Najťažšie goniometrické rovnice. Riešenie goniometrických rovníc

Pri riešení mnohých matematické problémy, najmä tie, ktoré sa vyskytnú pred 10. ročníkom, je jasne definované poradie vykonaných akcií, ktoré povedú k cieľu. Medzi takéto problémy patria napríklad lineárne a kvadratické rovnice, lineárne a kvadratické nerovnosti, zlomkové rovnice a rovnice, ktoré sa redukujú na kvadratické. Princíp úspešného vyriešenia každého z uvedených problémov je nasledovný: je potrebné zistiť, aký typ problému sa rieši, pamätať na potrebnú postupnosť činností, ktoré povedú k požadovaný výsledok, t.j. odpovedzte a postupujte podľa týchto krokov.

Je zrejmé, že úspech alebo neúspech pri riešení konkrétneho problému závisí najmä od toho, ako správne je určený typ riešenej rovnice, ako správne je reprodukovaná postupnosť všetkých etáp jej riešenia. Samozrejme, v tomto prípade je potrebné mať zručnosti na vykonávanie identických transformácií a výpočtov.

Iná situácia je s goniometrické rovnice. Nie je vôbec ťažké zistiť, že rovnica je trigonometrická. Ťažkosti vznikajú pri určovaní postupnosti akcií, ktoré by viedli k správnej odpovedi.

Autor: vzhľad rovnice, je niekedy ťažké určiť jej typ. A bez znalosti typu rovnice je takmer nemožné vybrať si tú správnu z niekoľkých desiatok goniometrických vzorcov.

Vyriešiť goniometrická rovnica, musíš to skúsiť:

1. priviesť všetky funkcie zahrnuté v rovnici do „rovnakých uhlov“;
2. priviesť rovnicu k „identickým funkciám“;
3. faktor ľavej strany rovnice atď.

Uvažujme základné metódy riešenia goniometrických rovníc.

I. Redukcia na najjednoduchšie goniometrické rovnice

Schéma riešenia

Krok 1. expresné goniometrická funkcia prostredníctvom známych komponentov.

Krok 2. Nájdite argument funkcie pomocou vzorcov:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

hriech x = a; x = (-1) n arcsin a + πn, n Є Z.

tan x = a; x = arctan a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Krok 3. Nájdite neznámu premennú.

Príklad.

2 cos(3x – π/4) = -√2.

Riešenie.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Odpoveď: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Variabilná výmena

Schéma riešenia

Krok 1. Redukujte rovnicu na algebraický tvar vzhľadom na jednu z goniometrických funkcií.

Krok 2. Výslednú funkciu označíme premennou t (v prípade potreby zaveďte obmedzenia na t).

Krok 3. Výslednú algebraickú rovnicu zapíšte a vyriešte.

Krok 4. Vykonajte spätnú výmenu.

Krok 5. Vyriešte najjednoduchšiu goniometrickú rovnicu.

Príklad.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Riešenie.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2 sin 2 (x/2) + 5 sin (x/2) + 3 = 0.

2) Nech sin (x/2) = t, kde |t| ≤ 1.

3) 2t2 + 5t + 3 = 0;

t = 1 alebo e = -3/2, nespĺňa podmienku |t| ≤ 1.

4) sin(x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Odpoveď: x = π + 4πn, n Є Z.

III. Metóda redukcie poradia rovníc

Schéma riešenia

Krok 1. Nahraďte túto rovnicu lineárnou pomocou vzorca na zníženie stupňa:

sin 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Krok 2. Výslednú rovnicu riešte metódami I a II.

Príklad.

cos 2x + cos 2 x = 5/4.

Riešenie.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Odpoveď: x = ±π/6 + πn, n Є Z.

IV. Homogénne rovnice

Schéma riešenia

Krok 1. Zredukujte túto rovnicu do tvaru

a) a sin x + b cos x = 0 (homogénna rovnica prvého stupňa)

alebo do výhľadu

b) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (homogénna rovnica druhého stupňa).

Krok 2. Vydeľte obe strany rovnice

a) cos x ≠ 0;

b) cos 2 x ≠ 0;

a získajte rovnicu pre tan x:

a) tan x + b = 0;

b) tan 2 x + b arktan x + c = 0.

Krok 3. Riešte rovnicu pomocou známych metód.

Príklad.

5 sin 2 x + 3 sin x cos x – 4 = 0.

Riešenie.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3 sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3 tg x – 4 = 0.

3) Nech tg x = t, potom

t2 + 3t – 4 = 0;

t = 1 alebo t = -4, čo znamená

tg x = 1 alebo tg x = -4.

Z prvej rovnice x = π/4 + πn, n Є Z; z druhej rovnice x = -arctg 4 + πk, k Є Z.

Odpoveď: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Metóda transformácie rovnice pomocou goniometrických vzorcov

Schéma riešenia

Krok 1. Používanie všetkých druhov trigonometrické vzorce, zredukujte túto rovnicu na rovnicu riešenú metódami I, II, III, IV.

Krok 2. Vyriešte výslednú rovnicu pomocou známych metód.

Príklad.

hriech x + hriech 2x + hriech 3x = 0.

Riešenie.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x cos x + sin 2x = 0.

2) sin 2x (2cos x + 1) = 0;

sin 2x = 0 alebo 2cos x + 1 = 0;

Z prvej rovnice 2x = π/2 + πn, n Є Z; z druhej rovnice cos x = -1/2.

Máme x = π/4 + πn/2, n Є Z; z druhej rovnice x = ±(π – π/3) + 2πk, k Є Z.

V dôsledku toho x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Odpoveď: x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Schopnosť a zručnosť riešiť goniometrické rovnice je veľmi dobrá dôležité, ich rozvoj si vyžaduje značné úsilie, tak zo strany žiaka, ako aj zo strany učiteľa.

S riešením goniometrických rovníc sú spojené mnohé problémy stereometrie, fyziky atď. Proces riešenia takýchto úloh zahŕňa mnohé z vedomostí a zručností, ktoré sa získavajú štúdiom prvkov trigonometrie.

Goniometrické rovnice berú dôležité miesto v procese vyučovania matematiky a rozvoja osobnosti vôbec.

Stále máte otázky? Neviete, ako riešiť goniometrické rovnice?
Ak chcete získať pomoc od tútora, zaregistrujte sa.
Prvá lekcia je zadarmo!

webová stránka, pri kopírovaní celého materiálu alebo jeho časti je potrebný odkaz na zdroj.

Zachovanie vášho súkromia je pre nás dôležité. Z tohto dôvodu sme vyvinuli Zásady ochrany osobných údajov, ktoré popisujú, ako používame a uchovávame vaše informácie. Prečítajte si naše postupy ochrany osobných údajov a ak máte nejaké otázky, dajte nám vedieť.

Zhromažďovanie a používanie osobných údajov

Osobné údaje sú údaje, ktoré možno použiť na identifikáciu alebo kontaktovanie konkrétnej osoby.

Keď nás budete kontaktovať, môžete byť kedykoľvek požiadaní o poskytnutie svojich osobných údajov.

Nižšie sú uvedené niektoré príklady typov osobných údajov, ktoré môžeme zhromažďovať, a ako môžeme tieto informácie použiť.

Aké osobné údaje zhromažďujeme:

  • Keď odošlete žiadosť na stránke, môžeme zhromažďovať rôzne informácie vrátane vášho mena, telefónneho čísla, e-mailovej adresy atď.

Ako používame vaše osobné údaje:

  • Nami zozbierané osobné informácie nám umožňuje kontaktovať vás a informovať vás o jedinečných ponukách, akciách a iných akciách a pripravovaných akciách.
  • Z času na čas môžeme použiť vaše osobné údaje na zasielanie dôležitých upozornení a komunikácie.
  • Osobné údaje môžeme použiť aj na interné účely, ako je vykonávanie auditov, analýza údajov a rôzne výskumy, aby sme zlepšili služby, ktoré poskytujeme, a poskytli vám odporúčania týkajúce sa našich služieb.
  • Ak sa zúčastníte žrebovania o ceny, súťaže alebo podobnej propagačnej akcie, môžeme použiť informácie, ktoré nám poskytnete, na správu takýchto programov.

Sprístupnenie informácií tretím stranám

Informácie, ktoré od vás dostaneme, nezverejňujeme tretím stranám.

Výnimky:

  • V prípade potreby – v súlade so zákonom, súdnym konaním, v súdnom konaní a/alebo na základe verejných žiadostí alebo žiadostí vládnych orgánov na území Ruskej federácie – poskytnúť vaše osobné údaje. Môžeme tiež zverejniť informácie o vás, ak usúdime, že takéto zverejnenie je potrebné alebo vhodné na účely bezpečnosti, presadzovania práva alebo na iné účely verejného významu.
  • V prípade reorganizácie, zlúčenia alebo predaja môžeme osobné údaje, ktoré zhromažďujeme, preniesť na príslušnú nástupnícku tretiu stranu.

Ochrana osobných údajov

Prijímame opatrenia – vrátane administratívnych, technických a fyzických – na ochranu vašich osobných údajov pred stratou, krádežou a zneužitím, ako aj neoprávneným prístupom, zverejnením, zmenou a zničením.

Rešpektovanie vášho súkromia na úrovni spoločnosti

Aby sme zaistili bezpečnosť vašich osobných údajov, informujeme našich zamestnancov o štandardoch ochrany osobných údajov a bezpečnosti a prísne presadzujeme postupy ochrany osobných údajov.

Lekcia a prezentácia na tému: "Riešenie jednoduchých goniometrických rovníc"

Dodatočné materiály
Vážení používatelia, nezabudnite zanechať svoje komentáre, recenzie, priania! Všetky materiály boli skontrolované antivírusovým programom.

Návody a simulátory v internetovom obchode Integral pre ročník 10 od 1C
Riešime úlohy v geometrii. Interaktívne úlohy pre budovanie vo vesmíre
Softvérové ​​prostredie "1C: Mathematical Constructor 6.1"

Čo budeme študovať:
1. Čo sú to goniometrické rovnice?

3. Dve hlavné metódy riešenia goniometrických rovníc.
4. Homogénne goniometrické rovnice.
5. Príklady.

Čo sú to goniometrické rovnice?

Chlapci, už sme študovali arkzín, arkkozín, arktangens a arkkotangens. Teraz sa pozrime na trigonometrické rovnice všeobecne.

Goniometrické rovnice sú rovnice, v ktorých je premenná obsiahnutá pod znamienkom goniometrickej funkcie.

Zopakujme si formu riešenia najjednoduchších goniometrických rovníc:

1) Ak |a|≤ 1, potom rovnica cos(x) = a má riešenie:

X= ± arccos(a) + 2πk

2) Ak |a|≤ 1, potom rovnica sin(x) = a má riešenie:

3) Ak |a| > 1, potom rovnica sin(x) = a a cos(x) = a nemajú riešenia 4) Rovnica tg(x)=a má riešenie: x=arctg(a)+ πk

5) Rovnica ctg(x)=a má riešenie: x=arcctg(a)+ πk

Pre všetky vzorce je k celé číslo

Najjednoduchšie goniometrické rovnice majú tvar: T(kx+m)=a, T je nejaká goniometrická funkcia.

Príklad.

Riešte rovnice: a) sin(3x)= √3/2

Riešenie:

A) Označme 3x=t, potom našu rovnicu prepíšeme do tvaru:

Riešenie tejto rovnice bude: t=((-1)^n)arcsin(√3 /2)+ πn.

Z tabuľky hodnôt dostaneme: t=((-1)^n)×π/3+ πn.

Vráťme sa k našej premennej: 3x =((-1)^n)×π/3+ πn,

Potom x= ((-1)^n)×π/9+ πn/3

Odpoveď: x= ((-1)^n)×π/9+ πn/3, kde n je celé číslo. (-1)^n – mínus jedna na mocninu n.

Ďalšie príklady goniometrických rovníc.

Riešte rovnice: a) cos(x/5)=1 b)tg(3x- π/3)= √3

Riešenie:

A) Tentoraz prejdime priamo k výpočtu koreňov rovnice:

X/5= ± arccos(1) + 2πk. Potom x/5= πk => x=5πk

Odpoveď: x=5πk, kde k je celé číslo.

B) Zapíšeme ho v tvare: 3x- π/3=arctg(√3)+ πk. Vieme, že: arctan(√3)= π/3

3x- π/3= π/3+ πk => 3x=2π/3 + πk => x=2π/9 + πk/3

Odpoveď: x=2π/9 + πk/3, kde k je celé číslo.

Riešte rovnice: cos(4x)= √2/2. A nájdite všetky korene na segmente.

Riešenie:

Rozhodneme sa v všeobecný pohľad naša rovnica: 4x= ± arccos(√2/2) + 2πk

4x= ± π/4 + 2πk;

X= ± π/16+ πk/2;

Teraz sa pozrime, aké korene padajú do nášho segmentu. Pri k Pri k=0, x= π/16 sme v danom segmente.
Pri k=1, x= π/16+ π/2=9π/16 sme narazili znova.
Pre k=2, x= π/16+ π=17π/16, ale tu sme netrafili, čo znamená, že pre veľké k samozrejme tiež netrafíme.

Odpoveď: x= π/16, x= 9π/16

Dve hlavné metódy riešenia.

Pozreli sme sa na najjednoduchšie goniometrické rovnice, no existujú aj zložitejšie. Na ich riešenie sa používa metóda zavedenia novej premennej a metóda faktorizácie. Pozrime sa na príklady.

Poďme vyriešiť rovnicu:

Riešenie:
Na vyriešenie našej rovnice použijeme metódu zavedenia novej premennej, ktorá označuje: t=tg(x).

V dôsledku nahradenia dostaneme: t 2 + 2t -1 = 0

Nájdime korene kvadratickej rovnice: t=-1 a t=1/3

Potom tg(x)=-1 a tg(x)=1/3, dostaneme najjednoduchšiu goniometrickú rovnicu, nájdime jej korene.

X=arctg(-1) +πk= -π/4+πk; x=arctg(1/3) + πk.

Odpoveď: x= -π/4+πk; x=arctg(1/3) + πk.

Príklad riešenia rovnice

Riešte rovnice: 2sin 2 (x) + 3 cos(x) = 0

Riešenie:

Použime identitu: sin 2 (x) + cos 2 (x)=1

Naša rovnica bude mať tvar: 2-2cos 2 (x) + 3 cos (x) = 0

2 cos 2 (x) - 3 cos (x) -2 = 0

Zavedme náhradu t=cos(x): 2t 2 -3t - 2 = 0

Riešením našej kvadratickej rovnice sú korene: t=2 a t=-1/2

Potom cos(x)=2 a cos(x)=-1/2.

Pretože kosínus nemôže nadobúdať hodnoty väčšie ako jedna, potom cos(x)=2 nemá korene.

Pre cos(x)=-1/2: x= ± arccos(-1/2) + 2πk; x= ±2π/3 + 2πk

Odpoveď: x= ±2π/3 + 2πk

Homogénne goniometrické rovnice.

Definícia: Rovnice tvaru a sin(x)+b cos(x) sa nazývajú homogénne goniometrické rovnice prvého stupňa.

Rovnice formulára

homogénne goniometrické rovnice druhého stupňa.

Ak chcete vyriešiť homogénnu goniometrickú rovnicu prvého stupňa, vydeľte ju cos(x): Nemôžete deliť kosínusom, ak sa rovná nule, uistite sa, že to tak nie je:
Nech cos(x)=0, potom asin(x)+0=0 => sin(x)=0, ale sínus a kosínus sa nerovnajú nule súčasne, dostaneme rozpor, takže môžeme pokojne deliť o nulu.

Vyriešte rovnicu:
Príklad: cos 2 (x) + sin(x) cos (x) = 0

Riešenie:

Zoberme si spoločný faktor: cos(x)(c0s(x) + sin (x)) = 0

Potom musíme vyriešiť dve rovnice:

Cos(x)=0 a cos(x)+sin(x)=0

Cos(x)=0 pri x= π/2 + πk;

Zvážte rovnicu cos(x)+sin(x)=0 Vydeľte našu rovnicu cos(x):

1+tg(x)=0 => tg(x)=-1 => x=arctg(-1) +πk= -π/4+πk

Odpoveď: x= π/2 + πk a x= -π/4+πk

Ako riešiť homogénne goniometrické rovnice druhého stupňa?
Chlapci, vždy dodržiavajte tieto pravidlá!

1. Pozri, čomu sa rovná koeficient a, ak a=0, tak naša rovnica bude mať tvar cos(x)(bsin(x)+ccos(x)), ktorého príklad riešenia je na predchádzajúcej snímke

2. Ak a≠0, potom musíte obe strany rovnice vydeliť kosínusovou druhou mocninou, dostaneme:


Zmeníme premennú t=tg(x) a dostaneme rovnicu:

Riešte príklad č.:3

Vyriešte rovnicu:
Riešenie:

Vydeľme obe strany rovnice kosínusovou druhou mocninou:

Zmeníme premennú t=tg(x): t 2 + 2 t - 3 = 0

Nájdite korene kvadratickej rovnice: t=-3 a t=1

Potom: tg(x)=-3 => x=arctg(-3) + πk=-arctg(3) + πk

Tg(x)=1 => x= π/4+ πk

Odpoveď: x=-arctg(3) + πk a x= π/4+ πk

Riešte príklad č.:4

Vyriešte rovnicu:

Riešenie:
Transformujme náš výraz:


Môžeme riešiť také rovnice: x= - π/4 + 2πk a x=5π/4 + 2πk

Odpoveď: x= - π/4 + 2πk a x=5π/4 + 2πk

Riešte príklad č.:5

Vyriešte rovnicu:

Riešenie:
Transformujme náš výraz:


Zavedme náhradu tg(2x)=t:2 2 - 5t + 2 = 0

Riešením našej kvadratickej rovnice budú korene: t=-2 a t=1/2

Potom dostaneme: tg(2x)=-2 a tg(2x)=1/2
2x=-arctg(2)+ πk => x=-arctg(2)/2 + πk/2

2x= arctg(1/2) + πk => x=arctg(1/2)/2+ πk/2

Odpoveď: x=-arctg(2)/2 + πk/2 a x=arctg(1/2)/2+ πk/2

Problémy na samostatné riešenie.

1) Vyriešte rovnicu

A) sin(7x)= 1/2 b) cos(3x)= √3/2 c) cos(-x) = -1 d) tg(4x) = √3 d) ctg(0,5x) = -1,7

2) Riešte rovnice: sin(3x)= √3/2. A nájdite všetky korene na segmente [π/2; π].

3) Vyriešte rovnicu: detská postieľka 2 (x) + 2 detská postieľka (x) + 1 =0

4) Vyriešte rovnicu: 3 sin 2 (x) + √3 sin (x) cos(x) = 0

5) Vyriešte rovnicu: 3sin 2 (3x) + 10 sin(3x)cos(3x) + 3 cos 2 (3x) =0

6) Vyriešte rovnicu: cos 2 (2x) -1 - cos(x) =√3/2 -sin 2 (2x)

Riešenie jednoduchých goniometrických rovníc.

Riešenie goniometrických rovníc akejkoľvek úrovne zložitosti nakoniec vedie k riešeniu najjednoduchších goniometrických rovníc. A v tomto najlepší pomocník opäť sa ukáže, že ide o trigonometrický kruh.

Pripomeňme si definície kosínusu a sínusu.

Kosínus uhla je súradnica (t. j. súradnica pozdĺž osi) bodu na jednotkovej kružnici zodpovedajúcej rotácii o daný uhol.

Sínus uhla je ordináta (t. j. súradnica pozdĺž osi) bodu na jednotkovej kružnici zodpovedajúcej rotácii o daný uhol.

Kladný smer pohybu na trigonometrickom kruhu je proti smeru hodinových ručičiek. Otočenie o 0 stupňov (alebo 0 radiánov) zodpovedá bodu so súradnicami (1;0)

Tieto definície používame na riešenie jednoduchých goniometrických rovníc.

1. Vyriešte rovnicu

Táto rovnica je splnená všetkými hodnotami uhla natočenia, ktoré zodpovedajú bodom na kruhu, ktorých ordináta sa rovná .

Označme bod s ordinátou na osi y:


Nakreslite vodorovnú čiaru rovnobežnú s osou x, kým sa nepretína s kružnicou. Získame dva body ležiace na kruhu a majúce ordinátu. Tieto body zodpovedajú uhlom rotácie v radiánoch:


Ak opustíme bod zodpovedajúci uhlu rotácie na radián, obídeme celý kruh, potom sa dostaneme do bodu zodpovedajúceho uhlu rotácie na radián a s rovnakou ordinátou. To znamená, že tento uhol natočenia tiež spĺňa našu rovnicu. Môžeme urobiť toľko „nečinných“ otáčok, koľko chceme, vrátiť sa do rovnakého bodu a všetky tieto hodnoty uhla budú spĺňať našu rovnicu. Počet otáčok „naprázdno“ bude označený písmenom (alebo). Keďže tieto revolúcie môžeme robiť v pozitívnom aj negatívnom smere, (alebo) môžu nadobudnúť akékoľvek celočíselné hodnoty.

To znamená, že prvá séria riešení pôvodnej rovnice má tvar:

, , - množina celých čísel (1)

Podobne aj druhá séria riešení má tvar:

, Kde , . (2)

Ako ste možno uhádli, táto séria riešení je založená na bode na kruhu zodpovedajúcom uhlu otočenia o .

Tieto dve série riešení je možné spojiť do jedného záznamu:

Ak vezmeme (teda párne) v tomto vstupe, tak dostaneme prvú sériu riešení.

Ak vezmeme (teda nepárne) v tomto vstupe, dostaneme druhú sériu riešení.

2. Teraz poďme riešiť rovnicu

Pretože toto je úsečka bodu na jednotkovej kružnici získanej rotáciou o uhol, označíme bod úsečkou na osi:


Nakreslite zvislú čiaru rovnobežnú s osou, kým sa nepretína s kruhom. Získame dva body ležiace na kruhu s úsečkou. Tieto body zodpovedajú uhlom rotácie v radiánoch. Pripomeňme, že pri pohybe v smere hodinových ručičiek dostaneme negatívny uhol natočenia:


Napíšme dve série riešení:

,

,

(Do požadovaného bodu sa dostaneme tak, že pôjdeme z hlavného úplného kruhu, tzn.

Spojme tieto dve série do jedného záznamu:

3. Vyriešte rovnicu

Dotyčnica prechádza bodom so súradnicami (1,0) jednotkovej kružnice rovnobežnej s osou OY

Označme na ňom bod s ordinátou rovnou 1 (hľadáme dotyčnicu, ktorej uhly sú rovné 1):


Spojme tento bod s počiatkom súradníc priamkou a označme priesečníky priamky s jednotkovou kružnicou. Priesečníky priamky a kružnice zodpovedajú uhlom natočenia na a :


Keďže body zodpovedajúce uhlom rotácie, ktoré spĺňajú našu rovnicu, ležia od seba vo vzdialenosti radiánov, riešenie môžeme zapísať takto:

4. Vyriešte rovnicu

Čiara kotangens prechádza bodom so súradnicami jednotkovej kružnice rovnobežnej s osou.

Označme bod s osou -1 na priamke kotangens:


Spojme tento bod s počiatkom priamky a pokračujeme v nej, kým sa nepretne s kružnicou. Táto priamka bude pretínať kruh v bodoch zodpovedajúcich uhlom rotácie v a radiánoch:


Keďže tieto body sú od seba oddelené vzdialenosťou rovnajúcou sa , potom spoločné rozhodnutie Túto rovnicu môžeme napísať takto:

V uvedených príkladoch ilustrujúcich riešenie najjednoduchších goniometrických rovníc boli použité tabuľkové hodnoty goniometrických funkcií.

Ak však pravá strana rovnice obsahuje netabuľkovú hodnotu, dosadíme hodnotu do všeobecného riešenia rovnice:





ŠPECIÁLNE RIEŠENIA:

Označme body na kružnici, ktorej ordináta je 0:


Označme jeden bod na kružnici, ktorej ordináta je 1:


Označme jeden bod na kružnici, ktorého ordináta sa rovná -1:


Keďže je zvykom uvádzať hodnoty najbližšie k nule, napíšeme riešenie takto:

Označme body na kružnici, ktorých súradnica sa rovná 0:


5.
Označme jeden bod na kružnici, ktorej úsečka sa rovná 1:


Označme jeden bod na kružnici, ktorej úsečka sa rovná -1:


A trochu zložitejšie príklady:

1.

Sínus sa rovná jednej, ak sa argument rovná

Argument nášho sínusu je rovnaký, takže dostaneme:

Vydeľte obe strany rovnosti 3:

odpoveď:

2.

Kosínus je nula, ak je argument kosínusu

Argument nášho kosínusu sa rovná , takže dostaneme:

Vyjadrime sa, aby sme to urobili, najprv sa presunieme doprava s opačným znamienkom:

Zjednodušme pravú stranu:

Vydeľte obe strany -2:

Všimnite si, že znamienko pred pojmom sa nemení, pretože k môže nadobudnúť akúkoľvek celočíselnú hodnotu.

odpoveď:

A nakoniec si pozrite video lekciu „Výber koreňov v trigonometrickej rovnici pomocou trigonometrického kruhu“

Týmto sa končí náš rozhovor o riešení jednoduchých goniometrických rovníc. Nabudúce si povieme, ako sa rozhodnúť.

Pri riešení mnohých matematické problémy, najmä tie, ktoré sa vyskytnú pred 10. ročníkom, je jasne definované poradie vykonaných akcií, ktoré povedú k cieľu. Medzi takéto problémy patria napríklad lineárne a kvadratické rovnice, lineárne a kvadratické nerovnosti, zlomkové rovnice a rovnice, ktoré sa redukujú na kvadratické. Princíp úspešného vyriešenia každého zo spomínaných problémov je nasledovný: treba si ujasniť, aký typ problému riešite, zapamätať si potrebnú postupnosť úkonov, ktoré povedú k želanému výsledku, t.j. odpovedzte a postupujte podľa týchto krokov.

Je zrejmé, že úspech alebo neúspech pri riešení konkrétneho problému závisí najmä od toho, ako správne je určený typ riešenej rovnice, ako správne je reprodukovaná postupnosť všetkých etáp jej riešenia. Samozrejme, v tomto prípade je potrebné mať zručnosti na vykonávanie identických transformácií a výpočtov.

Iná situácia je s goniometrické rovnice. Nie je vôbec ťažké zistiť, že rovnica je trigonometrická. Ťažkosti vznikajú pri určovaní postupnosti akcií, ktoré by viedli k správnej odpovedi.

Niekedy je ťažké určiť jej typ na základe vzhľadu rovnice. A bez znalosti typu rovnice je takmer nemožné vybrať si tú správnu z niekoľkých desiatok goniometrických vzorcov.

Ak chcete vyriešiť trigonometrickú rovnicu, musíte vyskúšať:

1. priviesť všetky funkcie zahrnuté v rovnici do „rovnakých uhlov“;
2. priviesť rovnicu k „identickým funkciám“;
3. faktor ľavej strany rovnice atď.

Uvažujme základné metódy riešenia goniometrických rovníc.

I. Redukcia na najjednoduchšie goniometrické rovnice

Schéma riešenia

Krok 1. Vyjadrite goniometrickú funkciu pomocou známych komponentov.

Krok 2. Nájdite argument funkcie pomocou vzorcov:

cos x = a; x = ±arccos a + 2πn, n ЄZ.

hriech x = a; x = (-1) n arcsin a + πn, n Є Z.

tan x = a; x = arctan a + πn, n Є Z.

ctg x = a; x = arcctg a + πn, n Є Z.

Krok 3. Nájdite neznámu premennú.

Príklad.

2 cos(3x – π/4) = -√2.

Riešenie.

1) cos(3x – π/4) = -√2/2.

2) 3x – π/4 = ±(π – π/4) + 2πn, n Є Z;

3x – π/4 = ±3π/4 + 2πn, n Є Z.

3) 3x = ±3π/4 + π/4 + 2πn, n Є Z;

x = ±3π/12 + π/12 + 2πn/3, n Є Z;

x = ±π/4 + π/12 + 2πn/3, n Є Z.

Odpoveď: ±π/4 + π/12 + 2πn/3, n Є Z.

II. Variabilná výmena

Schéma riešenia

Krok 1. Redukujte rovnicu na algebraický tvar vzhľadom na jednu z goniometrických funkcií.

Krok 2. Výslednú funkciu označíme premennou t (v prípade potreby zaveďte obmedzenia na t).

Krok 3. Výslednú algebraickú rovnicu zapíšte a vyriešte.

Krok 4. Vykonajte spätnú výmenu.

Krok 5. Vyriešte najjednoduchšiu goniometrickú rovnicu.

Príklad.

2cos 2 (x/2) – 5sin (x/2) – 5 = 0.

Riešenie.

1) 2(1 – sin 2 (x/2)) – 5sin (x/2) – 5 = 0;

2 sin 2 (x/2) + 5 sin (x/2) + 3 = 0.

2) Nech sin (x/2) = t, kde |t| ≤ 1.

3) 2t2 + 5t + 3 = 0;

t = 1 alebo e = -3/2, nespĺňa podmienku |t| ≤ 1.

4) sin(x/2) = 1.

5) x/2 = π/2 + 2πn, n Є Z;

x = π + 4πn, n Є Z.

Odpoveď: x = π + 4πn, n Є Z.

III. Metóda redukcie poradia rovníc

Schéma riešenia

Krok 1. Nahraďte túto rovnicu lineárnou pomocou vzorca na zníženie stupňa:

sin 2 x = 1/2 · (1 – cos 2x);

cos 2 x = 1/2 · (1 + cos 2x);

tg 2 x = (1 – cos 2x) / (1 + cos 2x).

Krok 2. Výslednú rovnicu riešte metódami I a II.

Príklad.

cos 2x + cos 2 x = 5/4.

Riešenie.

1) cos 2x + 1/2 · (1 + cos 2x) = 5/4.

2) cos 2x + 1/2 + 1/2 · cos 2x = 5/4;

3/2 cos 2x = 3/4;

2x = ±π/3 + 2πn, n Є Z;

x = ±π/6 + πn, n Є Z.

Odpoveď: x = ±π/6 + πn, n Є Z.

IV. Homogénne rovnice

Schéma riešenia

Krok 1. Zredukujte túto rovnicu do tvaru

a) a sin x + b cos x = 0 (homogénna rovnica prvého stupňa)

alebo do výhľadu

b) a sin 2 x + b sin x · cos x + c cos 2 x = 0 (homogénna rovnica druhého stupňa).

Krok 2. Vydeľte obe strany rovnice

a) cos x ≠ 0;

b) cos 2 x ≠ 0;

a získajte rovnicu pre tan x:

a) tan x + b = 0;

b) tan 2 x + b arktan x + c = 0.

Krok 3. Riešte rovnicu pomocou známych metód.

Príklad.

5 sin 2 x + 3 sin x cos x – 4 = 0.

Riešenie.

1) 5sin 2 x + 3sin x · cos x – 4(sin 2 x + cos 2 x) = 0;

5sin 2 x + 3sin x · cos x – 4sin² x – 4cos 2 x = 0;

sin 2 x + 3 sin x · cos x – 4cos 2 x = 0/cos 2 x ≠ 0.

2) tg 2 x + 3 tg x – 4 = 0.

3) Nech tg x = t, potom

t2 + 3t – 4 = 0;

t = 1 alebo t = -4, čo znamená

tg x = 1 alebo tg x = -4.

Z prvej rovnice x = π/4 + πn, n Є Z; z druhej rovnice x = -arctg 4 + πk, k Є Z.

Odpoveď: x = π/4 + πn, n Є Z; x = -arctg 4 + πk, k Є Z.

V. Metóda transformácie rovnice pomocou goniometrických vzorcov

Schéma riešenia

Krok 1. Pomocou všetkých možných goniometrických vzorcov zredukujte túto rovnicu na rovnicu riešenú metódami I, II, III, IV.

Krok 2. Vyriešte výslednú rovnicu pomocou známych metód.

Príklad.

hriech x + hriech 2x + hriech 3x = 0.

Riešenie.

1) (sin x + sin 3x) + sin 2x = 0;

2sin 2x cos x + sin 2x = 0.

2) sin 2x (2cos x + 1) = 0;

sin 2x = 0 alebo 2cos x + 1 = 0;

Z prvej rovnice 2x = π/2 + πn, n Є Z; z druhej rovnice cos x = -1/2.

Máme x = π/4 + πn/2, n Є Z; z druhej rovnice x = ±(π – π/3) + 2πk, k Є Z.

V dôsledku toho x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Odpoveď: x = π/4 + πn/2, n Є Z; x = ±2π/3 + 2πk, k Є Z.

Schopnosť a zručnosť riešiť goniometrické rovnice je veľmi dobrá dôležité, ich rozvoj si vyžaduje značné úsilie, tak zo strany žiaka, ako aj zo strany učiteľa.

S riešením goniometrických rovníc sú spojené mnohé problémy stereometrie, fyziky atď. Proces riešenia takýchto úloh zahŕňa mnohé z vedomostí a zručností, ktoré sa získavajú štúdiom prvkov trigonometrie.

Goniometrické rovnice zaujímajú dôležité miesto v procese učenia sa matematiky a osobnostného rozvoja vo všeobecnosti.

Stále máte otázky? Neviete, ako riešiť goniometrické rovnice?
Ak chcete získať pomoc od tútora -.
Prvá lekcia je zadarmo!

blog.site, pri kopírovaní celého materiálu alebo jeho časti sa vyžaduje odkaz na pôvodný zdroj.