú také zložité, ako sa zdá. Teraz, keď sme sa pozreli na príklady riešenia logaritmov, môžeme prejsť k logaritmickým rovniciam. Na príklady riešenia logaritmických rovníc sa pozrieme podrobnejšie v článku: "". Nenechajte si ujsť!

Ak máte stále otázky týkajúce sa riešenia, napíšte ich do komentárov k článku.

Poznámka: rozhodli sme sa získať inú triedu vzdelávania a študovať v zahraničí ako voliteľnú možnosť.

hlavné vlastnosti.

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

rovnaké dôvody

Log6 4 + Log6 9.

Teraz si úlohu trochu skomplikujeme.

Príklady riešenia logaritmov

Čo ak je základom alebo argumentom logaritmu mocnina? Potom môže byť exponent tohto stupňa vyňatý zo znamienka logaritmu podľa nasledujúcich pravidiel:

Samozrejme, všetky tieto pravidlá dávajú zmysel, ak je dodržaná ODZ logaritmu: a > 0, a ≠ 1, x >

Úloha. Nájdite význam výrazu:

Prechod na nový základ

Nech je daný logaritmus logax. Potom pre akékoľvek číslo c také, že c > 0 a c ≠ 1, platí rovnosť:

Úloha. Nájdite význam výrazu:

Pozri tiež:


Základné vlastnosti logaritmu

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.



Exponent je 2,718281828…. Aby ste si zapamätali exponent, môžete si preštudovať pravidlo: exponent sa rovná 2,7 a dvojnásobku roku narodenia Leva Nikolajeviča Tolstého.

Základné vlastnosti logaritmov

Keď poznáte toto pravidlo, budete poznať presnú hodnotu exponenta aj dátum narodenia Leva Tolstého.


Príklady pre logaritmy

Logaritmické výrazy

Príklad 1
A). x=10ac^2 (a>0,c>0).

Pomocou vlastností 3.5 vypočítame

2.

3.

4. Kde .



Príklad 2. Nájdite x ak


Príklad 3. Nech je uvedená hodnota logaritmov

Vypočítajte log(x), ak




Základné vlastnosti logaritmov

Logaritmy, ako všetky čísla, sa dajú sčítať, odčítať a transformovať všetkými spôsobmi. Ale keďže logaritmy nie sú úplne obyčajné čísla, existujú tu pravidlá, ktoré sa nazývajú hlavné vlastnosti.

Tieto pravidlá určite musíte poznať – bez nich sa nedá vyriešiť ani jeden vážny logaritmický problém. Navyše je ich veľmi málo – všetko sa dá naučiť za jeden deň. Tak poďme na to.

Sčítanie a odčítanie logaritmov

Zvážte dva logaritmy s rovnakými základňami: logax a logay. Potom ich možno sčítať a odčítať a:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Súčet logaritmov sa teda rovná logaritmu súčinu a rozdiel sa rovná logaritmu kvocientu. Poznámka: tu je kľúčový bod rovnaké dôvody. Ak sú dôvody iné, tieto pravidlá nefungujú!

Tieto vzorce vám pomôžu vypočítať logaritmický výraz aj keď sa jeho jednotlivé časti nepočítajú (pozri lekciu „Čo je to logaritmus“). Pozrite sa na príklady a uvidíte:

Keďže logaritmy majú rovnaké základy, použijeme súčtový vzorec:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Úloha. Nájdite hodnotu výrazu: log2 48 − log2 3.

Základy sú rovnaké, používame rozdielový vzorec:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Úloha. Nájdite hodnotu výrazu: log3 135 − log3 5.

Základy sú opäť rovnaké, takže máme:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Ako vidíte, pôvodné výrazy sa skladajú zo „zlých“ logaritmov, ktoré nie sú vypočítané samostatne. Ale po transformáciách sa získajú úplne normálne čísla. Mnohé sú postavené na tejto skutočnosti testovacie papiere. Áno, na Jednotnej štátnej skúške sa so všetkou vážnosťou (niekedy prakticky bez zmien) ponúkajú výrazy podobné testom.

Extrahovanie exponentu z logaritmu

Je ľahké vidieť, že posledné pravidlo nasleduje prvé dve. Je však lepšie si to zapamätať - v niektorých prípadoch to výrazne zníži množstvo výpočtov.

Samozrejme, všetky tieto pravidlá dávajú zmysel, ak je dodržaná ODZ logaritmu: a > 0, a ≠ 1, x > 0. A ešte niečo: naučte sa aplikovať všetky vzorce nielen zľava doprava, ale aj naopak , t.j. Čísla pred znamienkom logaritmu môžete zadať do samotného logaritmu. To je to, čo sa najčastejšie vyžaduje.

Úloha. Nájdite hodnotu výrazu: log7 496.

Zbavme sa stupňa v argumente pomocou prvého vzorca:
log7 496 = 6 log7 49 = 6 2 = 12

Úloha. Nájdite význam výrazu:

Všimnite si, že menovateľ obsahuje logaritmus, ktorého základom a argumentom sú presné mocniny: 16 = 24; 49 = 72. Máme:

Myslím, že posledný príklad si vyžaduje určité objasnenie. Kam zmizli logaritmy? Do poslednej chvíle pracujeme len s menovateľom.

Logaritmické vzorce. Logaritmické riešenia príkladov.

Uviedli sme základ a argument tam stojaceho logaritmu vo forme mocničiek a vyňali sme exponenty - dostali sme „trojposchodový“ zlomok.

Teraz sa pozrime na hlavný zlomok. Čitateľ aj menovateľ obsahujú rovnaké číslo: log2 7. Keďže log2 7 ≠ 0, zlomok môžeme zmenšiť - 2/4 zostanú v menovateli. Podľa pravidiel aritmetiky môžu byť štyri prenesené do čitateľa, čo sa aj stalo. Výsledkom bola odpoveď: 2.

Prechod na nový základ

Keď už hovoríme o pravidlách sčítania a odčítania logaritmov, osobitne som zdôraznil, že fungujú iba s rovnakými základmi. Čo ak sú dôvody iné? Čo ak to nie sú presné mocniny rovnakého čísla?

Na pomoc prichádzajú vzorce pre prechod na nový základ. Sformulujme ich vo forme vety:

Nech je daný logaritmus logax. Potom pre akékoľvek číslo c také, že c > 0 a c ≠ 1, platí rovnosť:

Konkrétne, ak nastavíme c = x, dostaneme:

Z druhého vzorca vyplýva, že základ a argument logaritmu možno zameniť, ale v tomto prípade je celý výraz „prevrátený“, t.j. logaritmus sa objaví v menovateli.

Tieto vzorce sa zriedka nachádzajú v bežných číselných výrazoch. Ich vhodnosť je možné vyhodnotiť len pri riešení logaritmických rovníc a nerovníc.

Sú však problémy, ktoré sa nedajú vyriešiť vôbec inak ako presťahovaním sa do novej nadácie. Pozrime sa na pár z nich:

Úloha. Nájdite hodnotu výrazu: log5 16 log2 25.

Všimnite si, že argumenty oboch logaritmov obsahujú presné mocniny. Vyberme ukazovatele: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Teraz „otočme“ druhý logaritmus:

Keďže sa súčin pri preskupovaní faktorov nemení, pokojne sme vynásobili štyri a dva a potom sme sa zaoberali logaritmami.

Úloha. Nájdite hodnotu výrazu: log9 100 lg 3.

Základom a argumentom prvého logaritmu sú presné mocniny. Poďme si to zapísať a zbaviť sa indikátorov:

Teraz sa zbavme desiatkový logaritmus, sťahovanie na novú základňu:

Základná logaritmická identita

V procese riešenia je často potrebné reprezentovať číslo ako logaritmus k danému základu. V tomto prípade nám pomôžu nasledujúce vzorce:

V prvom prípade sa číslo n stane exponentom v argumente. Číslo n môže byť úplne čokoľvek, pretože je to len logaritmická hodnota.

Druhý vzorec je vlastne parafrázovaná definícia. Tak sa to volá: .

Čo sa vlastne stane, ak sa číslo b zvýši na takú mocninu, že číslo b na túto mocninu dáva číslo a? Správne: výsledkom je rovnaké číslo a. Ešte raz si pozorne prečítajte tento odsek – veľa ľudí sa na ňom zasekne.

Rovnako ako vzorce na prechod na novú základňu, základná logaritmická identita je niekedy jediným možným riešením.

Úloha. Nájdite význam výrazu:

Všimnite si, že log25 64 = log5 8 - jednoducho vzal druhú mocninu zo základu a argumentu logaritmu. Vzhľadom na pravidlá pre násobenie právomocí s rovnaký základ, dostaneme:

Ak niekto nevie, toto bola skutočná úloha z Jednotnej štátnej skúšky :)

Logaritmická jednotka a logaritmická nula

Na záver uvediem dve identity, ktoré možno len ťažko nazvať vlastnosťami – sú skôr dôsledkom definície logaritmu. Neustále sa objavujú v problémoch a prekvapivo robia problémy aj „pokročilým“ žiakom.

  1. logaa = 1 je. Pamätajte si raz a navždy: logaritmus k ľubovoľnej základni a tejto samotnej základne sa rovná jednej.
  2. loga 1 = 0 je. Základom a môže byť čokoľvek, ale ak argument obsahuje jednotku, logaritmus sa rovná nule! Pretože a0 = 1 je priamym dôsledkom definície.

To sú všetky vlastnosti. Určite si ich nacvičte v praxi! Stiahnite si cheat sheet na začiatku lekcie, vytlačte si ho a vyriešte problémy.

Pozri tiež:

Logaritmus b na základ a označuje výraz. Vypočítať logaritmus znamená nájsť mocninu x (), pri ktorej je splnená rovnosť

Základné vlastnosti logaritmu

Je potrebné poznať vyššie uvedené vlastnosti, pretože takmer všetky problémy a príklady súvisiace s logaritmami sú riešené na ich základe. Zvyšok exotických vlastností možno odvodiť matematickými manipuláciami s týmito vzorcami

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.

Pri výpočte vzorca pre súčet a rozdiel logaritmov (3.4) narazíte pomerne často. Ostatné sú trochu zložité, ale v mnohých úlohách sú nevyhnutné na zjednodušenie zložitých výrazov a výpočet ich hodnôt.

Bežné prípady logaritmov

Niektoré z bežných logaritmov sú tie, v ktorých je základ dokonca desať, exponenciálny alebo dva.
Logaritmus na základ desať sa zvyčajne nazýva desiatkový logaritmus a jednoducho sa označuje lg(x).

Z nahrávky je zrejmé, že základy nie sú napísané v nahrávke. Napríklad

Prirodzený logaritmus je logaritmus, ktorého základom je exponent (označený ln(x)).

Exponent je 2,718281828…. Aby ste si zapamätali exponent, môžete si preštudovať pravidlo: exponent sa rovná 2,7 a dvojnásobku roku narodenia Leva Nikolajeviča Tolstého. Keď poznáte toto pravidlo, budete poznať presnú hodnotu exponenta aj dátum narodenia Leva Tolstého.

A ďalší dôležitý logaritmus k základu dva je označený

Derivácia logaritmu funkcie sa rovná jednej delenej premennou

Integrálny alebo primitívny logaritmus je určený vzťahom

Daný materiál vám postačí na riešenie širokej triedy problémov súvisiacich s logaritmami a logaritmami. Aby som vám pomohol pochopiť materiál, uvediem len niekoľko bežných príkladov z školské osnovy a univerzity.

Príklady pre logaritmy

Logaritmické výrazy

Príklad 1
A). x=10ac^2 (a>0,c>0).

Pomocou vlastností 3.5 vypočítame

2.
Vlastnosťou rozdielu logaritmov máme

3.
Pomocou vlastností 3.5 nájdeme

4. Kde .

Zdanlivo zložitý výraz je zjednodušený na formu pomocou množstva pravidiel

Nájdenie hodnôt logaritmu

Príklad 2. Nájdite x ak

Riešenie. Pre výpočet použijeme na posledný termín 5 a 13 nehnuteľností

Dáme to na záznam a smútime

Keďže základy sú rovnaké, dávame rovnítko medzi výrazy

Logaritmy. Prvá úroveň.

Nech je uvedená hodnota logaritmov

Vypočítajte log(x), ak

Riešenie: Zoberme si logaritmus premennej na zápis logaritmu cez súčet jej členov


Toto je len začiatok nášho oboznámenia sa s logaritmami a ich vlastnosťami. Precvičte si výpočty, obohaťte svoje praktické zručnosti – vedomosti, ktoré získate, budete čoskoro potrebovať na riešenie logaritmických rovníc. Po preštudovaní základných metód riešenia takýchto rovníc rozšírime vaše vedomosti o ďalšiu rovnako dôležitú tému - logaritmické nerovnosti...

Základné vlastnosti logaritmov

Logaritmy, ako všetky čísla, sa dajú sčítať, odčítať a transformovať všetkými spôsobmi. Ale keďže logaritmy nie sú úplne obyčajné čísla, existujú tu pravidlá, ktoré sa nazývajú hlavné vlastnosti.

Tieto pravidlá určite musíte poznať – bez nich sa nedá vyriešiť ani jeden vážny logaritmický problém. Navyše je ich veľmi málo – všetko sa dá naučiť za jeden deň. Tak poďme na to.

Sčítanie a odčítanie logaritmov

Zvážte dva logaritmy s rovnakými základňami: logax a logay. Potom ich možno sčítať a odčítať a:

  1. logax + logay = loga(x y);
  2. logax − logay = loga (x: y).

Súčet logaritmov sa teda rovná logaritmu súčinu a rozdiel sa rovná logaritmu kvocientu. Poznámka: tu je kľúčový bod rovnaké dôvody. Ak sú dôvody iné, tieto pravidlá nefungujú!

Tieto vzorce vám pomôžu vypočítať logaritmický výraz, aj keď sa neberú do úvahy jeho jednotlivé časti (pozri lekciu „Čo je to logaritmus“). Pozrite sa na príklady a uvidíte:

Úloha. Nájdite hodnotu výrazu: log6 4 + log6 9.

Keďže logaritmy majú rovnaké základy, použijeme súčtový vzorec:
log6 4 + log6 9 = log6 (4 9) = log6 36 = 2.

Úloha. Nájdite hodnotu výrazu: log2 48 − log2 3.

Základy sú rovnaké, používame rozdielový vzorec:
log2 48 − log2 3 = log2 (48: 3) = log2 16 = 4.

Úloha. Nájdite hodnotu výrazu: log3 135 − log3 5.

Základy sú opäť rovnaké, takže máme:
log3 135 − log3 5 = log3 (135: 5) = log3 27 = 3.

Ako vidíte, pôvodné výrazy sa skladajú zo „zlých“ logaritmov, ktoré nie sú vypočítané samostatne. Ale po transformáciách sa získajú úplne normálne čísla. Mnohé testy sú založené na tejto skutočnosti. Áno, na Jednotnej štátnej skúške sa so všetkou vážnosťou (niekedy prakticky bez zmien) ponúkajú výrazy podobné testom.

Extrahovanie exponentu z logaritmu

Teraz si úlohu trochu skomplikujeme. Čo ak je základom alebo argumentom logaritmu mocnina? Potom môže byť exponent tohto stupňa vyňatý zo znamienka logaritmu podľa nasledujúcich pravidiel:

Je ľahké vidieť, že posledné pravidlo nasleduje prvé dve. Je však lepšie si to zapamätať - v niektorých prípadoch to výrazne zníži množstvo výpočtov.

Samozrejme, všetky tieto pravidlá dávajú zmysel, ak je dodržaná ODZ logaritmu: a > 0, a ≠ 1, x > 0. A ešte niečo: naučte sa aplikovať všetky vzorce nielen zľava doprava, ale aj naopak , t.j. Čísla pred znamienkom logaritmu môžete zadať do samotného logaritmu.

Ako riešiť logaritmy

To je to, čo sa najčastejšie vyžaduje.

Úloha. Nájdite hodnotu výrazu: log7 496.

Zbavme sa stupňa v argumente pomocou prvého vzorca:
log7 496 = 6 log7 49 = 6 2 = 12

Úloha. Nájdite význam výrazu:

Všimnite si, že menovateľ obsahuje logaritmus, ktorého základom a argumentom sú presné mocniny: 16 = 24; 49 = 72. Máme:

Myslím, že posledný príklad si vyžaduje určité objasnenie. Kam zmizli logaritmy? Do poslednej chvíle pracujeme len s menovateľom. Uviedli sme základ a argument tam stojaceho logaritmu vo forme mocničiek a vyňali sme exponenty - dostali sme „trojposchodový“ zlomok.

Teraz sa pozrime na hlavný zlomok. Čitateľ aj menovateľ obsahujú rovnaké číslo: log2 7. Keďže log2 7 ≠ 0, zlomok môžeme zmenšiť - 2/4 zostanú v menovateli. Podľa pravidiel aritmetiky môžu byť štyri prenesené do čitateľa, čo sa aj stalo. Výsledkom bola odpoveď: 2.

Prechod na nový základ

Keď už hovoríme o pravidlách sčítania a odčítania logaritmov, osobitne som zdôraznil, že fungujú iba s rovnakými základmi. Čo ak sú dôvody iné? Čo ak to nie sú presné mocniny rovnakého čísla?

Na pomoc prichádzajú vzorce pre prechod na nový základ. Sformulujme ich vo forme vety:

Nech je daný logaritmus logax. Potom pre akékoľvek číslo c také, že c > 0 a c ≠ 1, platí rovnosť:

Konkrétne, ak nastavíme c = x, dostaneme:

Z druhého vzorca vyplýva, že základ a argument logaritmu možno zameniť, ale v tomto prípade je celý výraz „prevrátený“, t.j. logaritmus sa objaví v menovateli.

Tieto vzorce sa zriedka nachádzajú v bežných číselných výrazoch. Ich vhodnosť je možné vyhodnotiť len pri riešení logaritmických rovníc a nerovníc.

Sú však problémy, ktoré sa nedajú vyriešiť vôbec inak ako presťahovaním sa do novej nadácie. Pozrime sa na pár z nich:

Úloha. Nájdite hodnotu výrazu: log5 16 log2 25.

Všimnite si, že argumenty oboch logaritmov obsahujú presné mocniny. Vyberme ukazovatele: log5 16 = log5 24 = 4log5 2; log2 25 = log2 52 = 2log2 5;

Teraz „otočme“ druhý logaritmus:

Keďže sa súčin pri preskupovaní faktorov nemení, pokojne sme vynásobili štyri a dva a potom sme sa zaoberali logaritmami.

Úloha. Nájdite hodnotu výrazu: log9 100 lg 3.

Základom a argumentom prvého logaritmu sú presné mocniny. Poďme si to zapísať a zbaviť sa indikátorov:

Teraz sa zbavme desiatkového logaritmu prechodom na nový základ:

Základná logaritmická identita

V procese riešenia je často potrebné reprezentovať číslo ako logaritmus k danému základu. V tomto prípade nám pomôžu nasledujúce vzorce:

V prvom prípade sa číslo n stane exponentom v argumente. Číslo n môže byť úplne čokoľvek, pretože je to len logaritmická hodnota.

Druhý vzorec je vlastne parafrázovaná definícia. Tak sa to volá: .

Čo sa vlastne stane, ak sa číslo b zvýši na takú mocninu, že číslo b na túto mocninu dáva číslo a? Správne: výsledkom je rovnaké číslo a. Ešte raz si pozorne prečítajte tento odsek – veľa ľudí sa na ňom zasekne.

Rovnako ako vzorce na prechod na novú základňu, základná logaritmická identita je niekedy jediným možným riešením.

Úloha. Nájdite význam výrazu:

Všimnite si, že log25 64 = log5 8 - jednoducho vzal druhú mocninu zo základu a argumentu logaritmu. Ak vezmeme do úvahy pravidlá pre násobenie právomocí s rovnakým základom, dostaneme:

Ak niekto nevie, toto bola skutočná úloha z Jednotnej štátnej skúšky :)

Logaritmická jednotka a logaritmická nula

Na záver uvediem dve identity, ktoré možno len ťažko nazvať vlastnosťami – sú skôr dôsledkom definície logaritmu. Neustále sa objavujú v problémoch a prekvapivo robia problémy aj „pokročilým“ žiakom.

  1. logaa = 1 je. Pamätajte si raz a navždy: logaritmus k ľubovoľnej základni a tejto samotnej základne sa rovná jednej.
  2. loga 1 = 0 je. Základom a môže byť čokoľvek, ale ak argument obsahuje jednotku, logaritmus sa rovná nule! Pretože a0 = 1 je priamym dôsledkom definície.

To sú všetky vlastnosti. Určite si ich nacvičte v praxi! Stiahnite si cheat sheet na začiatku lekcie, vytlačte si ho a vyriešte problémy.

Logaritmy, ako všetky čísla, sa dajú sčítať, odčítať a transformovať všetkými spôsobmi. Ale keďže logaritmy nie sú úplne obyčajné čísla, existujú tu pravidlá, ktoré sa nazývajú hlavné vlastnosti.

Tieto pravidlá určite musíte poznať – bez nich sa nedá vyriešiť ani jeden vážny logaritmický problém. Navyše je ich veľmi málo – všetko sa dá naučiť za jeden deň. Tak poďme na to.

Sčítanie a odčítanie logaritmov

Zvážte dva logaritmy s rovnakými základňami: log a X a log a r. Potom ich možno sčítať a odčítať a:

  1. log a X+ denník a r=log a (X · r);
  2. log a X− denník a r=log a (X : r).

Súčet logaritmov sa teda rovná logaritmu súčinu a rozdiel sa rovná logaritmu kvocientu. Poznámka: tu je kľúčový bod rovnaké dôvody. Ak sú dôvody iné, tieto pravidlá nefungujú!

Tieto vzorce vám pomôžu vypočítať logaritmický výraz, aj keď sa neberú do úvahy jeho jednotlivé časti (pozri lekciu „Čo je logaritmus“). Pozrite sa na príklady a uvidíte:

Denník 6 4 + denník 6 9.

Keďže logaritmy majú rovnaké základy, použijeme súčtový vzorec:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Úloha. Nájdite hodnotu výrazu: log 2 48 − log 2 3.

Základy sú rovnaké, používame rozdielový vzorec:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Úloha. Nájdite hodnotu výrazu: log 3 135 − log 3 5.

Základy sú opäť rovnaké, takže máme:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Ako vidíte, pôvodné výrazy sa skladajú zo „zlých“ logaritmov, ktoré nie sú vypočítané samostatne. Ale po transformáciách sa získajú úplne normálne čísla. Mnohé testy sú založené na tejto skutočnosti. Áno, na Jednotnej štátnej skúške sa so všetkou vážnosťou (niekedy prakticky bez zmien) ponúkajú výrazy podobné testom.

Extrahovanie exponentu z logaritmu

Teraz si úlohu trochu skomplikujeme. Čo ak je základom alebo argumentom logaritmu mocnina? Potom môže byť exponent tohto stupňa vyňatý zo znamienka logaritmu podľa nasledujúcich pravidiel:

Je ľahké vidieť, že posledné pravidlo nasleduje prvé dve. Je však lepšie si to zapamätať - v niektorých prípadoch to výrazne zníži množstvo výpočtov.

Všetky tieto pravidlá majú samozrejme zmysel, ak sa dodrží ODZ logaritmu: a > 0, a ≠ 1, X> 0. A ešte niečo: naučte sa aplikovať všetky vzorce nielen zľava doprava, ale aj naopak, t.j. Čísla pred znakom logaritmu môžete zadať do samotného logaritmu. To je to, čo sa najčastejšie vyžaduje.

Úloha. Nájdite hodnotu výrazu: log 7 49 6 .

Zbavme sa stupňa v argumente pomocou prvého vzorca:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Úloha. Nájdite význam výrazu:

[Popis k obrázku]

Všimnite si, že menovateľ obsahuje logaritmus, ktorého základom a argumentom sú presné mocniny: 16 = 2 4 ; 49 = 7 2. Máme:

[Popis k obrázku]

Myslím, že posledný príklad si vyžaduje určité objasnenie. Kam zmizli logaritmy? Do poslednej chvíle pracujeme len s menovateľom. Uviedli sme základ a argument tam stojaceho logaritmu vo forme mocničiek a vyňali sme exponenty - dostali sme „trojposchodový“ zlomok.

Teraz sa pozrime na hlavný zlomok. Čitateľ a menovateľ obsahujú rovnaké číslo: log 2 7. Keďže log 2 7 ≠ 0, zlomok môžeme zmenšiť - 2/4 zostanú v menovateli. Podľa pravidiel aritmetiky môžu byť štyri prenesené do čitateľa, čo sa aj stalo. Výsledkom bola odpoveď: 2.

Prechod na nový základ

Keď už hovoríme o pravidlách sčítania a odčítania logaritmov, osobitne som zdôraznil, že fungujú iba s rovnakými základmi. Čo ak sú dôvody iné? Čo ak to nie sú presné mocniny rovnakého čísla?

Na pomoc prichádzajú vzorce pre prechod na nový základ. Sformulujme ich vo forme vety:

Nech je daný logaritmus logaritmu a X. Potom pre ľubovoľné číslo c také že c> 0 a c≠ 1, platí rovnosť:

[Popis k obrázku]

Najmä ak dáme c = X, dostaneme:

[Popis k obrázku]

Z druhého vzorca vyplýva, že základ a argument logaritmu možno zameniť, ale v tomto prípade je celý výraz „prevrátený“, t.j. logaritmus sa objaví v menovateli.

Tieto vzorce sa zriedka nachádzajú v bežných číselných výrazoch. Ich vhodnosť je možné vyhodnotiť len pri riešení logaritmických rovníc a nerovníc.

Sú však problémy, ktoré sa nedajú vyriešiť vôbec inak ako presťahovaním sa do novej nadácie. Pozrime sa na pár z nich:

Úloha. Nájdite hodnotu výrazu: log 5 16 log 2 25.

Všimnite si, že argumenty oboch logaritmov obsahujú presné mocniny. Vyberme ukazovatele: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2 log 2 5;

Teraz „otočme“ druhý logaritmus:

[Popis k obrázku]

Keďže sa súčin pri preskupovaní faktorov nemení, pokojne sme vynásobili štyri a dva a potom sme sa zaoberali logaritmami.

Úloha. Nájdite hodnotu výrazu: log 9 100 lg 3.

Základom a argumentom prvého logaritmu sú presné mocniny. Poďme si to zapísať a zbaviť sa indikátorov:

[Popis k obrázku]

Teraz sa zbavme desiatkového logaritmu prechodom na nový základ:

[Popis k obrázku]

Základná logaritmická identita

V procese riešenia je často potrebné reprezentovať číslo ako logaritmus k danému základu. V tomto prípade nám pomôžu nasledujúce vzorce:

V prvom prípade číslo n sa stáva indikátorom stupňa stojaceho v argumente. číslo n môže byť úplne čokoľvek, pretože je to len logaritmická hodnota.

Druhý vzorec je vlastne parafrázovaná definícia. To je to, čo sa nazýva: základná logaritmická identita.

V skutočnosti, čo sa stane, ak číslo b zvýšiť na takú silu, že počet b tejto mocnine dáva číslo a? Správne: dostanete rovnaké číslo a. Ešte raz si pozorne prečítajte tento odsek – veľa ľudí sa na ňom zasekne.

Rovnako ako vzorce na prechod na novú základňu, základná logaritmická identita je niekedy jediným možným riešením.

Úloha. Nájdite význam výrazu:

[Popis k obrázku]

Všimnite si, že log 25 64 = log 5 8 - jednoducho vzal druhú mocninu zo základu a argumentu logaritmu. Ak vezmeme do úvahy pravidlá pre násobenie právomocí s rovnakým základom, dostaneme:

[Popis k obrázku]

Ak niekto nevie, toto bola skutočná úloha z Jednotnej štátnej skúšky :)

Logaritmická jednotka a logaritmická nula

Na záver uvediem dve identity, ktoré možno len ťažko nazvať vlastnosťami – sú skôr dôsledkom definície logaritmu. Neustále sa objavujú v problémoch a prekvapivo robia problémy aj „pokročilým“ žiakom.

  1. log a a= 1 je logaritmická jednotka. Pamätajte si raz a navždy: logaritmus na akúkoľvek základňu a z tohto základu sa rovná jednej.
  2. log a 1 = 0 je logaritmická nula. Základňa a môže byť čokoľvek, ale ak argument obsahuje jednotku, logaritmus sa rovná nule! Pretože a 0 = 1 je priamym dôsledkom definície.

To sú všetky vlastnosti. Určite si ich nacvičte v praxi! Stiahnite si cheat sheet na začiatku lekcie, vytlačte si ho a vyriešte problémy.


Pokračujeme v štúdiu logaritmov. V tomto článku budeme hovoriť o počítanie logaritmov, tento proces sa nazýva logaritmus. Najprv pochopíme výpočet logaritmov podľa definície. Ďalej sa pozrime na to, ako sa nachádzajú hodnoty logaritmov pomocou ich vlastností. Potom sa zameriame na výpočet logaritmov prostredníctvom pôvodne zadaných hodnôt iných logaritmov. Nakoniec sa naučíme používať logaritmické tabuľky. Celá teória je vybavená príkladmi s podrobnými riešeniami.

Navigácia na stránke.

Výpočet logaritmov podľa definície

V najjednoduchších prípadoch je možné vykonať pomerne rýchlo a jednoducho nájdenie logaritmu podľa definície. Pozrime sa bližšie na to, ako tento proces prebieha.

Jeho podstatou je reprezentovať číslo b v tvare a c, z ktorého podľa definície logaritmu je číslo c hodnotou logaritmu. To znamená, že podľa definície hľadaniu logaritmu zodpovedá nasledujúci reťazec rovnosti: log a b=log a a c =c.

Takže výpočet logaritmu podľa definície vedie k nájdeniu čísla c takého, že a c = b a samotné číslo c je požadovaná hodnota logaritmu.

Ak vezmeme do úvahy informácie v predchádzajúcich odsekoch, keď je číslo pod logaritmickým znakom dané určitou mocninou logaritmickej základne, môžete okamžite uviesť, čomu sa logaritmus rovná - rovná sa exponentu. Ukážme riešenia na príkladoch.

Príklad.

Nájdite log 2 2 −3 a tiež vypočítajte prirodzený logaritmus čísla e 5,3.

Riešenie.

Definícia logaritmu nám umožňuje okamžite povedať, že log 2 2 −3 =−3. V skutočnosti sa číslo pod logaritmickým znamienkom rovná základu 2 až -3.

Podobne nájdeme druhý logaritmus: lne 5,3 = 5,3.

odpoveď:

log 2 2 -3 = -3 a lne 5,3 = 5,3.

Ak číslo b pod znamienkom logaritmu nie je zadané ako mocnina základu logaritmu, potom sa musíte dôkladne pozrieť, či je možné prísť so zobrazením čísla b v tvare a c . Často je toto znázornenie celkom zrejmé, najmä ak sa číslo pod logaritmickým znamienkom rovná základu 1, alebo 2, alebo 3, ...

Príklad.

Vypočítajte logaritmy log 5 25 a .

Riešenie.

Je ľahké vidieť, že 25=5 2, to vám umožňuje vypočítať prvý logaritmus: log 5 25 = log 5 5 2 = 2.

Prejdime k výpočtu druhého logaritmu. Číslo môže byť vyjadrené ako mocnina 7: (pozri v prípade potreby). teda .

Prepíšme tretí logaritmus do nasledujúceho tvaru. Teraz to môžete vidieť , z čoho usudzujeme, že . Preto podľa definície logaritmu .

Stručne povedané, riešenie by sa dalo napísať takto: .

odpoveď:

log 5 25=2 , A .

Keď je pod znamienkom logaritmu dostatočne veľký prirodzené číslo, potom by nebolo na škodu započítať to do hlavných faktorov. Často pomáha reprezentovať také číslo ako nejakú mocninu základu logaritmu, a preto tento logaritmus vypočítať podľa definície.

Príklad.

Nájdite hodnotu logaritmu.

Riešenie.

Niektoré vlastnosti logaritmov umožňujú okamžite určiť hodnotu logaritmov. Tieto vlastnosti zahŕňajú vlastnosť logaritmu jednotky a vlastnosť logaritmu čísla rovného základu: log 1 1 = log a a 0 = 0 a log a a = log a a 1 = 1. To znamená, že keď je pod znamienkom logaritmu číslo 1 alebo číslo a rovné základu logaritmu, potom sa v týchto prípadoch logaritmy rovnajú 0 a 1.

Príklad.

Čomu sa rovnajú logaritmy a log10?

Riešenie.

Od , potom z definície logaritmu vyplýva .

V druhom príklade sa číslo 10 pod znamienkom logaritmu zhoduje so základom, takže desiatkový logaritmus desiatich sa rovná jednej, teda lg10=lg10 1 =1.

odpoveď:

A lg10=1.

Všimnite si, že výpočet logaritmov podľa definície (o ktorej sme hovorili v predchádzajúcom odseku) predpokladá použitie logaritmu rovnosti a a p =p, čo je jedna z vlastností logaritmov.

V praxi, keď je číslo pod logaritmickým znakom a základom logaritmu ľahko reprezentované ako mocnina určitého čísla, je veľmi vhodné použiť vzorec , čo zodpovedá jednej z vlastností logaritmov. Pozrime sa na príklad nájdenia logaritmu, ktorý ilustruje použitie tohto vzorca.

Príklad.

Vypočítajte logaritmus.

Riešenie.

odpoveď:

.

Vo výpočtoch sa používajú aj vyššie neuvedené vlastnosti logaritmov, ale o tom si povieme v nasledujúcich odsekoch.

Hľadanie logaritmov pomocou iných známych logaritmov

Informácie v tomto odseku pokračujú v téme používania vlastností logaritmov pri ich výpočte. Ale tu je hlavný rozdiel v tom, že vlastnosti logaritmov sa používajú na vyjadrenie pôvodného logaritmu pomocou iného logaritmu, ktorého hodnota je známa. Pre vysvetlenie uveďme príklad. Povedzme, že vieme, že log 2 3≈1,584963, potom môžeme nájsť napríklad log 2 6 vykonaním malej transformácie pomocou vlastností logaritmu: log 2 6=log 2 (2 3)= log 2 2+log 2 3≈ 1+1,584963=2,584963 .

Vo vyššie uvedenom príklade nám stačilo použiť vlastnosť logaritmu súčinu. Oveľa častejšie je však potrebné použiť širší arzenál vlastností logaritmov, aby sa pôvodný logaritmus vypočítal cez dané.

Príklad.

Vypočítajte logaritmus 27 na základ 60, ak viete, že log 60 2=a a log 60 5=b.

Riešenie.

Musíme teda nájsť log 60 27 . Je ľahké vidieť, že 27 = 3 3 a pôvodný logaritmus možno vďaka vlastnosti logaritmu mocniny prepísať ako 3·log 60 3 .

Teraz sa pozrime, ako vyjadriť log 60 3 pomocou známych logaritmov. Vlastnosť logaritmu čísla rovného základu nám umožňuje zapísať logaritmus rovnosti 60 60=1. Na druhej strane log 60 60=log60(2 2 3 5)= log 60 2 2 + log 60 3+ log 60 5= 2·log 60 2+log 60 3+log 60 5 . teda 2 log 60 2+log 60 3+log 60 5=1. teda log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Nakoniec vypočítame pôvodný logaritmus: log 60 27=3 log 60 3= 3·(1-2·a-b)=3-6·a-3·b.

odpoveď:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Samostatne stojí za zmienku o význame vzorca na prechod na nový základ logaritmu formulára . Umožňuje vám prejsť od logaritmov s ľubovoľným základom k logaritmom s konkrétnym základom, ktorých hodnoty sú známe alebo je možné ich nájsť. Zvyčajne sa z pôvodného logaritmu pomocou prechodového vzorca presunú na logaritmy v jednej zo základov 2, e alebo 10, pretože pre tieto základy existujú tabuľky logaritmov, ktoré umožňujú vypočítať ich hodnoty s určitým stupňom presnosť. V nasledujúcom odseku si ukážeme, ako sa to robí.

Logaritmické tabuľky a ich použitie

Na približný výpočet logaritmických hodnôt je možné použiť logaritmické tabuľky. Najčastejšie používaná tabuľka logaritmu so základnou 2 je tabuľka prirodzené logaritmy a tabuľku desiatkových logaritmov. Pri práci v desiatková sústava Pre výpočet je vhodné použiť tabuľku logaritmov na základe desať. S jeho pomocou sa naučíme nájsť hodnoty logaritmov.










Predložená tabuľka vám umožňuje nájsť hodnoty desatinných logaritmov čísel od 1 000 do 9 999 (s tromi desatinnými miestami) s presnosťou na jednu desaťtisícinu. Budeme analyzovať princíp hľadania hodnoty logaritmu pomocou tabuľky desiatkových logaritmov do konkrétny príklad- takto je to prehľadnejšie. Nájdeme log1.256.

V ľavom stĺpci tabuľky desiatkových logaritmov nájdeme prvé dve číslice čísla 1,256, čiže nájdeme 1,2 (toto číslo je kvôli prehľadnosti zakrúžkované modrou farbou). Tretia číslica čísla 1,256 (číslica 5) sa nachádza v prvom alebo poslednom riadku naľavo od dvojitého riadku (toto číslo je zakrúžkované červenou farbou). Štvrtá číslica pôvodného čísla 1,256 (číslica 6) sa nachádza v prvom alebo poslednom riadku napravo od dvojitého riadku (toto číslo je zakrúžkované zelenou čiarou). Teraz nájdeme čísla v bunkách tabuľky logaritmov na priesečníku označeného riadku a označených stĺpcov (tieto čísla sú zvýraznené oranžová). Súčet označených čísel dáva požadovanú hodnotu desiatkového logaritmu s presnosťou na štvrté desatinné miesto, t. log1,236≈0,0969+0,0021=0,0990.

Je možné pomocou vyššie uvedenej tabuľky nájsť hodnoty desiatkových logaritmov čísel, ktoré majú viac ako tri číslice za desatinnou čiarkou, ako aj tých, ktoré presahujú rozsah od 1 do 9,999? Áno môžeš. Ukážme si, ako sa to robí na príklade.

Vypočítajme lg102,76332. Najprv musíte napísať číslo v štandardná forma : 102,76332=1,0276332·10 2. Potom by mala byť mantisa zaokrúhlená na tretie desatinné miesto, máme 1,0276332 10 2 ≈1,028 10 2, pričom pôvodný dekadický logaritmus je približne rovná logaritmu výsledné číslo, to znamená, že vezmeme log102,76332≈lg1,028·10 2. Teraz použijeme vlastnosti logaritmu: lg1,028 10 2 = lg1,028+lg102 = lg1,028+2. Nakoniec zistíme hodnotu logaritmu lg1,028 z tabuľky desiatkových logaritmov lg1,028≈0,0086+0,0034=0,012. Výsledkom je, že celý proces výpočtu logaritmu vyzerá takto: log102.76332=log1.0276332 10 2 ≈lg1.028 10 2 = log1,028+lg102 = log1,028+2≈0,012+2=2,012.

Na záver stojí za zmienku, že pomocou tabuľky desiatkových logaritmov môžete vypočítať približnú hodnotu ľubovoľného logaritmu. Na to stačí použiť prechodový vzorec na prechod na desiatkové logaritmy, nájsť ich hodnoty v tabuľke a vykonať zostávajúce výpočty.

Napríklad vypočítajme log 2 3 . Podľa vzorca na prechod na nový základ logaritmu máme . Z tabuľky desiatkových logaritmov nájdeme log3≈0,4771 a log2≈0,3010. teda .

Bibliografia.

  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. a iné Algebra a začiatky analýzy: Učebnica pre 10. - 11. ročník inštitúcií všeobecného vzdelávania.
  • Gusev V.A., Mordkovich A.G. Matematika (príručka pre študentov technických škôl).

Logaritmus čísla b (b > 0) na základ a (a > 0, a ≠ 1)– exponent, na ktorý treba zvýšiť číslo a, aby sme získali b.

Logaritmus základu 10 z b možno zapísať ako log(b) a logaritmus so základom e (prirodzený logaritmus) je ln(b).

Často sa používa pri riešení problémov s logaritmami:

Vlastnosti logaritmov

Existujú štyri hlavné vlastnosti logaritmov.

Nech a > 0, a ≠ 1, x > 0 a y > 0.

Vlastnosť 1. Logaritmus súčinu

Logaritmus produktu rovná sa súčtu logaritmov:

log a (x ⋅ y) = log a x + log a y

Vlastnosť 2. Logaritmus kvocientu

Logaritmus kvocientu rovná sa rozdielu logaritmov:

log a (x / y) = log a x – log a y

Vlastnosť 3. Logaritmus sily

Logaritmus stupňa rovná súčinu mocniny a logaritmu:

Ak je základ logaritmu v moci, potom platí iný vzorec:

Vlastnosť 4. Logaritmus koreňa

Túto vlastnosť možno získať z vlastnosti logaritmu mocniny, pretože n-tá odmocnina sa rovná mocnine 1/n:

Vzorec na prevod z logaritmu na jednej báze na logaritmus na inej báze

Tento vzorec sa tiež často používa pri riešení rôznych úloh na logaritmoch:

Špeciálny prípad:

Porovnanie logaritmov (nerovnosti)

Majme 2 funkcie f(x) a g(x) pod logaritmami s rovnakými základňami a medzi nimi je znamienko nerovnosti:

Ak ich chcete porovnať, musíte sa najprv pozrieť na základ logaritmov a:

  • Ak a > 0, potom f(x) > g(x) > 0
  • Ak 0< a < 1, то 0 < f(x) < g(x)

Ako riešiť problémy s logaritmami: príklady

Problémy s logaritmami zaradenej do Jednotnej štátnej skúšky z matematiky pre 11. ročník v úlohe 5 a úlohe 7, úlohy s riešením nájdete na našej stránke v príslušných sekciách. V banke matematických úloh sa nachádzajú aj úlohy s logaritmami. Všetky príklady nájdete na stránke.

Čo je logaritmus

Logaritmy boli v školských kurzoch matematiky vždy považované za zložitú tému. Existuje mnoho rôznych definícií logaritmu, ale z nejakého dôvodu väčšina učebníc používa najzložitejšie a neúspešné z nich.

Logaritmus definujeme jednoducho a jasne. Ak to chcete urobiť, vytvorte tabuľku:

Takže máme mocniny dvoch.

Logaritmy - vlastnosti, vzorce, ako riešiť

Ak zoberiete číslo zo spodného riadku, ľahko nájdete moc, na ktorú budete musieť zvýšiť dvojku, aby ste toto číslo získali. Napríklad, ak chcete získať 16, musíte zvýšiť dve na štvrtú mocninu. A aby ste získali 64, musíte zvýšiť dve na šiestu mocninu. To je možné vidieť z tabuľky.

A teraz vlastne definícia logaritmu:

základ a argumentu x je mocnina, na ktorú sa číslo a musí zvýšiť, aby sa získalo číslo x.

Označenie: log a x = b, kde a je základ, x je argument, b je to, čomu sa v skutočnosti rovná logaritmus.

Napríklad 2 3 = 8 ⇒log 2 8 = 3 (základný 2 logaritmus čísla 8 je tri, pretože 2 3 = 8). S rovnakým úspechom log 2 64 = 6, pretože 2 6 = 64.

Zavolá sa operácia hľadania logaritmu čísla k danému základu. Pridajme teda do tabuľky nový riadok:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
log 2 2 = 1 log 2 4 = 2 log 2 8 = 3 log 2 16 = 4 log 2 32 = 5 log 2 64 = 6

Bohužiaľ, nie všetky logaritmy sa počítajú tak ľahko. Skúste napríklad nájsť log 2 5. Číslo 5 nie je v tabuľke, ale logika diktuje, že logaritmus bude ležať niekde na intervale. Pretože 22< 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Takéto čísla sa nazývajú iracionálne: čísla za desatinnou čiarkou možno písať do nekonečna a nikdy sa neopakujú. Ak sa logaritmus ukáže ako iracionálny, je lepšie ho nechať tak: log 2 5, log 3 8, log 5 100.

Je dôležité pochopiť, že logaritmus je výraz s dvoma premennými (základ a argument). Mnoho ľudí si spočiatku mätie, kde je základ a kde argument. Vyhnúť sa nepríjemné nedorozumenia, stačí sa pozrieť na obrázok:

Pred nami nie je nič iné ako definícia logaritmu. Pamätajte: logaritmus je sila, do ktorého musí byť základňa zabudovaná, aby sa získal argument. Je to podstavec, ktorý je mocne vyvýšený - na obrázku je zvýraznený červenou farbou. Ukazuje sa, že základňa je vždy na dne! Hneď na prvej hodine poviem svojim študentom toto úžasné pravidlo – a nevznikne zmätok.

Ako počítať logaritmy

Definíciu sme si vymysleli – ostáva už len naučiť sa počítať logaritmy, t.j. zbavte sa znaku „log“. Na začiatok si všimneme, že z definície vyplývajú dve dôležité skutočnosti:

  1. Argument a základ musia byť vždy väčšie ako nula. Vyplýva to z definície stupňa racionálnym exponentom, na ktorý je redukovaná definícia logaritmu.
  2. Základ musí byť odlišný od jedného, ​​pretože jeden v akomkoľvek stupni stále zostáva jedným. Z tohto dôvodu je otázka „na akú silu treba pozdvihnúť, aby sme dostali dve“ nezmyselná. Taký stupeň neexistuje!

Takéto obmedzenia sú tzv rozsah prijateľných hodnôt(ODZ). Ukazuje sa, že ODZ logaritmu vyzerá takto: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Všimnite si, že neexistujú žiadne obmedzenia na číslo b (hodnota logaritmu). Napríklad logaritmus môže byť záporný: log 2 0,5 = -1, pretože 0,5 = 2 -1.

Teraz však uvažujeme iba o číselných výrazoch, kde nie je potrebné poznať VA logaritmu. Všetky obmedzenia už autori problémov zohľadnili. Keď však do hry vstúpia logaritmické rovnice a nerovnosti, požiadavky DL sa stanú povinnými. Koniec koncov, základ a argument môže obsahovať veľmi silné konštrukcie, ktoré nemusia nevyhnutne zodpovedať vyššie uvedeným obmedzeniam.

Teraz uvažujme všeobecná schéma počítanie logaritmov. Pozostáva z troch krokov:

  1. Vyjadrite základ a a argument x ako mocninu s minimálnym možným základom väčším ako jedna. Po ceste je lepšie zbaviť sa desatinných miest;
  2. Riešte rovnicu pre premennú b: x = a b ;
  3. Výsledné číslo b bude odpoveďou.

To je všetko! Ak sa logaritmus ukáže ako iracionálny, bude to viditeľné už v prvom kroku. Požiadavka, aby bol základ väčší ako jedna, je veľmi dôležitá: znižuje sa tým pravdepodobnosť chyby a výrazne sa zjednodušujú výpočty. To isté s desatinné miesta: ak ich okamžite prevediete na bežné, bude oveľa menej chýb.

Pozrime sa, ako táto schéma funguje na konkrétnych príkladoch:

Úloha. Vypočítajte logaritmus: log 5 25

  1. Predstavme si základ a argument ako mocninu päťky: 5 = 5 1 ; 25 = 52;
  2. Poďme vytvoriť a vyriešiť rovnicu:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Dostali sme odpoveď: 2.

Úloha. Vypočítajte logaritmus:

Úloha. Vypočítajte logaritmus: log 4 64

  1. Predstavme si základ a argument ako mocninu dvoch: 4 = 2 2 ; 64 = 26;
  2. Poďme vytvoriť a vyriešiť rovnicu:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Dostali sme odpoveď: 3.

Úloha. Vypočítajte logaritmus: log 16 1

  1. Predstavme si základ a argument ako mocninu dvoch: 16 = 2 4 ; 1 = 20;
  2. Poďme vytvoriť a vyriešiť rovnicu:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Dostali sme odpoveď: 0.

Úloha. Vypočítajte logaritmus: log 7 14

  1. Predstavme si základ a argument ako mocninu siedmich: 7 = 7 1 ; 14 nemôže byť vyjadrené ako mocnina siedmich, pretože 7 1< 14 < 7 2 ;
  2. Z predchádzajúceho odseku vyplýva, že logaritmus sa nepočíta;
  3. Odpoveď je žiadna zmena: log 7 14.

Malá poznámka k poslednému príkladu. Ako si môžete byť istý, že číslo nie je presnou mocninou iného čísla? Je to veľmi jednoduché – stačí to započítať do hlavných faktorov. Ak má expanzia aspoň dva rôzne faktory, číslo nie je presnou mocninou.

Úloha. Zistite, či sú čísla presné mocniny: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - presný stupeň, pretože existuje len jeden multiplikátor;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - nie je presná mocnina, pretože existujú dva faktory: 3 a 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - presný stupeň;
35 = 7 · 5 - opäť nie presná mocnina;
14 = 7 · 2 - opäť nie presný stupeň;

Všimnime si tiež, že my sami základné čísla sú vždy presné stupne samých seba.

Desatinný logaritmus

Niektoré logaritmy sú také bežné, že majú špeciálny názov a symbol.

argumentu x je logaritmus so základom 10, t.j. Mocnina, na ktorú treba zvýšiť číslo 10, aby sme získali číslo x. Označenie: lg x.

Napríklad log 10 = 1; log 100 = 2; lg 1000 = 3 - atď.

Keď sa odteraz v učebnici objaví fráza ako „Nájsť lg 0,01“, vedzte, že to nie je preklep. Toto je desiatkový logaritmus. Ak však tento zápis nepoznáte, vždy ho môžete prepísať:
log x = log 10 x

Všetko, čo platí pre bežné logaritmy, platí aj pre desiatkové logaritmy.

Prirodzený logaritmus

Existuje ďalší logaritmus, ktorý má svoje vlastné označenie. V niektorých ohľadoch je to ešte dôležitejšie ako desatinné číslo. Hovoríme o prirodzenom logaritme.

argumentu x je logaritmus so základom e, t.j. mocnina, na ktorú treba zvýšiť číslo e, aby sme získali číslo x. Označenie: ln x.

Mnoho ľudí sa bude pýtať: aké je číslo e? Toto je iracionálne číslo, jeho presná hodnota sa nedá nájsť a zapísať. Uvediem len prvé čísla:
e = 2,718281828459…

Nebudeme sa podrobne zaoberať tým, čo je toto číslo a prečo je potrebné. Pamätajte, že e je základom prirodzeného logaritmu:
ln x = log e x

Teda ln e = 1; lne2 = 2; ln e 16 = 16 - atď. Na druhej strane, ln 2 je iracionálne číslo. Vo všeobecnosti prirodzený logaritmus akéhokoľvek racionálne číslo iracionálny. Samozrejme okrem jedného: ln 1 = 0.

Pre prirodzené logaritmy platia všetky pravidlá, ktoré platia pre bežné logaritmy.

Pozri tiež:

Logaritmus. Vlastnosti logaritmu (mocnosť logaritmu).

Ako znázorniť číslo ako logaritmus?

Používame definíciu logaritmu.

Logaritmus je exponent, na ktorý sa musí základ zvýšiť, aby sa získalo číslo pod znamienkom logaritmu.

Ak teda chcete reprezentovať určité číslo c ako logaritmus k základu a, musíte pod znamienko logaritmu vložiť mocninu s rovnakým základom ako základ logaritmu a zapísať toto číslo c ako exponent:

Absolútne akékoľvek číslo môže byť reprezentované ako logaritmus - kladné, záporné, celé číslo, zlomkové, racionálne, iracionálne:

Aby ste si nezamieňali a a c v stresujúcich podmienkach testu alebo skúšky, môžete použiť nasledujúce pravidlo zapamätania:

čo je dole, ide dole, čo je hore, ide hore.

Napríklad musíte reprezentovať číslo 2 ako logaritmus k základu 3.

Máme dve čísla - 2 a 3. Tieto čísla sú základ a exponent, ktoré zapíšeme pod znamienko logaritmu. Zostáva určiť, ktoré z týchto čísel sa má zapísať k mocnine a ktoré až k exponentu.

Základ 3 v zápise logaritmu je dole, čo znamená, že keď zadáme dvojku ako logaritmus k základu 3, zapíšeme aj 3 k základu.

2 je vyšší ako tri. A v zápise pre stupeň dva píšeme nad tri, teda ako exponent:

Logaritmy. Prvá úroveň.

Logaritmy

Logaritmus kladné číslo b založené na a, Kde a > 0, a ≠ 1, sa nazýva exponent, na ktorý treba číslo zvýšiť a, Získať b.

Definícia logaritmu dá sa to stručne napísať takto:

Táto rovnosť platí pre b > 0, a > 0, a ≠ 1. Zvyčajne sa to nazýva logaritmická identita.
Volá sa akcia nájdenia logaritmu čísla pomocou logaritmu.

Vlastnosti logaritmov:

Logaritmus produktu:

Logaritmus kvocientu:

Výmena logaritmickej základne:

Logaritmus stupňov:

Logaritmus koreňa:

Logaritmus s výkonovou základňou:





Desatinné a prirodzené logaritmy.

Desatinný logaritmusčísla volajú logaritmus tohto čísla so základom 10 a píšu   lg b
Prirodzený logaritmusčísla sa nazývajú logaritmus tohto čísla k základu e, Kde e- iracionálne číslo približne rovné 2,7. Zároveň píšu ln b.

Ďalšie poznámky o algebre a geometrii

Základné vlastnosti logaritmov

Základné vlastnosti logaritmov

Logaritmy, ako všetky čísla, sa dajú sčítať, odčítať a transformovať všetkými spôsobmi. Ale keďže logaritmy nie sú úplne obyčajné čísla, existujú tu pravidlá, ktoré sa nazývajú hlavné vlastnosti.

Tieto pravidlá určite musíte poznať – bez nich sa nedá vyriešiť ani jeden vážny logaritmický problém. Navyše je ich veľmi málo – všetko sa dá naučiť za jeden deň. Tak poďme na to.

Sčítanie a odčítanie logaritmov

Uvažujme dva logaritmy s rovnakými základňami: log a x a log a y. Potom ich možno sčítať a odčítať a:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Súčet logaritmov sa teda rovná logaritmu súčinu a rozdiel sa rovná logaritmu kvocientu. Poznámka: tu je kľúčový bod rovnaké dôvody. Ak sú dôvody iné, tieto pravidlá nefungujú!

Tieto vzorce vám pomôžu vypočítať logaritmický výraz, aj keď sa neberú do úvahy jeho jednotlivé časti (pozri lekciu „Čo je to logaritmus“). Pozrite sa na príklady a uvidíte:

Denník 6 4 + denník 6 9.

Keďže logaritmy majú rovnaké základy, použijeme súčtový vzorec:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Úloha. Nájdite hodnotu výrazu: log 2 48 − log 2 3.

Základy sú rovnaké, používame rozdielový vzorec:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Úloha. Nájdite hodnotu výrazu: log 3 135 − log 3 5.

Základy sú opäť rovnaké, takže máme:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Ako vidíte, pôvodné výrazy sa skladajú zo „zlých“ logaritmov, ktoré nie sú vypočítané samostatne. Ale po transformáciách sa získajú úplne normálne čísla. Mnohé testy sú založené na tejto skutočnosti. Áno, na Jednotnej štátnej skúške sa so všetkou vážnosťou (niekedy prakticky bez zmien) ponúkajú výrazy podobné testom.

Extrahovanie exponentu z logaritmu

Teraz si úlohu trochu skomplikujeme. Čo ak je základom alebo argumentom logaritmu mocnina? Potom môže byť exponent tohto stupňa vyňatý zo znamienka logaritmu podľa nasledujúcich pravidiel:

Je ľahké vidieť, že posledné pravidlo nasleduje prvé dve. Je však lepšie si to zapamätať - v niektorých prípadoch to výrazne zníži množstvo výpočtov.

Samozrejme, všetky tieto pravidlá dávajú zmysel, ak je dodržaná ODZ logaritmu: a > 0, a ≠ 1, x > 0. A ešte niečo: naučte sa aplikovať všetky vzorce nielen zľava doprava, ale aj naopak , t.j. Čísla pred znamienkom logaritmu môžete zadať do samotného logaritmu.

Ako riešiť logaritmy

To je to, čo sa najčastejšie vyžaduje.

Úloha. Nájdite hodnotu výrazu: log 7 49 6 .

Zbavme sa stupňa v argumente pomocou prvého vzorca:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Úloha. Nájdite význam výrazu:

Všimnite si, že menovateľ obsahuje logaritmus, ktorého základom a argumentom sú presné mocniny: 16 = 2 4 ; 49 = 7 2. Máme:

Myslím, že posledný príklad si vyžaduje určité objasnenie. Kam zmizli logaritmy? Do poslednej chvíle pracujeme len s menovateľom. Uviedli sme základ a argument tam stojaceho logaritmu vo forme mocničiek a vyňali sme exponenty - dostali sme „trojposchodový“ zlomok.

Teraz sa pozrime na hlavný zlomok. Čitateľ a menovateľ obsahujú rovnaké číslo: log 2 7. Keďže log 2 7 ≠ 0, zlomok môžeme zmenšiť - 2/4 zostanú v menovateli. Podľa pravidiel aritmetiky môžu byť štyri prenesené do čitateľa, čo sa aj stalo. Výsledkom bola odpoveď: 2.

Prechod na nový základ

Keď už hovoríme o pravidlách sčítania a odčítania logaritmov, osobitne som zdôraznil, že fungujú iba s rovnakými základmi. Čo ak sú dôvody iné? Čo ak to nie sú presné mocniny rovnakého čísla?

Na pomoc prichádzajú vzorce pre prechod na nový základ. Sformulujme ich vo forme vety:

Nech je daný logaritmus log a x. Potom pre akékoľvek číslo c také, že c > 0 a c ≠ 1, platí rovnosť:

Konkrétne, ak nastavíme c = x, dostaneme:

Z druhého vzorca vyplýva, že základ a argument logaritmu možno zameniť, ale v tomto prípade je celý výraz „prevrátený“, t.j. logaritmus sa objaví v menovateli.

Tieto vzorce sa zriedka nachádzajú v bežných číselných výrazoch. Ich vhodnosť je možné vyhodnotiť len pri riešení logaritmických rovníc a nerovníc.

Sú však problémy, ktoré sa nedajú vyriešiť vôbec inak ako presťahovaním sa do novej nadácie. Pozrime sa na pár z nich:

Úloha. Nájdite hodnotu výrazu: log 5 16 log 2 25.

Všimnite si, že argumenty oboch logaritmov obsahujú presné mocniny. Vyberme ukazovatele: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2 log 2 5;

Teraz „otočme“ druhý logaritmus:

Keďže sa súčin pri preskupovaní faktorov nemení, pokojne sme vynásobili štyri a dva a potom sme sa zaoberali logaritmami.

Úloha. Nájdite hodnotu výrazu: log 9 100 lg 3.

Základom a argumentom prvého logaritmu sú presné mocniny. Poďme si to zapísať a zbaviť sa indikátorov:

Teraz sa zbavme desiatkového logaritmu prechodom na nový základ:

Základná logaritmická identita

V procese riešenia je často potrebné reprezentovať číslo ako logaritmus k danému základu.

V tomto prípade nám pomôžu nasledujúce vzorce:

V prvom prípade sa číslo n stane exponentom v argumente. Číslo n môže byť úplne čokoľvek, pretože je to len logaritmická hodnota.

Druhý vzorec je vlastne parafrázovaná definícia. Tak sa to volá: .

Čo sa vlastne stane, ak sa číslo b zvýši na takú mocninu, že číslo b na túto mocninu dáva číslo a? Správne: výsledkom je rovnaké číslo a. Ešte raz si pozorne prečítajte tento odsek – veľa ľudí sa na ňom zasekne.

Rovnako ako vzorce na prechod na novú základňu, základná logaritmická identita je niekedy jediným možným riešením.

Úloha. Nájdite význam výrazu:

Všimnite si, že log 25 64 = log 5 8 - jednoducho vzal druhú mocninu zo základu a argumentu logaritmu. Ak vezmeme do úvahy pravidlá pre násobenie právomocí s rovnakým základom, dostaneme:

Ak niekto nevie, toto bola skutočná úloha z Jednotnej štátnej skúšky :)

Logaritmická jednotka a logaritmická nula

Na záver uvediem dve identity, ktoré možno len ťažko nazvať vlastnosťami – sú skôr dôsledkom definície logaritmu. Neustále sa objavujú v problémoch a prekvapivo robia problémy aj „pokročilým“ žiakom.

  1. log a a = 1 je. Pamätajte si raz a navždy: logaritmus k ľubovoľnej základni a tejto samotnej základne sa rovná jednej.
  2. log a 1 = 0 je. Základom a môže byť čokoľvek, ale ak argument obsahuje jednotku, logaritmus sa rovná nule! Pretože a 0 = 1 je priamym dôsledkom definície.

To sú všetky vlastnosti. Určite si ich nacvičte v praxi! Stiahnite si cheat sheet na začiatku lekcie, vytlačte si ho a vyriešte problémy.