Чистый изгиб. Поперечный изгиб

Гипотезу плоских сечений при изгибе можно объяснить на примере: нанесем на боковой поверхности недеформированной балки сетку, состоящую из продольных и поперечных (перпендикулярных к оси) прямых линий. В результате изгиба балки продольные линии примут криволинейное очертание, а поперечные практически останутся прямыми и перпендикулярными к изогнутой оси балки.

Формулировка гипотезы плоских сечения : поперечные сечения, плоские и перпендикулярные к оси балки до , остаются плоскими и перпендикулярными к изогнутой оси после ее деформации.

Это обстоятельство свидетельствует: при выполняется гипотеза плоских сечений , как при и

Помимо гипотезы плоских сечений принимается допущение : продольные волокна балки при ее изгибе не надавливают друг на друга.

Гипотезу плоских сечений и допущение называют гипотезой Бернулли .

Рассмотрим балку прямоугольного поперечного сечения, испытывающую чистый изгиб (). Выделим элемент балки длиной (рис. 7.8. а). В результате изгиба поперечные сечения балки повернутся, образовав угол . Верхние волокна испытывают сжатие, а нижние растяжение. Радиус кривизны нейтрального волокна обозначим .

Условно считаем, что волокна изменяют свою длину, оставаясь при этом прямыми (рис. 7.8. б). Тогда абсолютное и относительное удлинения волокна, отстоящего на расстоянии y от нейтрального волокна:

Покажем, что продольные волокна, не испытывающие при изгибе балки ни растяжения, ни сжатия, проходят через главную центральную ось x.

Поскольку длина балки при изгибе не изменяется, продольное усилие (N), возникающее в поперечном сечении, должно равняться нулю. Элементарное продольное усилие .

С учетом выражения :

Множитель можно вынести за знак интеграла (не зависит от переменной интегрирования).

Выражение представляет поперечного сечения балки относительно нейтральной оси x. Он равен нулю, когда нейтральная ось проходит через центр тяжести поперечного сечения. Следовательно, нейтральная ось (нулевая линия) при изгибе балки проходит через центр тяжести поперечного сечения.

Очевидно: изгибающий момент связан с нормальными напряжениями, возникающими в точках поперечного сечения стержня. Элементарный изгибающий момент, создаваемый элементарной силой :

,

где – осевой момент инерции поперечного сечения относительно нейтральной оси x, а отношение - кривизна оси балки.

Жесткость балки при изгибе (чем больше, тем меньше радиус кривизны ).

Полученная формула представляет собой закон Гука при изгибе для стержня : изгибающий момент, возникающий в поперечном сечении, пропорционален кривизне оси балки.

Выражая из формулы закона Гука для стержня при изгибе радиус кривизны () и подставляя его значение в формулу , получим формулу для нормальных напряжений () в произвольной точке поперечного сечения балки, отстоящей на расстоянии y от нейтральной оси x : .

В формулу для нормальных напряжений () в произвольной точке поперечного сечения балки следует подставлять абсолютные значения изгибающего момента () и расстояния от точки до нейтральной оси (координаты y). Будет ли напряжение в данной точке растягивающим или сжимающим легко установить по характеру деформации балки или по эпюре изгибающих моментов, ординаты которой откладываются со стороны сжатых волокон балки.

Из формулы видно: нормальные напряжения () изменяются по высоте поперечного сечения балки по линейному закону. На рис. 7.8, в показана эпюра . Наибольшие напряжения при изгибе балки возникают в точках, наиболее удаленных от нейтральной оси. Если в поперечном сечении балки провести линию, параллельную нейтральной оси x, то во всех ее точках возникают одинаковые нормальные напряжения.

Несложный анализ эпюры нормальных напряжений показывает, при изгибе балки материал, расположенный вблизи нейтральной оси, практически не работает. Поэтому в целях снижения веса балки рекомендуется выбирать такие формы поперечного сечения, у которых большая часть материала удалена от нейтральной оси, как, например, у двутаврового профиля.

Изгиб



Основные понятия об изгибе

Деформация изгиба характеризуется потерей прямолинейности или первоначальной формы линией балки (ее осью) при приложении внешней нагрузки. При этом, в отличие от деформации сдвига, линия балки изменяет свою форму плавно.
Легко убедиться, что на сопротивляемость изгибу влияет не только площадь поперечного сечения балки (бруса, стержня и т. д.), но и геометрическая форма этого сечения.

Поскольку изгиб тела (балки, бруса и т. п.) осуществляется относительно какой-либо оси, на сопротивляемость изгибу влияет величина осевого момента инерции сечения тела относительно этой оси.
Для сравнения - при деформации кручения сечение тела подвергается закручиванию относительно полюса (точки), поэтому на сопротивление кручению оказывает влияние полярный момент инерции этого сечения.

На изгиб могут работать многие элементы конструкций – оси, валы, балки, зубья зубчатых колес, рычаги, тяги и т. д.

В сопротивлении материалов рассматривают несколько типов изгибов:
- в зависимости от характера внешней нагрузки, приложенной к брусу, различают чистый изгиб и поперечный изгиб ;
- в зависимости от расположения плоскости действия изгибающей нагрузки относительно оси бруса - прямой изгиб и косой изгиб .

Чистый и поперечный изгиб балки

Чистым изгибом называется такой вид деформации, при котором в любом поперечном сечении бруса возникает только изгибающий момент (рис. 2 ).
Деформация чистого изгиба будет, например, иметь место, если к прямому брусу в плоскости, проходящей через ось, приложить две равные по величине и противоположные по знаку пары сил. Тогда в каждом сечении бруса будут действовать только изгибающие моменты.

Если же изгиб имеет место в результате приложения к брусу поперечной силы (рис. 3 ), то такой изгиб называется поперечным . В этом случае в каждом сечении бруса действует и поперечная сила, и изгибающий момент (кроме сечения, к которому приложена внешняя нагрузка).

Если брус имеет хоть одну ось симметрии, и плоскость действия нагрузок совпадает с ней, то имеет место прямой изгиб , если же это условие не выполняется, то имеет место косой изгиб .

При изучении деформации изгиба будем мысленно представлять себе, что балка (брус) состоит из бесчисленного количества продольных, параллельных оси волокон.
Чтобы наглядно представить деформацию прямого изгиба, проведем опыт с резиновым брусом, на котором нанесена сетка продольных и поперечных линий.
Подвергнув такой брус прямому изгибу, можно заметить, что (рис. 1 ):

Поперечные линии останутся при деформации прямыми, но повернутся под углом друг другу;
- сечения бруса расширятся в поперечном направлении на вогнутой стороне и сузятся на выпуклой стороне;
- продольные прямые линии искривятся.

Из этого опыта можно сделать вывод, что:

При чистом изгибе справедлива гипотеза плоских сечений;
- волокна, лежащие на выпуклой стороне растягиваются, на вогнутой стороне – сжимаются, а на границе между ними лежит нейтральный слой волокон, которые только искривляются, не изменяя своей длины.

Полагая справедливой гипотезу о не надавливании волокон, можно утверждать, что при чистом изгибе в поперечном сечении бруса возникают только нормальные напряжения растяжения и сжатия, неравномерно распределенные по сечению.
Линия пересечения нейтрального слоя с плоскостью поперечного сечения называется нейтральной осью . Очевидно, что на нейтральной оси нормальные напряжения равны нулю.

Изгибающий момент и поперечная сила

Как известно из теоретической механики, опорные реакции балок определяют, составляя и решая уравнения равновесия статики для всей балки. При решении задач сопротивления материалов, и определении внутренних силовых факторов в брусьях, мы учитывали реакции связей наравне с внешними нагрузками, действующими на брусья.
Для определения внутренних силовых факторов применим метод сечений, причем изображать балку будем только одной линией – осью, к которой приложены активные и реактивные силы (нагрузки и реакции связей).

Рассмотрим два случая:

1. К балке приложены две равные и противоположные по знаку пары сил.
Рассматривая равновесие части балки, расположенной слева или справа от сечения 1-1 (рис. 2 ), видим, что во всех поперечных сечениях возникает только изгибающий момент М и , равный внешнему моменту. Таким образом, это случай чистого изгиба.

Изгибающий момент есть результирующий момент относительно нейтральной оси внутренних нормальных сил, действующих в поперечном сечении балки.

Обратим внимание на то, что изгибающий момент имеет разное направление для левой и правой частей балки. Это говорит о непригодности правила знаков статики при определении знака изгибающего момента.


2. К балке приложены активные и реактивные силы (нагрузки и реакции связей), перпендикулярные оси (рис. 3 ). Рассматривая равновесие частей балки, расположенных слева и справа, видим, что в поперечных сечениях должны действовать изгибающий момент М и и поперечная сила Q .
Из этого следует, что в рассматриваемом случае в точках поперечных сечений действуют не только нормальные напряжения, соответствующие изгибающему моменту, но и касательные, соответствующие поперечной силе.

Поперечная сила есть равнодействующая внутренних касательных сил в поперечном сечении балки.

Обратим внимание на то, что поперечная сила имеет противоположное направление для левой и правой частей балки, что говорит о непригодности правила знаков статики при определении знака поперечной силы.

Изгиб, при котором в поперечном сечении балки действуют изгибающий момент и поперечная сила, называется поперечным .



У балки, находящейся в равновесии вод действием плоской системы сил, алгебраическая сумма моментов всех активных и реактивных сил относительно любой точки равна нулю; следовательно, сумма моментов внешних сил, действующих на балку левее сечения, численно равна сумме моментов всех внешних сил, действующих на балку правее сечения.
Таким образом, изгибающий момент в сечении балки численно равен алгебраической сумме моментов относительно центра тяжести сечения всех внешних сил, действующих на балку справа или слева от сечения .

У балки, находящейся в равновесии под действием плоской системы сил, перпендикулярных оси (т. е. системы параллельных сил), алгебраическая сумма всех внешних сил равна нулю; следовательно сумма внешних сил, действующих на балку левее сечения, численно равна алгебраической сумме сил, действующих на балку правее сечения.
Таким образом, поперечная сила в сечении балки численно равна алгебраической сумме всех внешних сил, действующих справа или слева от сечения .

Так как правила знаков статики неприемлемы для установления знаков изгибающего момента и поперечной силы, установим для них другие правила знаков, а именно: Если внешняя нагрузка стремится изогнуть балку выпуклостью вниз, то изгибающий момент в сечении считается положительным, и наоборот, если внешняя нагрузка стремится изогнуть балку выпуклостью вверх, то изгибающий момент в сечении считается отрицательным (рис 4,a ).

Если сумма внешних сил, лежащих по левую сторону от сечения, дает равнодействующую, направленную вверх, то поперечная сила в сечении считается положительной, если равнодействующая направлена вниз, то поперечная сила в сечении считается отрицательной; для части балки, расположенной справа от сечения, знаки поперечной силы будут противоположными (рис. 4,b ). Пользуясь этими правилами, следует мысленно представлять себе сечение балки жестко защемлённым, а связи отброшенными и замененными реакциями.

Еще раз отметим, что для определения реакций связей пользуются правилами знаков статики, а для определения знаков изгибающего момента и поперечной силы – правилами знаков сопротивления материалов.
Правило знаков для изгибающих моментов иногда называют "правилом дождя" , имея в виду, что в случае выпуклости вниз образуется воронка, в которой задерживается дождевая вода (знак положительный), и наоборот – если под действием нагрузок балка выгибается дугой вверх, вода на ней не задерживается (знак изгибающих моментов отрицательный).

Материалы раздела "Изгиб":

Изгибом называется деформация стержня, сопровождающаяся изменением кривизны его оси. Стержень, работающий на изгиб, называется балкой .

В зависимости от способов приложения нагрузки и способов закрепления стержня могут возникать различные виды изгиба.

Если под действием нагрузки в поперечном сечении стержня возникает только изгибающий момент, то изгиб называют чистым .

Если в поперечных сечениях наряду с изгибающими моментами возникают и поперечные силы, то изгиб называют поперечным .


Если внешние силы лежат в плоскости, проходящей через одну из главных центральных осей поперечного сечения стержня, изгиб называется простым или плоским . В этом случае нагрузка и деформируемая ось лежат в одной плоскости (рис. 1).

Рис. 1

Чтобы балка могла воспринимать нагрузку в плоскости, она должна быть закреплена с помощью опор: шарнирно-подвижной, шарнирно-неподвижной, заделкой.

Балка должна быть геометрически неизменяемой, при этом наименьшее количество связей равно 3. Пример геометрически изменяемой системы приведен на рис.2а. Пример геометрически неизменяемых систем – рис. 2б, в.

а) б) в)

В опорах возникают реакции, которые определяются из условий равновесия статики. Реакции в опорах являются внешними нагрузками.

Внутренние усилия при изгибе

Стержень, нагруженный силами перпендикулярными продольной оси балки, испытывает плоский изгиб (рис. 3). В поперечных сечениях возникают два внутренних усилия: поперечная сила Q y и изгибающий момент М z .


Внутренние усилия определяются методом сечений. На расстоянии x от точки А плоскостью перпендикулярной оси X стержень рассекается на два участка. Отбрасывается одна из частей балки. Взаимодействие частей балки заменяется внутренними усилиями: изгибающим моментом M z и поперечной силой Q y (рис. 4).

Внутренние усилия M z и Q y в сечение определяются из условий равновесия.

Составляется уравнение равновесия для части С :

y = R A – P ­1 – Q y = 0.

ТогдаQ y = R A P ­1 .

Вывод. Поперечная сила в любом сечении балки равна алгебраической сумме всех внешних сил, лежащих по одну сторону от проведённого сечения. Поперечная сила считается положительной, если вращает стержень относительно точки сечения по часовой стрелке.

M 0 = R A x P 1 ∙ (x - a ) – M z = 0

Тогда M z = R A x P 1 ∙ (x a )


1. Определение реакций R A , R B ;

M A = P a R B l = 0

R B =

M B = R A ∙ e – P ∙ a = 0

2. Построение эпюр на первом участке 0 ≤ x 1 a

Q y = R A = ; M z = R A ∙ x 1

x 1 = 0 M z (0) = 0

x 1 = a M z (a) =

3. Построение эпюр на втором участке 0 ≤ x 2 b

Q y = - R B = - ; M z = R B x 2 ; x 2 = 0 M z (0) = 0 x 2 = b M z (b ) =

При построении M z положительные координаты будут откладываться в сторону растянутых волокон.

Проверка эпюр

1. На эпюре Q y разрывы могут быть только в местах приложения внешних сил и величина скачка должна соответствовать их величине.

+ = = P

2. На эпюре M z разрывы возникают в местах приложения сосредоточенных моментов и величина скачка равна их величине.

Дифференциальные зависимости между M , Q и q

Между изгибающим моментом, поперечной силой и интенсивностью распределённой нагрузки установлены зависимости:

q = , Q y =

где q – интенсивность распределённой нагрузки,

Проверка прочности балок при изгибе

Для оценки прочности стержня при изгибе и подбора сечения балки используются условия прочности по нормальным напряжениям.

Изгибающий момент представляет собой равнодействующий момент нормальных внутренних сил, распределённых по сечению.

s = ×y ,

где s – нормальное напряжение в любой точке поперечного сечения,

y – расстояние от центра тяжести сечения до точки,

M z – изгибающий момент, действующий в сечении,

J z – осевой момент инерции стержня.

Для обеспечения прочности рассчитываются максимальные напряжения, которые возникают в точках сечения, наиболее удалённых от центра тяжести y = y max

s max = ×y max ,

= W z и s max = .

Тогда условие прочности по нормальным напряжениям имеет вид:

s max = ≤ [s],

где [s] – допускаемое напряжение при растяжениях.

Мы начнем с простейшего случая, так называемого чистого изгиба.

Чистый изгиб есть частный случай изгиба, при котором в сечениях балки поперечная сила равна нулю. Чистый изгиб может иметь место только в том случае, когда собственный вес балки настолько мал, что его влиянием можно пренебречь. Для балок на двух опорах примеры нагрузок, вызывающих чистый

изгиб, представлены на рис. 88. На участках этих балок, где Q = 0 и, следовательно, М= const; имеет место чистый изгиб.

Усилия в любом сечении балки при чистом изгибе сводятся к паре сил, плоскость действия которой проходит через ось бал-ки, а момент постоянен.

Напряжения могут быть определены на основании следую-щих соображений.

1. Касательные составляющие усилий по элементарным пло-щадкам в поперечном сечении балки не могут быть приведены к паре сил, плоскость действия которой перпендикулярна к пло-скости сечения. Отсюда следует, что изгибающее усилие в сече-нии является результатом действия по элементарным площадкам

лишь нормальных усилий, а потому при чистом изгибе и напряжения сводятся только к нормальным.

2. Чтобы усилия по элементарным площадкам свелись только к паре сил, среди них должны быть как положительные, так и отрицательные. Поэтому должны существовать как растянутые, так и сжатые волокна балки.

3. Ввиду того, что усилия в различных сечениях одинаковы, то и напряжения в соответственных точках сечений одинаковы.

Рассмотрим какой-либо элемент вблизи поверхности (рис. 89, а). Так как по нижней его грани, совпадающей с по-верхностью балки, силы не приложены, то на ней нет и напря-жений. Поэтому и на верхней грани элемента нет напряжений, так как иначе элемент не находился бы и равновесии, Рассмат-ривая соседний с ним по высоте элемент (рис. 89,б), придем к

Такому же заключению и т. д. Отсюда следует, что по горизон-тальным граням любого элемента напряжения отсутствуют. Рас-сматривая элементы, входящие в состав горизонтального слоя, начиная с элемента у поверхности балки (рис. 90), придем к за-ключению, что и по боковым вертикальным граням любого эле-мента напряжения отсутствуют. Таким образом, напряженное состояние любого элемента (рис. 91,а), а в пределе и волокна, должно быть представлено так, как это показано на рис. 91,б, т. е. оно может быть либо осевым растяжением, либо осевым сжатием.

4. В силу симметрии приложения внешних сил сечение по середине длины балки после деформации должно остаться пло-ским и нормальным к оси балки (рис. 92, а). По этой же причине и сечения в четвертях длины балки тоже остаются плоскими и нормальными к оси балки (рис. 92,б), если только крайние се-чения балки при деформации остаются плоскими и нормальными к оси балки. Аналогичное заключение справедливо и для сечений в восьмых длины балки (рис. 92, в) и т. д. Следовательно, если при изгибе крайние сечения балки остаются плоскими, то и для любого сечения остается

справедли-вым утверждение, что оно после де-формации остается плоским и нор-мальным к оси изогнутой балки. Но в таком случае очевидно, что изменение удлинений волокон балки по ее высоте должно происходить не только непре-рывно, но и монотонно. Если назвать слоем совокупность волокон, имеющих одинаковые удлинения, то из сказан-ного следует, что растянутые и сжатые волокна балки должны располагаться по разные стороны от слоя, в котором удлинения волокон равны нулю. Бу-дем называть волокна, удлинения ко-торых равны нулю, нейтральными; слой, состоящий из нейтральных воло-кон, - нейтральным слоем; линию пе-ресечения нейтрального слоя с плоскостью поперечного сечения балки - нейтральной линией этого сечения. Тогда на основании предыдущих рассуждений можно утверждать, что при чистом изгибе балки в каждом ее сечении имеется нейтральная линия, которая делит это сечение на две части (зоны): зону растяну-тых волокон (растянутую зону) и зону сжатых волокон (сжа-тую зону). Соответственно с этим в точках растянутой зоны се-чения должны действовать нормальные растягивающие напря-жения, в точках сжатой зоны - сжимающие напряжения, а в точках нейтральной линии напряжения равны нулю.

Таким образом, при чистом изгибе балки постоянного се-чения:

1) в сечениях действуют только нормальные напряжения;

2) все сечение может быть разбито на две части (зоны) - растянутую и сжатую; границей зон является нейтральная линия сечения, в точках которой нормальные напряжения равны нулю;

3) любой продольный элемент балки (в пределе любое во-локно) подвергается осевому растяжению или сжатию, так что соседние волокна друг с другом не взаимодействуют;

4) если крайние сечения балки при деформации остаются плоскими и нормальными к оси, то и все ее поперечные сечения остаются плоскими и нормальными к оси изогнутой балки.

Напряженное состояние балки при чистом изгибе

Рас-смотрим элемент балки, подверженной чистому изгибу, заклю-ченный между сечениями m- m и n - n, которые отстоят одно от дру-гого на бесконечно малом расстоя-нии dx (рис. 93). Вследствие по-ложения (4) предыдущего пункта, сечения m- m и n - n, бывшие до деформации параллельными, после изгиба, оставаясь плоскими, будут составлять угол dQ и пересекаться по прямой, проходящей через точ-ку С, которая является центром кривизны нейтрального волокна NN. Тогда заключенная между ними часть АВ волокна, находящегося на расстоянии z от нейтрального во-локна (положительное направление оси z принимаем в сторону выпук-лости балки при изгибе), превра-тится после деформации в дугу А"В".Отрезок нейтрального волокна О1О2, превратившись в дугу О1О2 не изменит своей длины, тогда как волокно АВ получит удлинение:

до деформации

после деформации

где р - радиус кривизны нейтрального волокна.

Поэтому абсолютное удлинение отрезка АВ равно

и относительное удлинение

Так как согласно положению (3) волокно АВ подвергается осевому растяжению, то при упругой деформации

Отсюда видно, что нормальные напряжения по высоте балки распределяются по линейному закону (рис. 94). Так как равно-действующая всех усилий по всем элементарным площадкам се-чения должна равняться нулю, то

откуда, подставляя значение из (5.8), найдем

Но последний интеграл есть статический момент относительно оси Оу, перпендикулярной к плоскости действия изгибающих уси-лий.

Вследствие равен-ства его нулю эта ось должна проходить через центр тяжести О сечения. Тамим образом,нейтраль-ная линия сечения балки есть прямая уу, перпен-дикулярная к плоскости действия изгибающих усилий. Ее называют ней-тральной осью сечения балки. Тогда из (5.8) следует, что напряжения в точках, лежа-щих на одинаковом расстоянии от нейтральной оси, одинаковы.

Случай чистого изгиба, при котором изгибающие усилия действуют только в одной плоскости, вызывая изгиб только в этой плоскости, является плоским чистым изгибом. Если названная плоскость проходит через ось Oz, то момент элементарных уси-лий относительно этой оси должен быть равен нулю, т. е.

Подставляя сюда значение σ из (5.8), находим

Стоящий в левой части этого равенства интеграл, как изве-стно, является центробежным моментом инерции сеченияотноси-тельно осей у и z, так что

Оси, относительно которых центробежный момент инерции сечения равен нулю, называют главными осями инерции этого сечения. Если они, кроме того, проходят через центр тяжести сечения, то их можно назвать главными центральными осями инерции сечения. Таким образом, при плоском чистом изгибе направление плоскости действия изгибающих усилий и нейтраль-ная ось сечения являются главными центральными осями инер-ции последнего. Иными словами, для получения плоского чи-стого изгиба балки нагрузка к ней не может прикладываться произвольно: она должна сводиться к силам, действующим в плоскости, которая проходит через одну из главных центральных осей инерции сечений балки; при этом другая главная централь-ная ось инерции будет являться нейтральной осью сечения.

Как известно, в случае сечения, симметричного относительно какой-либо оси, ось симметрии является одной из главных цент-ральных осей инерции его. Следовательно, в этом частном случае мы заведомо получим чистый изгиб, приложив соответствующие анагрузки в плоскости, проходящей через продольную ось балки я ось симметрии ее сечения. Прямая, перпендикулярная к оси симметрии и проходящая через центр тяжести сечения, является при этом нейтральной осью этого сечения.

Установив положение нейтральной оси, нетрудно найти и ве-личину напряжения в любой точке сечения. В самом деле, так как сумма моментов элементарных усилий относительно нейт-ральной оси уу должна равняться изгибающему моменту, то

откуда, подставляя значение σ из (5.8), найдем

Так как интеграл является. моментом инерции сечения относительно оси уу, то

и из выражения (5.8) получим

Произведение ЕI У называют жесткостью балки при изгибе.

Наибольшее растягивающее и наибольшее по абсолютной величине сжимающее напряжения действуют в точках сечения, для которых абсолютная величина z наибольшая, т. е. в точках, наиболее удаленных от нейтральной оси. При обозначениях, рис. 95 имеем

Величину Jy/h1 называют моментом сопротивления сечения рас-тяжению и обозначают Wyр; аналогично, Jy/h2называют моментом сопротивления сечения сжатию

и обозначают Wyc,так что

и поэтому

Если нейтральная ось является, осью симметрии сечения, то h1 = h2 = h/2 и, следовательно, Wyp = Wyc, так что их различать нет надобности, и пользуются одним обозначением:

называя W y просто моментом сопротивления сечения.Следова-тельно, в случае сечения, симметричного относительно нейтраль-ной оси,

Все приведенные выше выводы получены на основании допу-щения, что поперечные сечения балки, при изгибе остаются пло-скими и нормальными к ее оси (гипотеза плоских сечений). Как было показано, это допущение справедливо только в том случае, когда крайние (концевые) сечения балки при изгибе остаются плоскими. С другой стороны, из гипотезы плоских сечений сле-дует, что элементарные усилия в таких сечениях должны распре-деляться по линейному закону. Поэтому для справедливости по-лученной теории плоского чистого изгиба необходимо, чтобы из-гибающие моменты на концах балки были приложены в виде элементарных сил, распределенных по высоте сечения по линей-ному закону (рис. 96), совпадающему с законом распределения напряжений по высоте сечения балки. Однако на основании принципа Сен-Венана можно утверждать, что изменение способа приложения изгибающих моментов на концах балки вызовет лишь местные деформации, влияние которых скажется лишь на некотором расстоянии от этих концов (приблизительно равном высоте сечения). Сечения же, находящиеся во всей остальной части длины балки, останутся плоскими. Следовательно, изложенная теория плоского чистого изгиба при любом способе приложения изгибающих моментов справедлива только в пределах средней части длины балки, находящейся от ее концов на расстояниях, при-близительно равных высоте сечения. Отсюда ясно, что эта тео-рия заведомо неприменима, если высота сечения превосходит половину длины или пролета балки.

Прямой изгиб. Плоский поперечный изгиб Построение эпюр внутренних силовых факторов для балок Построение эпюр Q и М по уравнениям Построение эпюр Q и М по характерным сечениям (точкам) Расчёты на прочность при прямом изгибе балок Главные напряжения при изгибе. Полная проверка прочности балок Понятие о центре изгиба Определение перемещений в балках при изгибе. Понятия деформации балок и условия их жёсткости Дифференциальное уравнение изогнутой оси балки Метод непосредственного интегрирования Примеры определения перемещений в балках методом непосредственного интегрирования Физический смысл постоянных интегрирования Метод начальных параметров (универсальное уравнение изогнутой оси балки). Примеры определения перемещений в балке по методу начальных параметров Определение перемещений по методу Мора. Правило А.К. Верещагина. Вычисление интеграла Мора по правилу А.К. Верещагина Примеры определения перемещений посредством интеграла Мора Библиографический список Прямой изгиб. Плоский поперечный изгиб. 1.1. Построение эпюр внутренних силовых факторов для балок Прямым изгибом называется такой вид деформации, при котором в поперечных сечениях стержня возникают два внутренних силовых фактора: изгибающий момент и поперечная сила. В частном случае, поперечная сила может быть равна нулю, тогда изгиб называется чистым. При плоском поперечном изгибе все силы расположены в одной из главных плоскостей инерции стержня и перпендикулярны его продольной оси, в той же плоскости расположены моменты (рис. 1.1, а,б). Рис. 1.1 Поперечная сила в произвольном поперечном сечении балки численно равна алгебраической сумме проекций на нормаль к оси балки всех внешних сил, действующих по одну сторону от рассматриваемого сечения. Поперечная сила в сечении m-n балки (рис. 1.2, а) считается положительной, если равнодействующая внешних сил слева от сечения направлена вверх, а справа – вниз, и отрицательной – в противоположном случае (рис. 1.2, б). Рис. 1.2 Вычисляя поперечную силу в данном сечении, внешние силы, лежащие слева от сечения, берут со знаком плюс, если они направлены вверх, и со знаком минус, если вниз. Для правой части балки – наоборот. 5 Изгибающий момент в произвольном поперечном сечении балки численно равен алгебраической сумме моментов относительно центральной оси z сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения. Изгибающий момент в сечении m-n балки (рис. 1.3, а) считается положительным, если равнодействующий момент внешних сил слева от сечения направлен по стрелке часов, а справа – против часовой стрелки, и отрицательным – в противоположном случае (рис. 1.3, б). Рис. 1.3 При вычислении изгибающего момента в данном сечении моменты внешних сил, лежащие слева от сечения, считаются положительными, если они направлены по ходу часовой стрелки. Для правой части балки – наоборот. Удобно определять знак изгибающего момента по характеру деформации балки. Изгибающий момент считается положительным, если в рассматриваемом сечении отсечённая часть балки изгибается выпуклостью вниз, т. е. растягиваются нижние волокна. В противоположном случае изгибающий момент в сечении отрицательный. Между изгибающим моментом М, поперечной силой Q и интенсивностью нагрузки q существуют дифференциальные зависимости. 1. Первая производная от поперечной силы по абсциссе сечения равна интенсивности распределенной нагрузки, т.е. . (1.1) 2. Первая производная от изгибающего момента по абсциссе сечения равна поперечной силе, т. е. . (1.2) 3. Вторая производная по абсциссе сечения равна интенсивности распределённой нагрузки, т. е. . (1.3) Распределенную нагрузку, направленную вверх, считаем положительной. Из дифференциальных зависимостей между М, Q, q вытекает ряд важных выводов: 1. Если на участке балки: а) поперечная сила положительна, то изгибающий момент возрастает; б) поперечная сила отрицательна, то изгибающий момент убывает; в) поперечная сила равна нулю, то изгибающий момент имеет постоянное значение (чистый изгиб); 6 г) поперечная сила проходит через нуль, меняя знак с плюса на минус, max M M, в противоположном случае M Mmin. 2. Если на участке балки распределенная нагрузка отсутствует, то поперечная сила постоянна, а изгибающий момент изменяется по линейному закону. 3. Если на участке балки имеется равномерно распределенная нагрузка, то поперечная сила изменяется по линейному закону, а изгибающий момент – по закону квадратной параболы, обращенной выпуклостью в сторону действия нагрузки (в случае построения эпюры М со стороны растянутых волокон). 4. В сечении под сосредоточенной силой эпюра Q имеет скачок (на величину силы), эпюра М - излом в сторону действия силы. 5. В сечении, где приложен сосредоточенный момент, эпюра М имеет скачок, равный значению этого момента. На эпюре Q это не отражается. При сложном нагружении балки строят эпюры поперечных сил Q и изгибающих моментов М. Эпюрой Q(M) называется график, показывающий закон изменения поперечной силы (изгибающего момента) по длине балки. На основе анализа эпюр М и Q устанавливают опасные сечения балки. Положительные ординаты эпюры Q откладываются вверх, а отрицательные – вниз от базисной линии, проводимой параллельно продольной оси балки. Положительные ординаты эпюры М откладываются вниз, а отрицательные – вверх, т. е. эпюра М строится со стороны растянутых волокон. Построение эпюр Q и М для балок следует начинать с определения опорных реакций. Для балки с одним защемленным и другим свободным концами построение эпюр Q и М можно начинать от свободного конца, не определяя реакций в заделке. 1.2. Построение эпюр Q и М по уравнениям Балка разбивается на участки, в пределах которых функции для изгибающего момента и поперечной силы остаются постоянными (не имеют разрывов). Границами участков служат точки приложения сосредоточенных сил, пар сил и места изменения интенсивности распределенной нагрузки. На каждом участке берется произвольное сечение на расстоянии х от начала координат, и для этого сечения составляются уравнения для Q и М. По этим уравнениям строятся эпюры Q и M. Пример 1.1 Построить эпюры поперечных сил Q и изгибающих моментов М для заданной балки (рис. 1.4,а). Решение: 1. Определение реакций опор. Составляем уравнения равновесия: из которых получаем Реакции опор определены правильно. Балка имеет четыре участка Рис. 1.4 нагружения: СА, AD, DB, BE. 2. Построение эпюры Q. Участок СА. На участке СА 1проводим произвольное сечение 1-1 на расстоянии x1 от левого конца балки. Определяем Q как алгебраическую сумму всех внешних сил, действующих слева от сечения 1-1: Знак минус взят потому, что сила, действующая слева от сечения, направлена вниз. Выражение для Q не зависит от переменной x1. Эпюра Q на этом участке изобразится прямой, параллельной оси абсцисс. Участок AD. На участке проводим произвольное сечение 2-2 на расстоянии x2 от левого конца балки. Определяем Q2 как алгебраическую сумму всех внешних сил, действующих слева от сечения 2-2: 8 Величина Q постоянна на участке (не зависит от переменной x2). Эпюра Q на участке представляет собой прямую, параллельную оси абсцисс. Участок DB. На участке проводим произвольное сечение 3-3 на расстоянии x3 от правого конца балки. Определяем Q3 как алгебраическую сумму всех внешних сил, действующих справа от сечения 3-3: Полученное выражение есть уравнение наклонной прямой линии. Участок BE. На участке проводим сечение 4-4 на расстоянии x4 от правого конца балки. Определяем Q как алгебраическую сумму всех внешних сил, действующих справа от сечения 4-4: 4 Здесь знак плюс взят потому, что равнодействующая нагрузка справа от сечения 4-4 направлена вниз. По полученным значениям строим эпюры Q (рис. 1.4, б). 3. Построение эпюры М. Участок м1. Определяем изгибающий момент в сечении 1-1 как алгебраическую сумму моментов сил, действующих слева от сечения 1-1. – уравнение прямой. Участок A 3Определяем изгибающий момент в сечении 2-2 как алгебраическую сумму моментов сил, действующих слева от сечения 2-2. – уравнение прямой. Участок DB 4Определяем изгибающий момент в сечении 3-3 как алгебраическую сумму моментов сил, действующих справа от сечения 3-3. – уравнение квадратной параболы. 9 Находим три значения на концах участка и в точке с координатой xk , где Участок BE 1Определяем изгибающий момент в сечении 4-4 как алгебраическую сумму моментов сил, действующих справа от сечения 4-4. – уравнение квадратной параболы находим три значения M4: По полученным значениям строим эпюру М (рис. 1.4, в). На участках CA и AD эпюра Q ограничена прямыми, параллельными оси абсцисс, а на участках DB и BE – наклонными прямыми. В сечениях C, A и B на эпюре Q имеют место скачки на величину соответствующих сил, что служит проверкой правильности построения эпюры Q. На участках, где Q  0, моменты возрастают слева направо. На участках, гдеQ  0, моменты убывают. Под сосредоточенными силами имеются изломы в сторону действия сил. Под сосредоточенным моментом имеет место скачок на величину момента. Это указывает на правильность построения эпюры М. Пример 1.2 Построить эпюры Q и М для балки на двух опорах, нагруженной распределенной нагрузкой, интенсивность которой меняется по линейному закону (рис. 1.5, а). Решение Определение реакций опор. Равнодействующая распределенной нагрузки равна площади треугольника, представляющего собой эпюру нагрузки и приложена в центре тяжести этого треугольника. Составляем суммы моментов всех сил относительно точек А и В: Построение эпюры Q. Проведем произвольное сечение на расстоянии x от левой опоры. Ордината эпюры нагрузки, соответствующая сечению, определяется из подобия треугольников Равнодействующая той части нагрузки, которая распложена слева от сечения Поперечная сила в сечении равна Поперечная сила изменяется по закону квадратной параболы Приравнивая уравнение поперечной силы нулю, находим абсциссу того сечения, в котором эпюра Q переходит через нуль: Эпюра Q представлена на рис. 1.5, б. Изгибающий момент в произвольном сечении равен Изгибающий момент изменяется по закону кубической параболы: Максимальное значение изгибающий момент имеет в сечении, где 0, т. е. при Эпюра М представлена на рис. 1.5, в. 1.3. Построение эпюр Q и M по характерным сечениям (точкам) Используя дифференциальные зависимости между М, Q, q и выводы, вытекающие из них, целесообразно строить эпюры Q и М по характерным сечениям (без составления уравнений). Применяя этот способ, вычисляют значения Q и М в характерных сечениях. Характерными сечениями являются граничные сечения участков, а также сечения, где данный внутренний силовой фактор имеет экстремальное значение. В пределах между характерными сечениями очертание 12 эпюры устанавливается на основе дифференциальных зависимостей между М, Q, q и выводами, вытекающими из них. Пример 1.3 Построить эпюры Q и М для балки, изображенной на рис. 1.6, а. Рис. 1.6. Решение: Построение эпюр Q и М начинаем от свободного конца балки, при этом реакции в заделке можно не определять. Балка имеет три участка нагружения: АВ, ВС, CD. На участках АВ и ВС распределенная нагрузка отсутствует. Поперечные силы постоянны. Эпюра Q ограничена прямыми, параллельными оси абсцисс. Изгибающие моменты изменяются по линейному закону. Эпюра М ограничена прямыми, наклонными к оси абсцисс. На участке CD имеется равномерно распределенная нагрузка. Поперечные силы изменяются по линейному закону, а изгибающие моменты – по закону квадратной параболы с выпуклостью в сторону действия распределенной нагрузки. На границе участков АВ и ВС поперечная сила изменяется скачкообразно. На границе участков ВС и CD скачкообразно изменяется изгибающий момент. 1. Построение эпюры Q. Вычисляем значения поперечных сил Q в граничных сечениях участков: По результатам расчетов строим эпюру Q для балки (рис. 1, б). Из эпюры Q следует, что поперечная сила на участке CD равна нулю в сечении, отстоящем на расстоянии qa a q от начала этого участка. В этом сечении изгибающий момент имеет максимальное значение. 2. Построение эпюры М. Вычисляем значения изгибающих моментов в граничных сечениях участков: При мaаксимальный момент на участке По результатам расчетов строим эпюру М (рис. 5.6, в). Пример 1.4 По заданной эпюре изгибающих моментов (рис. 1.7, а) для балки (рис. 1.7, б) определить действующие нагрузки и построить эпюру Q. Кружком обозначена вершина квадратной параболы. Решение: Определим нагрузки, действующие на балку. Участок АС загружен равномерно распределённой нагрузкой, так как эпюра М на этом участке – квадратная парабола. В опорном сечении В к балке приложен сосредоточенный момент, действующий по часовой стрелке, так как на эпюре М имеем скачок вверх на величину момента. На участке СВ балка не нагружена, т. к. эпюра М на этом участке ограничена наклонной прямой. Реакция опоры В определяется из условия, что изгибающий момент в сечении С равен нулю, т. е. Для определения интенсивности распределенной нагрузки составим выражение для изгибающего момента в сечении А как сумму моментов сил справа и приравняем к нулю Теперь определим реакцию опоры А. Для этого составим выражение для изгибающих моментов в сечении как сумму моментов сил слева Расчетная схема балки с нагрузкой показана на рис. 1.7, в. Начиная с левого конца балки, вычисляем значения поперечных сил в граничных сечениях участков: Эпюра Q представлена на рис. 1.7, г. Рассмотренная задача может быть решена путем составления функциональных зависимостей для М, Q на каждом участке. Выберем начало координат на левом конце балки. На участке АС эпюра М выражается квадратной параболой, уравнение которой имеет вид Постоянные а, b, с находим из условия, что парабола проходит через три точки с известными координатами: Подставляя координаты точек в уравнение параболы, получим: Выражение для изгибающего момента будет Дифференцируя функцию М1, получим зависимость для поперечной cилы После дифференцирования функции Q получим выражение для интенсивности распределённой нагрузки На участке СВ выражение для изгибающего момента представляется в виде линейной функции Для определения постоянных а и b используем условия, что данная прямая проходит через две точки, координаты которых известны Получим два уравнения: ,b из которых имеем a 20. Уравнение для изгибающего момента на участке СВ будет После двукратного дифференцирования М2 найдём По найденным значениям М и Q строим эпюры изгибающих моментов и поперечных сил для балки. Помимо распределённой нагрузки к балке прикладываются сосредоточенные силы в трех сечениях, где на эпюре Q имеются скачки и сосредоточенные моменты в том сечении, где на эпюре М имеется скачок. Пример 1.5 Для балки (рис. 1.8, а) определить рациональное положение шарнира С, при котором наибольший изгибающий момент в пролете равен изгибающему моменту в заделке (по абсолютной величине). Построить эпюры Q и М. Решение Определение реакций опор. Несмотря на то, что общее число опорных связей равно четырем, балка статически определима. Изгибающий момент в шарнире С равен нулю, что позволяет составить дополнительное уравнение: сумма моментов относительно шарнира всех внешних сил, действующих по одну сторону от этого шарнира, равна нулю. Составим сумму моментов всех сил справа от шарнира С. Эпюра Q для балки ограничена наклонной прямой, так как q = const. Определяем значения поперечных сил в граничных сечениях балки: Абсцисса xK сечения, где Q = 0, определяется из уравнения откуда Эпюра М для балки ограничена квадратной параболой. Выражения для изгибающих моментов в сечениях, где Q = 0, и в заделке записываются соответственно так: Из условия равенства моментов получаем квадратное уравнение относительно искомого параметра х: Реальное значение x2x 1,029 м. Определяем численные значения поперечных сил и изгибающих моментов в характерных сечениях балки На рис.1.8, б показана эпюра Q, а на рис. 1.8, в – эпюра М. Рассмотренную задачу можно было решить способом расчленения шарнирной балки на составляющие ее элементы, как это показано на рис. 1.8, г. В начале определяются реакции опор VC и VB . Строятся эпюры Q и М для подвесной балки СВ от действия приложенной к ней нагрузки. Затем переходят к основной балке АС, нагрузив ее дополнительной силой VC , являющейся силой давления балки СВ на балку АС. После чего строят эпюры Q и М для балки АС. 1.4. Расчеты на прочность при прямом изгибе балок Расчет на прочность по нормальным и касательным напряжениям. При прямом изгибе балки в поперечных сечениях ее возникают нормальные и касательные напряжения (рис. 1.9). 18 Рис. 1.9 Нормальные напряжения связаны с изгибающим моментом, касательные напряжения связаны с поперечной силой. При прямом чистом изгибе касательные напряжения равны нулю. Нормальные напряжения в произвольной точке поперечного сечения балки определяются по формуле (1.4) где M – изгибающий момент в данном сечении; Iz – момент инерции сечения относительно нейтральной оси z; y – расстояние от точки, где определяется нормальное напряжение, до нейтральной оси z. Нормальные напряжения по высоте сечения изменяются по линейному закону и достигают наибольшей величины в точках, наиболее удалённых от нейтральной оси Если сечение симметрично относительно нейтральной оси (рис. 1.11), то Рис. 1.11 наибольшие растягивающие и сжимающие напряжения одинаковы и определяются по формуле,  – осевой момент сопротивления сечения при изгибе. Для прямоугольного сечения шириной b высотой h: (1.7) Для круглого сечения диаметра d: (1.8) Для кольцевого сечения   – соответственно внутренний и наружный диаметры кольца. Для балок из пластичных материалов наиболее рациональными являются симметричные 20 формы сечений (двутавровое, коробчатое, кольцевое). Для балок из хрупких материалов, не одинаково сопротивляющихся растяжению и сжатию, рациональными являются сечения, несимметричные относительно нейтральной оси z (тавр., П-образное, несимметричный двутавр). Для балок постоянного сечения из пластичных материалов при симметричных формах сечений условие прочности записывается так: (1.10) где Mmax – максимальный изгибающий момент по модулю; – допускаемое напряжение для материала. Для балок постоянного сечения из пластичных материалов при несимметричных формах сечений условие прочности записывается в следующем виде: (1.11) Для балок из хрупких материалов с сечениями, несимметричными относительно нейтральной оси, в случае, если эпюра М однозначна (рис. 1.12), нужно записать два условия прочности – расстояния от нейтральной оси до наиболее удалённых точек соответственно растянутой и сжатой зон опасного сечения; P – допускаемые напряжения соответственно на растяжение и сжатие. Рис.1.12. 21 Если эпюра изгибающих моментов имеет участки разных знаков (рис. 1.13), то помимо проверки сечения 1-1, где действуетMmax, необходимо произвести расчет по наибольшим растягивающим напряжениям для сечения 2-2 (с наибольшим моментом противоположного знака). Рис. 1.13 Наряду с основным расчетом по нормальным напряжениям в ряде случаев приходится делать проверку прочности балки по касательным напряжениям. Касательные напряжения в балки вычисляются по формуле Д. И. Журавского (1.13) где Q – поперечная сила в рассматриваемом поперечном сечении балки; Szотс – статический момент относительно нейтральной оси площади части сечения, расположенной по одну сторону прямой, проведенной через данную точку и параллельной оси z; b – ширина сечения на уровне рассматриваемой точки; Iz – момент инерции всего сечения относительно нейтральной оси z. Во многих случаях максимальные касательные напряжения возникают на уровне нейтрального слоя балки (прямоугольник, двутавр, круг). В таких случаях условие прочности по касательным напряжениям записывается в виде, (1.14) где Qmax – наибольшая по модулю поперечная сила; – допускаемое касательное напряжение для материала. Для прямоугольного сечения балки условие прочности имеет вид (1.15) А – площадь поперечного сечения балки. Для круглого сечения условие прочности представляется в виде (1.16) Для двутаврового сечения условие прочности записывается так: (1.17) где Szо,тmсax – статический момент полусечения относительно нейтральной оси; d – толщина стенки двутавра. Обычно размеры поперечного сечения балки определяются из условия прочности по нормальным напряжениям. Проверка прочности балок по касательным напряжениям производится в обязательном порядке для коротких балок и балок любой длинны, если вблизи опор имеются сосредоточенные силы большой величины, а также для деревянных, клёпанных и сварных балок. Пример 1.6 Проверить прочность балки коробчатого сечения (рис. 1.14) по нормальным и касательным напряжениям, если МПа. Построить эпюры в опасном сечении балки. Рис. 1.14 Решение 23 1. Построение эпюр Q и М по характерным сечениям. Рассматривая левую часть балки, получим Эпюра поперечных сил представлена на рис. 1.14,в. Эпюра изгибающих моментов показана на рис. 5.14, г. 2. Геометрические характеристики поперечного сечения 3. Наибольшие нормальные напряжения в сечение С, где действует Mmax (по модулю): МПа. Максимальные нормальные напряжения в балке практически равны допускаемым. 4. Наибольшие касательные напряжения в сечении С (или А), где действует max Q (по модулю): Здесь – статический момент площади полусечения относительно нейтральной оси; b2 см – ширина сечения на уровне нейтральной оси. 5. Касательные напряжения в точке (в стенке) в сечении С: Рис. 1.15 Здесь Szomc 834,5 108 см3 – статический момент площади части сечения, расположенной выше линии, проходящей через точку K1; b2 см – толщина стенки на уровне точки K1. Эпюры  и  для сечения С балки показаны рис. 1.15. Пример 1.7 Для балки, показанной на рис. 1.16, а, требуется: 1. Построить эпюры поперечных сил и изгибающих моментов по характерным сечениям (точкам). 2. Определить размеры поперечного сечения в виде круга, прямоугольника и двутавра из условия прочности по нормальным напряжениям, сравнить площади сечений. 3. Проверить подобранные размеры сечений балок по касательным напряжения. Дано: Решение: 1. Определяем реакции опор балки Проверка: 2. Построение эпюр Q и М. Значения поперечных сил в характерных сечениях балки 25 Рис. 1.16 На участках CA и AD интенсивность нагрузки q = const. Следовательно, на этих участках эпюра Q ограничивается прямыми, наклонными к оси. На участке DB интенсивность распределенной нагрузки q = 0, следовательно, на этом участке эпюра Q ограничивается прямой, параллельной оси х. Эпюра Q для балки показана на рис. 1.16,б. Значения изгибающих моментов в характерных сечениях балки: На втором участке определяем абсциссу x2 сечения, в котором Q = 0: Максимальный момент на втором участке Эпюра М для балки показана на рис. 1.16, в. 2. Составляем условие прочности по нормальным напряжениям откуда определяем требуемый осевой момент сопротивления сечения из выражения определяемый требуемый диаметр d балки круглого сечения Площадь круглого сечения Для балки прямоугольного сечения Требуемая высота сечения Площадь прямоугольного сечения Определяем требуемый номер двутавровой балки. По таблицам ГОСТ 8239-89 находим ближайшее большее значение осевого момента сопротивления 597см3, которое соответствует двутавру № 33 с характеристиками: A z 9840 см4. Проверка на допуск: (недогрузка на 1 % от допустимого 5 %) ближайший двутавр № 30 (W 2 см3) приводит к значительной перегрузке (более 5%). Окончательно принимаем двутавр № 33. Сравниваем площади круглого и прямоугольного сечений с наименьшей площадью А двутавра: Из трех рассмотренных сечений наиболее экономичным является двутавровое сечение. 3. Вычисляем наибольшие нормальные напряжения в опасном сечении 27 двутавровой балки (рис. 1.17, а): Нормальные напряжения в стенке около полки двутаврового сечения балки Эпюра нормальных напряжений в опасном сечении балки показана на рис. 1.17, б. 5. Определяем наибольшие касательные напряжения для подобранных сечений балки. а) прямоугольное сечение балки: б) круглое сечение балки: в) двутавровое сечение балки: Касательные напряжения в стенке около полки двутавра в опасном сечении А (справа) (в точке 2): Эпюра касательных напряжений в опасных сечениях двутавра показана на рис. 1.17,в. Максимальные касательные напряжения в балке не превышают допускаемых напряжений Пример 1.8 Определить допускаемую нагрузку на балку (рис. 1.18, а), если60МПа, размеры поперечного сечения заданы (рис. 1.19, а). Построить эпюру нормальных напряжений в опасном сечении балки при допускаемой нагрузке. Рис 1.18 1. Определение реакций опор балки. Ввиду симметрии системы 2. Построение эпюр Q и M по характерным сечениям. Поперечные силы в характерных сечениях балки: Эпюра Q для балки показана на рис. 5.18, б. Изгибающие моменты в характерных сечениях балки Для второй половины балки ординаты М – по осям симметрии. Эпюра М для балки показана на рис. 1.18, б. 3.Геометрические характеристики сечения (рис. 1.19). Разбиваем фигуру на два простейших элемента: двутавр – 1 и прямоугольник – 2. Рис. 1.19 По сортаменту для двутавра № 20 имеем Для прямоугольника: Статический момент площади сечения относительно оси z1 Расстояние от оси z1 до центра тяжести сечения Момент инерции сечения относительно главной центральной оси z всего сечения по формулам перехода к параллельным осям 4. Условие прочности по нормальным напряжениям для опасной точки «а» (рис. 1.19) в опасном сечении I (рис. 1.18): После подстановки числовых данных 5. При допускаемой нагрузке в опасном сечении нормальные напряжения в точках «а» и «b» будут равны: Эпюра нормальных напряжений для опасного сечения 1-1 показана на рис. 1.19, б.