Среднее значение 2 чисел. Как посчитать среднее значение в Excel

В большинстве случаев данные концентрируются вокруг некоей центральной точки. Таким образом, чтобы описать любой набор данных, достаточно указать средне значение. Рассмотрим последовательно три числовые характеристики, которые используются для оценки среднего значения распределения: среднее арифметическое, медиана и мода.

Среднее арифметическое

Среднее арифметическое (часто называемое просто средним) - наиболее распространенная оценка среднего значения распределения. Она является результатом деления суммы всех наблюдаемых числовых величин на их количество. Для выборки, состоящей из чисел Х 1 , Х 2 , …, Х n , выборочное среднее (обозначаемое символом ) равно = (Х 1 + Х 2 + … + Х n ) / n , или

где - выборочное среднее, n - объем выборки, X i i-й элемент выборки.

Скачать заметку в формате или , примеры в формате

Рассмотрим вычисление среднего арифметического значения пятилетней среднегодовой доходности 15 взаимных фондов с очень высоким уровнем риска (рис. 1).

Рис. 1. Среднегодовая доходность 15 взаимных фондов с очень высоким уровнем риска

Выборочное среднее вычисляется следующим образом:

Это хороший доход, особенно по сравнению с 3–4% дохода, который получили вкладчики банков или кредитных союзов за тот же период времени. Если упорядочить значения доходности, то легко заметить, что восемь фондов имеют доходность выше, а семь - ниже среднего значения. Среднее арифметическое играет роль точки равновесия, так что фонды с низкими доходами уравновешивают фонды с высокими доходами. В вычислении среднего задействованы все элементы выборки. Ни одна из других оценок среднего значения распределения не обладает этим свойством.

Когда следует вычислять среднее арифметическое. Поскольку среднее арифметическое зависит от всех элементов выборки, наличие экстремальных значений значительно влияет на результат. В таких ситуациях среднее арифметическое может исказить смысл числовых данных. Следовательно, описывая набор данных, содержащий экстремальные значения, необходимо указывать медиану либо среднее арифметическое и медиану. Например, если удалить из выборки доходность фонда RS Emerging Growth, выборочное среднее доходности 14 фондов уменьшится почти на 1% и составит 5,19%.

Медиана

Медиана представляет собой срединное значение упорядоченного массива чисел. Если массив не содержит повторяющихся чисел, то половина его элементов окажется меньше, а половина - больше медианы. Если выборка содержит экстремальные значения, для оценки среднего значения лучше использовать не среднее арифметическое, а медиану. Чтобы вычислить медиану выборки, ее сначала необходимо упорядочить.

Эта формула неоднозначна. Ее результат зависит от четности или нечетности числа n :

  • Если выборка содержит нечетное количество элементов, медиана равна (n+1)/2 -му элементу.
  • Если выборка содержит четное количество элементов, медиана лежит между двумя средними элементами выборки и равна среднему арифметическому, вычисленному по этим двум элементам.

Чтобы вычислить медиану выборки, содержащей данные о доходности 15 взаимных фондов с очень высокий уровнем риска, сначала необходимо упорядочить исходные данные (рис. 2). Тогда медиана будет напротив номера среднего элемента выборки; в нашем примере №8. В Excel есть специальная функция =МЕДИАНА(), которая работает и с неупорядоченными массивами тоже.

Рис. 2. Медиана 15 фондов

Таким образом, медиана равна 6,5. Это означает, что доходность одной половины фондов с очень высоким уровнем риска не превышает 6,5, а доходность второй половины - превышает ее. Обратите внимание на то, что медиана, равная 6,5, ненамного больше среднего значения, равного 6,08.

Если удалить из выборки доходность фонда RS Emerging Growth, то медиана оставшихся 14 фондов уменьшится до 6,2%, то есть не так значительно, как среднее арифметическое (рис. 3).

Рис. 3. Медиана 14 фондов

Мода

Термин был впервые введен Пирсоном в 1894 г. Мода - это число, которое чаще других встречается в выборке (наиболее модное). Мода хорошо описывает, например, типичную реакцию водителей на сигнал светофора о прекращении движения. Классический пример использования моды - выбор размера выпускаемой партии обуви или цвета обоев. Если распределение имеет несколько мод, то говорят, что оно мультимодально или многомодально (имеет два или более «пика»). Мультимодальность распределения дает важную информацию о природе исследуемой переменной. Например, в социологических опросах, если переменная представляет собой предпочтение или отношение к чему-то, то мультимодальность может означать, что существуют несколько определенно различных мнений. Мультимодальность также служит индикатором того, что выборка не является однородной и наблюдения, возможно, порождены двумя или более «наложенными» распределениями. В отличие от среднего арифметического, выбросы на моду не влияют. Для непрерывно распределенных случайных величин, например, для показателей среднегодовой доходности взаимных фондов, мода иногда вообще не существует (или не имеет смысла). Поскольку эти показатели могут принимать самые разные значения, повторяющиеся величины встречаются крайне редко.

Квартили

Квартили - это показатели, которые чаще всего используются для оценки распределения данных при описании свойств больших числовых выборок. В то время как медиана разделяет упорядоченный массив пополам (50% элементов массива меньше медианы и 50% - больше), квартили разбивают упорядоченный набор данных на четыре части. Величины Q 1 , медиана и Q 3 являются 25-м, 50-м и 75-м перцентилем соответственно. Первый квартиль Q 1 - это число, разделяющее выборку на две части: 25% элементов меньше, а 75% - больше первого квартиля.

Третий квартиль Q 3 - это число, разделяющее выборку также на две части: 75% элементов меньше, а 25% - больше третьего квартиля.

Для расчета квартилей в версиях Excel до 2007 г. использовалась функция =КВАРТИЛЬ(массив;часть). Начиная с версии Excel2010 применяются две функции:

  • =КВАРТИЛЬ.ВКЛ(массив;часть)
  • =КВАРТИЛЬ.ИСКЛ(массив;часть)

Эти две функции дают немного различные значения (рис. 4). Например, при вычислении квартилей выборки, содержащей данные о среднегодовой доходности 15 взаимных фондов с очень высоким уровнем риска Q 1 = 1,8 или –0,7 для КВАРТИЛЬ.ВКЛ и КВАРТИЛЬ.ИСКЛ, соответственно. Кстати функция КВАРТИЛЬ, использовавшаяся ранее соответствует современной функции КВАРТИЛЬ.ВКЛ. Для расчета квартилей в Excel с помощью вышеприведенных формул массив данных можно не упорядочивать.

Рис. 4. Вычисление квартилей в Excel

Подчеркнем еще раз. Excel умеет рассчитывать квартили для одномерного дискретного ряда , содержащего значения случайной величины. Расчет квартилей для распределения на основе частот приведен ниже в разделе .

Среднее геометрическое

В отличие от среднего арифметического среднее геометрическое позволяет оценить степень изменения переменной с течением времени. Среднее геометрическое - это корень n -й степени из произведения n величин (в Excel используется функция =СРГЕОМ):

G = (X 1 * X 2 * … * X n) 1/n

Похожий параметр – среднее геометрическое значение нормы прибыли – определяется формулой:

G = [(1 + R 1) * (1 + R 2) * … * (1 + R n)] 1/n – 1,

где R i – норма прибыли за i -й период времени.

Например, предположим, что объем вложенных средств в исходный момент времени равен 100 000 долл. К концу первого года он падает до уровня 50 000 долл., а к концу второго года восстанавливается до исходной отметки 100 000 долл. Норма прибыли этой инвестиции за двухлетний период равна 0, поскольку первоначальный и финальный объем средств равны между собой. Однако среднее арифметическое годовых норм прибыли равно = (–0,5 + 1) / 2 = 0,25 или 25%, поскольку норма прибыли в первый год R 1 = (50 000 – 100 000) / 100 000 = –0,5, а во второй R 2 = (100 000 – 50 000) / 50 000 = 1. В то же время, среднее геометрическое значение нормы прибыли за два года равно: G = [(1–0,5) * (1+1)] 1/2 – 1 = ½ – 1 = 1 – 1 = 0. Таким образом, среднее геометрическое точнее отражает изменение (точнее, отсутствие изменений) объема инвестиций за двухлетний период, чем среднее арифметическое.

Интересные факты. Во-первых, среднее геометрическое всегда будет меньше среднего арифметического тех же чисел. За исключением случая, когда все взятые числа равны друг другу. Во-вторых, рассмотрев свойства прямоугольного треугольника, можно понять, почему среднее называется геометрическим. Высота прямоугольного треугольника, опущенная на гипотенузу, есть среднее пропорциональное между проекциями катетов на гипотенузу, а каждый катет есть среднее пропорциональное между гипотенузой и его проекцией на гипотенузу (рис. 5). Это даёт геометрический способ построения среднего геометрического двух (длин) отрезков: нужно построить окружность на сумме этих двух отрезков как на диаметре, тогда высота, восставленная из точки их соединения до пересечения с окружностью, даст искомую величину:

Рис. 5. Геометрическая природа среднего геометрического (рисунок из Википедии)

Второе важное свойство числовых данных - их вариация , характеризующая степень дисперсии данных. Две разные выборки могут отличаться как средними значениями, так и вариациями. Однако, как показано на рис. 6 и 7, две выборки могут иметь одинаковые вариации, но разные средние значения, либо одинаковые средние значения и совершенно разные вариации. Данные, которым соответствует полигон В на рис. 7, изменяются намного меньше, чем данные, по которым построен полигон А.

Рис. 6. Два симметричных распределения колоколообразной формы с одинаковым разбросом и разными средними значениями

Рис. 7. Два симметричных распределения колоколообразной формы с одинаковыми средними значениями и разным разбросом

Существует пять оценок вариации данных:

  • размах,
  • межквартильный размах,
  • дисперсия,
  • стандартное отклонение,
  • коэффициент вариации.

Размах

Размахом называется разность между наибольшим и наименьшим элементами выборки:

Размах = Х Max – Х Min

Размах выборки, содержащей данные о среднегодовой доходности 15 взаимных фондов с очень высоким уровнем риска, можно вычислить, используя упорядоченный массив (см. рис. 4): Размах = 18,5 – (–6,1) = 24,6. Это значит, что разница между наибольшей и наименьшей среднегодовой доходностью фондов с очень высоким уровнем риска равна 24,6% .

Размах позволяет измерить общий разброс данных. Хотя размах выборки является весьма простой оценкой общего разброса данных, его слабость заключается в том, что он никак не учитывает, как именно распределены данные между минимальным и максимальным элементами. Этот эффект хорошо прослеживается на рис. 8, который иллюстрирует выборки, имеющие одинаковый размах. Шкала В демонстрирует, что если выборка содержит хотя бы одно экстремальное значение, размах выборки оказывается весьма неточной оценкой разброса данных.

Рис. 8. Сравнение трех выборок, имеющих одинаковый размах; треугольник символизирует опору весов, и его расположение соответствует среднему значению выборки

Межквартильный размах

Межквартильный, или средний, размах - это разность между третьим и первым квартилями выборки:

Межквартильный размах = Q 3 – Q 1

Эта величина позволяет оценить разброс 50% элементов и не учитывать влияние экстремальных элементов. Межквартильный размах выборки, содержащей данные о среднегодовой доходности 15 взаимных фондов с очень высоким уровнем риска, можно вычислить, используя данные на рис. 4 (например, для функции КВАРТИЛЬ.ИСКЛ): Межквартильный размах = 9,8 – (–0,7) = 10,5. Интервал, ограниченный числами 9,8 и –0,7, часто называют средней половиной.

Следует отметить, что величины Q 1 и Q 3 , а значит, и межквартильный размах, не зависят от наличия выбросов, поскольку при их вычислении не учитывается ни одна величина, которая была бы меньше Q 1 или больше Q 3 . Суммарные количественные характеристики, такие как медиана, первый и третий квартили, а также межквартильный размах, на которые не влияют выбросы, называются устойчивыми показателями.

Хотя размах и межквартильный размах позволяют оценить общий и средний разброс выборки соответственно, ни одна из этих оценок не учитывает, как именно распределены данные. Дисперсия и стандартное отклонение лишены этого недостатка. Эти показатели позволяют оценить степень колебания данных вокруг среднего значения. Выборочная дисперсия является приближением среднего арифметического, вычисленного на основе квадратов разностей между каждым элементом выборки и выборочным средним. Для выборки Х 1 , Х 2 , … Х n выборочная дисперсия (обозначаемая символом S 2 задается следующей формулой:

В общем случае выборочная дисперсия - это сумма квадратов разностей между элементами выборки и выборочным средним, деленная на величину, равную объему выборки минус один:

где - арифметическое среднее, n - объем выборки, X i - i -й элемент выборки X . В Excel до версии 2007 для расчета выборочной дисперсии использовалась функция =ДИСП(), с версии 2010 используется функция =ДИСП.В().

Наиболее практичной и широко распространенной оценкой разброса данных является стандартное выборочное отклонение . Этот показатель обозначается символом S и равен квадратному корню из выборочной дисперсии:

В Excel до версии 2007 для расчета стандартного выборочного отклонения использовалась функция =СТАНДОТКЛОН(), с версии 2010 используется функция =СТАНДОТКЛОН.В(). Для расчета этих функций массив данных может быть неупорядоченным.

Ни выборочная дисперсия, ни стандартное выборочное отклонение не могут быть отрицательными. Единственная ситуация, в которой показатели S 2 и S могут быть нулевыми, - если все элементы выборки равны между собой. В этом совершенно невероятном случае размах и межквартильный размах также равны нулю.

Числовые данные по своей природе изменчивы. Любая переменная может принимать множество разных значений. Например, разные взаимные фонды имеют разные показатели доходности и убытков. Вследствие изменчивости числовых данных очень важно изучать не только оценки среднего значения, которые по своей природе являются суммарными, но и оценки дисперсии, характеризующие разброс данных.

Дисперсия и стандартное отклонение позволяют оценить разброс данных вокруг среднего значения, иначе говоря, определить, сколько элементов выборки меньше среднего, а сколько - больше. Дисперсия обладает некоторыми ценными математическими свойствами. Однако ее величина представляет собой квадрат единицы измерения - квадратный процент, квадратный доллар, квадратный дюйм и т.п. Следовательно, естественной оценкой дисперсии является стандартное отклонение, которое выражается в обычных единицах измерений - процентах дохода, долларах или дюймах.

Стандартное отклонение позволяет оценить величину колебаний элементов выборки вокруг среднего значения. Практически во всех ситуациях основное количество наблюдаемых величин лежит в интервале плюс-минус одно стандартное отклонение от среднего значения. Следовательно, зная среднее арифметическое элементов выборки и стандартное выборочное отклонение, можно определить интервал, которому принадлежит основная масса данных.

Стандартное отклонение доходности 15 взаимных фондов с очень высоким уровнем риска равно 6,6 (рис. 9). Это значит, что доходность основной массы фондов отличается от среднего значения не более чем на 6,6% (т.е. колеблется в интервале от – S = 6,2 – 6,6 = –0,4 до + S = 12,8). Фактически в этом интервале лежит пятилетняя среднегодовая доходность 53,3% (8 из 15) фондов.

Рис. 9. Стандартное выборочное отклонение

Обратите внимание на то, что в процессе суммирования квадратов разностей элементы выборки, лежащие дальше от среднего значения, приобретают больший вес, чем элементы, лежащие ближе. Это свойство является основной причиной того, что для оценки среднего значения распределения чаще всего используется среднее арифметическое значение.

Коэффициент вариации

В отличие от предыдущих оценок разброса, коэффициент вариации является относительной оценкой. Он всегда измеряется в процентах, а не в единицах измерения исходных данных. Коэффициент вариации, обозначаемый символами CV, измеряет рассеивание данных относительно среднего значения. Коэффициент вариации равен стандартному отклонению, деленному на среднее арифметическое и умноженному на 100%:

где S - стандартное выборочное отклонение, - выборочное среднее.

Коэффициент вариации позволяет сравнить две выборки, элементы которых выражаются в разных единицах измерения. Например, управляющий службы доставки корреспонденции намеревается обновить парк грузовиков. При погрузке пакетов следует учитывать два вида ограничений: вес (в фунтах) и объем (в кубических футах) каждого пакета. Предположим, что в выборке, содержащей 200 пакетов, средний вес равен 26,0 фунтов, стандартное отклонение веса 3,9 фунтов, средний объем пакета 8,8 кубических футов, а стандартное отклонение объема 2,2 кубических фута. Как сравнить разброс веса и объема пакетов?

Поскольку единицы измерения веса и объема отличаются друг от друга, управляющий должен сравнить относительный разброс этих величин. Коэффициент вариации веса равен CV W = 3,9 / 26,0 * 100% = 15%, а коэффициент вариации объема CV V = 2,2 / 8,8 * 100% = 25% . Таким образом, относительный разброс объема пакетов намного больше относительного разброса их веса.

Форма распределения

Третье важное свойство выборки - форма ее распределения. Это распределение может быть симметричным или асимметричным. Чтобы описать форму распределения, необходимо вычислить его среднее значение и медиану. Если эти два показателя совпадают, переменная считается симметрично распределенной. Если среднее значение переменной больше медианы, ее распределение имеет положительную асимметрию (рис. 10). Если медиана больше среднего значения, распределение переменной имеет отрицательную асимметрию. Положительная асимметрия возникает, когда среднее значение увеличивается до необычайно высоких значений. Отрицательная асимметрия возникает, когда среднее значение уменьшается до необычайно малых значений. Переменная является симметрично распределенной, если она не принимает никаких экстремальных значений ни в одном из направлений, так что большие и малые значения переменной уравновешивают друг друга.

Рис. 10. Три вида распределений

Данные, изображенные на шкале А, имеют отрицательную асимметрию. На этом рисунке виден длинный хвост и перекос влево, вызванные наличием необычно малых значений. Эти крайне малые величины смещают среднее значение влево, и оно становится меньше медианы. Данные, изображенные на шкале Б, распределены симметрично. Левая и правая половины распределения являются своими зеркальными отражениями. Большие и малые величины уравновешивают друг друга, а среднее значение и медиана равны между собой. Данные, изображенные на шкале В, имеют положительную асимметрию. На этом рисунке виден длинный хвост и перекос вправо, вызванные наличием необычайно высоких значений. Эти слишком большие величины смещают среднее значение вправо, и оно становится больше медианы.

В Excel описательные статистики можно получить с помощью надстройки Пакет анализа . Пройдите по меню Данные Анализ данных , в открывшемся окне выберите строку Описательная статистика и кликните Ok . В окне Описательная статистика обязательно укажите Входной интервал (рис. 11). Если вы хотите увидеть описательные статистики на том же листе, что и исходные данные, выберите переключатель Выходной интервал и укажите ячейку, куда следует поместить левый верхний угол выводимых статистик (в нашем примере $C$1). Если вы хотите вывести данные на новый лист или в новую книгу, достаточно просто выбрать соответствующий переключатель. Поставьте галочку напротив Итоговая статистика . По желанию также можно выбрать Уровень сложности, k-й наименьший и k-й наибольший .

Если на вкладе Данные в области Анализ у вас не отображается пиктограмма Анализ данных , нужно предварительно установить надстройку Пакет анализа (см., например, ).

Рис. 11. Описательные статистики пятилетней среднегодовой доходности фондов с очень высоким уровнями риска, вычисленные с помощью надстройки Анализ данных программы Excel

Excel вычисляет целый ряд статистик, рассмотренных выше: среднее, медиану, моду, стандартное отклонение, дисперсию, размах (интервал ), минимум, максимум и объем выборки (счет ). Кроме того, Excel вычисляет некоторые новые для нас статистики: стандартную ошибку, эксцесс и асимметричность. Стандартная ошибка равна стандартному отклонению, деленному на квадратный корень объема выборки. Асимметричность характеризует отклонение от симметричности распределения и является функцией, зависящей от куба разностей между элементами выборки и средним значением. Эксцесс представляет собой меру относительной концентрации данных вокруг среднего значения по сравнению с хвостами распределения и зависит от разностей между элементами выборки и средним значением, возведенных в четвертую степень.

Вычисление описательных статистик для генеральной совокупности

Среднее значение, разброс и форма распределения, рассмотренные выше, представляют собой характеристики, определяемые по выборке. Однако, если набор данных содержит числовые измерения всей генеральной совокупности, можно вычислить ее параметры. К числу таких параметров относятся математическое ожидание, дисперсия и стандартное отклонение генеральной совокупности.

Математическое ожидание равно сумме всех значений генеральной совокупности, деленной на объем генеральной совокупности:

где µ - математическое ожидание, X i - i -е наблюдение переменной X , N - объем генеральной совокупности. В Excel для вычисления математического ожидания используется та же функция, что и для среднего арифметического: =СРЗНАЧ().

Дисперсия генеральной совокупности равна сумме квадратов разностей между элементами генеральной совокупности и мат. ожиданием, деленной на объем генеральной совокупности:

где σ 2 – дисперсия генеральной совокупности. В Excel до версии 2007 для вычисления дисперсии генеральной совокупности используется функция =ДИСПР(), начиная с версии 2010 =ДИСП.Г().

Стандартное отклонение генеральной совокупности равно квадратному корню, извлеченному из дисперсии генеральной совокупности:

В Excel до версии 2007 для вычисления стандартного отклонения генеральной совокупности используется функция =СТАНДОТКЛОНП(), начиная с версии 2010 =СТАНДОТКЛОН.Г(). Обратите внимание на то, что формулы для дисперсии и стандартного отклонения генеральной совокупности отличаются от формул для вычисления выборочной дисперсии и стандартного отклонения. При вычислении выборочных статистик S 2 и S знаменатель дроби равен n – 1 , а при вычислении параметров σ 2 и σ - объему генеральной совокупности N .

Эмпирическое правило

В большинстве ситуаций крупная доля наблюдений концентрируется вокруг медианы, образуя кластер. В наборах данных, имеющих положительную асимметрию, этот кластер расположен левее (т.е. ниже) математического ожидания, а в наборах, имеющих отрицательную асимметрию, этот кластер расположен правее (т.е. выше) математического ожидания. У симметричных данных математическое ожидание и медиана совпадают, а наблюдения концентрируются вокруг математического ожидания, формируя колоколообразное распределение. Если распределение не имеет ярко выраженной асимметрии, а данные концентрируются вокруг некоего центра тяжести, для оценки изменчивости можно применять эмпирическое правило, которое гласит: если данные имеют колоколообразное распределение, то приблизительно 68% наблюдений отстоят от математического ожидания не более чем на одно стандартное отклонение, приблизительно 95% наблюдений отстоят от математического ожидания не более чем на два стандартных отклонения и 99,7% наблюдений отстоят от математического ожидания не более чем на три стандартных отклонения.

Таким образом, стандартное отклонение, представляющее собой оценку среднего колебания вокруг математического ожидания, помогает понять, как распределены наблюдения, и идентифицировать выбросы. Из эмпирического правила следует, что для колоколообразных распределений лишь одно значение из двадцати отличается от математического ожидания больше, чем на два стандартных отклонения. Следовательно, значения, лежащие за пределами интервала µ ± 2σ , можно считать выбросами. Кроме того, только три из 1000 наблюдений отличаются от математического ожидания больше чем на три стандартных отклонения. Таким образом, значения, лежащие за пределами интервала µ ± 3σ практически всегда являются выбросами. Для распределений, имеющих сильную асимметрию или не имеющих колоколообразной формы, можно применять эмпирическое правило Бьенамэ-Чебышева.

Более ста лет назад математики Бьенамэ и Чебышев независимо друг от друга открыли полезное свойство стандартного отклонения. Они обнаружили, что для любого набора данных, независимо от формы распределения, процент наблюдений, лежащих на расстоянии не превышающем k стандартных отклонений от математического ожидания, не меньше (1 – 1/ k 2)*100% .

Например, если k = 2, правило Бьенамэ-Чебышева гласит, что как минимум (1 – (1/2) 2) х 100% = 75% наблюдений должно лежать в интервале µ ± 2σ . Это правило справедливо для любого k , превышающего единицу. Правило Бьенамэ-Чебышева носит весьма общий характер и справедливо для распределений любого вида. Оно указывает минимальное количество наблюдений, расстояние от которых до математического ожидания не превышает заданной величины. Однако, если распределение имеет колоколообразную форму, эмпирическое правило более точно оценивает концентрацию данных вокруг математического ожидания.

Вычисление описательных статистик для распределения на основе частот

Если исходные данные недоступны, единственным источником информации становится распределение частот. В таких ситуациях можно вычислить приближенные значения количественных показателей распределения, таких как среднее арифметическое, стандартное отклонение, квартили.

Если выборочные данные представлены в виде распределения частот, приближенное значение среднего арифметического можно вычислить, предполагая, что все значения внутри каждого класса сосредоточены в средней точке класса:

где - выборочное среднее, n - количество наблюдений, или объем выборки, с - количество классов в распределении частот, m j - средняя точка j -гo класса, f j - частота, соответствующая j -му классу.

Для вычисления стандартного отклонения по распределению частот также предполагается, что все значения внутри каждого класса сосредоточены в средней точке класса.

Чтобы понять, как определяются квартили ряда на основе частот, рассмотрим расчет нижнего квартиля на основе данных за 2013 г. о распределении населения России по величине среднедушевых денежных доходов (рис. 12).

Рис. 12. Доля населения России со среднедушевыми денежными доходами в среднем за месяц, рублей

Для расчета первого квартиля интервального вариационного ряда можно воспользоваться формулой:

где Q1 – величина первого квартиля, хQ1 – нижняя граница интервала, содержащего первый квартиль (интервал определяется по накопленной частоте, первой превышающей 25%); i – величина интервала; Σf – сумма частот всей выборки; наверное, всегда равна 100%; SQ1–1 – накопленная частота интервала, предшествующего интервалу, содержащему нижний квартиль; fQ1 – частота интервала, содержащего нижний квартиль. Формула для третьего квартиля отличается тем, что во всех местах вместо Q1 нужно использовать Q3, а вместо ¼ подставить ¾.

В нашем примере (рис. 12) нижний квартиль находится в интервале 7000,1 – 10 000, накопленная частота которого равна 26,4%. Нижняя граница этого интервала – 7000 руб., величина интервала – 3000 руб., накопленная частота интервала, предшествующего интервалу, содержащему нижний квартиль – 13,4%, частота интервала, содержащего нижний квартиль – 13,0%. Таким образом: Q1 = 7000 + 3000 * (¼ * 100 – 13,4) / 13 = 9677 руб.

Ловушки, связанные с описательными статистиками

В этой заметке мы рассмотрели, как описать набор данных с помощью различных статистик, оценивающих его среднее значение, разброс и вид распределения. Следующим этапом является анализ и интерпретация данных. До сих пор мы изучали объективные свойства данных, а теперь переходим к их субъективной трактовке. Исследователя подстерегают две ошибки: неверно выбранный предмет анализа и неправильная интерпретация результатов.

Анализ доходности 15 взаимных фондов с очень высоким уровнем риска является вполне беспристрастным. Он привел к совершенно объективным выводам: все взаимные фонды имеют разную доходность, разброс доходности фондов колеблется от –6,1 до 18,5, а средняя доходность равна 6,08. Объективность анализа данных обеспечивается правильным выбором суммарных количественных показателей распределения. Было рассмотрено несколько способов оценки среднего значения и разброса данных, указаны их преимущества и недостатки. Как же выбрать правильную статистику, обеспечивающую объективный и беспристрастный анализ? Если распределение данных имеет небольшую асимметрию, следует ли выбирать медиану, а не среднее арифметическое? Какой показатель более точно характеризует разброс данных: стандартное отклонение или размах? Следует ли указывать на положительную асимметрию распределения?

С другой стороны, интерпретация данных является субъективным процессом. Разные люди приходят к разным выводам, истолковывая одни и те же результаты. У каждого своя точка зрения. Кто-то считает суммарные показатели среднегодовой доходности 15 фондов с очень высоким уровнем риска хорошими и вполне доволен полученным доходом. Другим может показаться, что эти фонды имеют слишком низкую доходность. Таким образом, субъективность следует компенсировать честностью, нейтральностью и ясностью выводов.

Этические проблемы

Анализ данных неразрывно связан с этическими вопросами. Следует критически относиться к информации, распространяемой газетами, радио, телевидением и Интерентом. Со временем вы научитесь скептически относиться не только к результатам, но и к целям, предмету и объективности исследований. Лучше всего об этом сказал известный британский политик Бенджамин Дизраэли: «Существуют три вида лжи: ложь, наглая ложь и статистика».

Как было отмечено в заметке этические проблемы возникают при выборе результатов, которые следует привести в отчете. Следует публиковать как положительные, так и отрицательные результаты. Кроме того, делая доклад или письменный отчет, результаты необходимо излагать честно, нейтрально и объективно. Следует различать неудачную и нечестную презентации. Для этого необходимо определить, каковы были намерения докладчика. Иногда важную информацию докладчик пропускает по невежеству, а иногда - умышленно (например, если он применяет среднее арифметическое для оценки среднего значения явно асимметричных данных, чтобы получить желаемый результат). Нечестно также замалчивать результаты, которые не соответствуют точке зрения исследователя.

Используются материалы книги Левин и др. Статистика для менеджеров. – М.: Вильямс, 2004. – с. 178–209

Функция КВАРТИЛЬ оставлена для совмещения с более ранними версиями Excel

Для того чтобы найти среднее значение в Excel (при том неважно числовое, текстовое, процентное или другое значение) существует много функций. И каждая из них обладает своими особенностями и преимуществами. Ведь в данной задаче могут быть поставлены определенные условия.

Например, средние значения ряда чисел в Excel считают с помощью статистических функций. Можно также вручную ввести собственную формулу. Рассмотрим различные варианты.

Как найти среднее арифметическое чисел?

Чтобы найти среднее арифметическое, необходимо сложить все числа в наборе и разделить сумму на количество. Например, оценки школьника по информатике: 3, 4, 3, 5, 5. Что выходит за четверть: 4. Мы нашли среднее арифметическое по формуле: =(3+4+3+5+5)/5.

Как это быстро сделать с помощью функций Excel? Возьмем для примера ряд случайных чисел в строке:

Или: сделаем активной ячейку и просто вручную впишем формулу: =СРЗНАЧ(A1:A8).

Теперь посмотрим, что еще умеет функция СРЗНАЧ.


Найдем среднее арифметическое двух первых и трех последних чисел. Формула: =СРЗНАЧ(A1:B1;F1:H1). Результат:



Среднее значение по условию

Условием для нахождения среднего арифметического может быть числовой критерий или текстовый. Будем использовать функцию: =СРЗНАЧЕСЛИ().

Найти среднее арифметическое чисел, которые больше или равны 10.

Функция: =СРЗНАЧЕСЛИ(A1:A8;">=10")


Результат использования функции СРЗНАЧЕСЛИ по условию ">=10":

Третий аргумент – «Диапазон усреднения» - опущен. Во-первых, он не обязателен. Во-вторых, анализируемый программой диапазон содержит ТОЛЬКО числовые значения. В ячейках, указанных в первом аргументе, и будет производиться поиск по прописанному во втором аргументе условию.

Внимание! Критерий поиска можно указать в ячейке. А в формуле сделать на нее ссылку.

Найдем среднее значение чисел по текстовому критерию. Например, средние продажи товара «столы».

Функция будет выглядеть так: =СРЗНАЧЕСЛИ($A$2:$A$12;A7;$B$2:$B$12). Диапазон – столбец с наименованиями товаров. Критерий поиска – ссылка на ячейку со словом «столы» (можно вместо ссылки A7 вставить само слово "столы"). Диапазон усреднения – те ячейки, из которых будут браться данные для расчета среднего значения.

В результате вычисления функции получаем следующее значение:

Внимание! Для текстового критерия (условия) диапазон усреднения указывать обязательно.

Как посчитать средневзвешенную цену в Excel?

Как мы узнали средневзвешенную цену?

Формула: =СУММПРОИЗВ(C2:C12;B2:B12)/СУММ(C2:C12).


С помощью формулы СУММПРОИЗВ мы узнаем общую выручку после реализации всего количества товара. А функция СУММ - сумирует количесвто товара. Поделив общую выручку от реализации товара на общее количество единиц товара, мы нашли средневзвешенную цену. Этот показатель учитывает «вес» каждой цены. Ее долю в общей массе значений.

Среднее квадратическое отклонение: формула в Excel

Различают среднеквадратическое отклонение по генеральной совокупности и по выборке. В первом случае это корень из генеральной дисперсии. Во втором – из выборочной дисперсии.

Для расчета этого статистического показателя составляется формула дисперсии. Из нее извлекается корень. Но в Excel существует готовая функция для нахождения среднеквадратического отклонения.


Среднеквадратическое отклонение имеет привязку к масштабу исходных данных. Для образного представления о вариации анализируемого диапазона этого недостаточно. Чтобы получить относительный уровень разброса данных, рассчитывается коэффициент вариации:

среднеквадратическое отклонение / среднее арифметическое значение

Формула в Excel выглядит следующим образом:

СТАНДОТКЛОНП (диапазон значений) / СРЗНАЧ (диапазон значений).

Коэффициент вариации считается в процентах. Поэтому в ячейке устанавливаем процентный формат.

Предположим, что нужно найти среднее число дней для выполнения задач, различными сотрудниками. Или вы хотите вычисление интервала времени 10 лет Средняя температура в определенный день. Вычисление среднего значения ряда чисел несколькими способами.

Среднее функция меры центральной тенденции, в которой находится центр ряда чисел в статистическое распределение. Три большинство общих критериями центральной тенденции выступают.

    Среднее Среднее арифметическое и вычисляется путем добавления ряда чисел и затем деления количества этих чисел. Например среднее значение 2, 3, 3, 5, 7 и 10 имеет 30, разделенных на 6, 5;

    Медиана Средний номер ряда чисел. Половина чисел имеют значения, которые больше, чем Медиана, а половина чисел имеют значения, которые меньше, чем Медиана. Например медиана 2, 3, 3, 5, 7 и 10 - 4.

    Режим Наиболее часто встречающееся число в группе чисел. Например режим 2, 3, 3, 5, 7 и 10 - 3.

Эти три меры центральной тенденции симметричную распределение ряда чисел, являются одни и те же. В асимметричное распределение ряда чисел они могут быть разными.

Вычисление среднего значения ячеек, расположенных непрерывно в одной строке или одном столбце

Выполните следующие действия.

Вычисление среднего значения ячеек, расположенных вразброс

Для выполнения этой задачи используется функция СРЗНАЧ . Скопируйте в приведенной ниже таблице на пустой лист.

Вычисление среднего взвешенного значения

СУММПРОИЗВ и сумм . Пример vThis вычисляет среднюю цену единицы измерения, оплаченная через три покупки, где находится каждый покупки для различное количество единиц измерения по различным ценам за единицу.

Скопируйте в приведенной ниже таблице на пустой лист.

Вычисление среднего значения чисел, без учета нулевых значений

Для выполнения этой задачи используются функции СРЗНАЧ и если . Скопируйте приведенную ниже таблицу и имейте в виду, что в этом примере чтобы проще было понять, скопируйте его на пустой лист.

В математике и статистике среднее арифметическое (либо легко среднее ) комплекта чисел - это сумма всех чисел в этом комплекте, поделённая на их число. Среднее арифметическое является особенно всеобщим и самым распространённым представлением средней величины.

Вам понадобится

  • Знания по математике.

Инструкция

1. Пускай дан комплект из четырех чисел. Нужно обнаружить среднее значение этого комплекта. Для этого вначале обнаружим сумму всех этих чисел. Возможен эти числа 1, 3, 8, 7. Их сумма равна S = 1 + 3 + 8 + 7 = 19. Комплект чисел должен состоять из чисел одного знака, в отвратном случае толк в вычислении среднего значения теряется.

2. Среднее значение комплекта чисел равно сумме чисел S, деленной на число этих чисел. То есть получается, что среднее значение равно: 19/4 = 4.75.

3. Для комплекта числе также дозволено обнаружить не только среднее арифметическое, но и среднее геометрическое. Средним геометрическим нескольких правильных вещественных чисел именуется такое число, которым дозволено заменить всякое из этих чисел так, дабы их произведение не изменилось. Среднее геометрическое G ищется по формуле: корень N-ой степени из произведения комплекта чисел, где N – число числе в комплекте. Разглядим тот же комплект чисел: 1, 3, 8, 7. Обнаружим их среднее геометрическое. Для этого посчитаем произведение: 1*3*8*7 = 168. Сейчас из числа 168 нужно извлечь корень 4-ой степени: G = (168)^1/4 = 3.61. Таким образом среднее геометрическое комплекта чисел равно 3.61.

Среднее геометрическое в совокупности применяется реже, чем арифметическое среднее, впрочем оно может быть пригодно при вычислении среднего значения показателей, изменяющихся с течением времени (заработная плата отдельного работника, динамика показателей успеваемости и т.п.).

Вам понадобится

  • Инженерный калькулятор

Инструкция

1. Для того дабы обнаружить среднее геометрическое ряда чисел, для начала надобно перемножить все эти числа. Скажем, вам дан комплект из пяти показателей: 12, 3, 6, 9 и 4. Перемножим все эти числа: 12х3х6х9х4=7776.

2. Сейчас из полученного числа надобно извлечь корень степени, равной числу элементов ряда. В нашем случае из числа 7776 необходимо будет извлечь корень пятой степени при помощи инженерного калькулятора. Полученное позже этой операции число – в данном случае число 6 – будет являться средним геометрическим для начальной группы чисел.

3. Если у вас под рукой нет инженерного калькулятора, то вычислить среднее геометрическое ряда чисел дозволено с поддержкой функции СРГЕОМ в программе Excel либо при помощи одного из онлайн-калькуляторов, намеренно предуготовленных для вычисления средних геометрических значений.

Обратите внимание!
Если понадобится обнаружить среднее геометрическое каждого для 2-х чисел, то инженерный калькулятор вам не потребуется: извлечь корень 2-й степени (квадратный корень) из всякого числа дозволено при помощи самого обыкновенного калькулятора.

Полезный совет
В различие от среднего арифметического, на геометрическое среднее не так мощно влияют огромные отклонения и колебания между отдельными значениями в исследуемом комплекте показателей.

Среднее значение – это одна из колляций комплекта чисел. Представляет собой число, которое не может выходить за пределы диапазона, определяемого наибольшим и наименьшим значениями в этом комплекте чисел. Среднее арифметическое значение – особенно зачастую применяемая разновидность средних.

Инструкция

1. Сложите все числа множества и поделите их на число слагаемых, дабы получить среднее арифметическое значение. В зависимости от определенных условий вычисления изредка бывает проще разделять всякое из чисел на число значений множества и суммировать итог.

2. Используйте, скажем, входящий в состава ОС Windows калькулятор, если вычислить среднее арифметическое значение в уме не представляется допустимым. Открыть его дозволено с поддержкой диалога запуска программ. Для этого нажмите «жгучие клавиши» WIN + R либо щелкните кнопку «Пуск» и выберите в основном меню команду «Исполнить». После этого напечатайте в поле ввода calc и нажмите на клавиатуре Enter либо щелкните кнопку «OK». Это же дозволено сделать через основное меню – раскройте его, перейдите в раздел «Все программы» и в сегменты «Типовые» и выберите строку «Калькулятор».

3. Введите ступенчато все числа множества, нажимая на клавиатуре позже всего из них (помимо последнего) клавишу «Плюс» либо щелкая соответствующую кнопку в интерфейсе калькулятора. Вводить числа тоже дозволено как с клавиатуры, так и щелкая соответствующие кнопки интерфейса.

4. Нажмите клавишу с косой чертой (слэш) либо щелкните данный значок в интерфейсе калькулятора позже ввода последнего значения множества и напечатайте число чисел в последовательности. После этого нажмите знак равенства, и калькулятор рассчитает и покажет среднее арифметическое значение.

5. Дозволено для этой же цели применять табличный редактор Microsoft Excel. В этом случае запустите редактор и введите в соседние ячейки все значения последовательности чисел. Если позже ввода всего числа вы будете нажимать Enter либо клавишу со стрелкой вниз либо вправо, то редактор сам будет перемещать фокус ввода в соседнюю ячейку.

6. Выделите все введенные значения и в левом нижнем углу окна редактора (в строке состояния) увидите среднеарифметическое значение для выделенных ячеек.

7. Щелкните следующую за последним введенным числом ячейку, если вам не довольно только увидеть среднее арифметическое значение. Раскройте выпадающий список с изображением греческой буквы сигма (Σ) в группе команд «Редактирование» на вкладке «Основная». Выберите в нем строку «Среднее » и редактор вставит необходимую формулу для вычисления среднеарифметического значения в выделенную ячейку. Нажмите клавишу Enter, и значение будет рассчитано.

Среднее арифметическое – одна из мер центральной склонности, обширно применяемая в математике и статистических расчетах. Обнаружить среднее арифметическое число для нескольких значений дюже легко, но у всякой задачи есть свои нюансы, знать которые для выполнения правильных расчетов примитивно нужно.

Что такое среднее арифметическое число

Среднее арифметическое число определяет усредненное значение для каждого начального массива чисел. Другими словами, из некоторого множества чисел выбирается всеобщее для всех элементов значение, математическое сопоставление которого со всеми элементами носит приближенно равный нрав. Среднее арифметическое число применяется, предпочтительно, при составлении финансовых и статистических отчетов либо для расчетов количественных итогов проведенных сходственных навыков.

Как обнаружить среднее арифметическое число

Поиск среднего арифметического числа для массива чисел следует начинать с определения алгебраической суммы этих значений. К примеру, если в массиве присутствуют числа 23, 43, 10, 74 и 34, то их алгебраическая сумма будет равна 184. При записи среднее арифметическое обозначается буквой? (мю) либо x (икс с чертой). Дальше алгебраическую сумму следует поделить на число чисел в массиве. В рассматриваемом примере чисел было пять, следственно среднее арифметическое будет равно 184/5 и составит 36,8.

Особенности работы с негативными числами

Если в массиве присутствуют негативные числа, то нахождение среднего арифметического значения происходит по аналогичному алгорифму. Разница имеется только при рассчетах в среде программирования, либо же если в задаче есть добавочные данные. В этих случаях нахождение среднего арифметического чисел с различными знаками сводится к трем действиям:1. Нахождение всеобщего среднего арифметического числа стандартным способом;2. Нахождение среднего арифметического негативным чисел.3. Вычисление среднего арифметического позитивных чисел.Результаты всякого из действий записываются через запятую.

Натуральные и десятичные дроби

Если массив чисел представлен десятичными дробями, решение происходит по способу вычисления среднего арифметического целых чисел, но сокращение итога производится по требованиям задачи к точности результата.При работе с естественными дробями их следует привести к всеобщему знаменателю, тот, что умножается на число чисел в массиве. В числителе результата будет сумма приведенных числителей начальных дробных элементов.

Среднее геометрическое чисел зависит не только от безусловной величины самих чисел, но и от их числа. Невозможно путать среднее геометрическое и среднее арифметическое чисел, от того что они находятся по различным методологиям. При этом среднее геометрическое неизменно поменьше либо равно среднему арифметическому.

Вам понадобится

  • Инженерный калькулятор.

Инструкция

1. Рассматривайте, что в всеобщем случае среднее геометрическое чисел находится путем перемножения этих чисел и извлечения из них корня степени, которая соответствует числу чисел. Скажем, если надобно обнаружить среднее геометрическое пяти чисел, то из произведения необходимо будет извлекать корень пятой степени.

2. Для нахождения среднего геометрического 2-х чисел используйте основное правило. Обнаружьте их произведение, позже чего извлеките из него квадратный корень, от того что числа два, что соответствует степени корня. Скажем, для того дабы обнаружить среднее геометрическое чисел 16 и 4, обнаружьте их произведение 16 4=64. Из получившегося числа извлеките квадратный корень?64=8. Это и будет желанная величина. Обратите внимание на то, что среднее арифметическое этих 2-х чисел огромнее и равно 10. Если корень не извлекается нацело, произведите округление итога до надобного порядка.

3. Дабы обнаружить среднее геометрическое больше чем 2-х чисел, тоже используйте основное правило. Для этого обнаружьте произведение всех чисел, для которых надобно обнаружить среднее геометрическое. Из полученного произведения извлеките корень степени, равной числу чисел. Скажем, дабы обнаружить среднее геометрическое чисел 2, 4 и 64, обнаружьте их произведение. 2 4 64=512. От того что необходимо обнаружить итог среднего геометрического 3 чисел, что из произведения извлеките корень третей степени. Сделать это устно затруднительно, следственно воспользуйтесь инженерным калькулятором. Для этого в нем есть кнопка “x^y”. Наберите число 512, нажмите кнопку “x^y”, позже чего наберите число 3 и нажмите кнопку “1/х”, дабы обнаружить значение 1/3, нажмите кнопку “=”. Получим итог возведения 512 в степень 1/3, что соответствует корню третьей степени. Получите 512^1/3=8. Это и есть среднее геометрическое чисел 2,4 и 64.

4. С поддержкой инженерного калькулятора дозволено обнаружить среднее геометрическое иным методом. Обнаружьте на клавиатуре кнопку log. Позже этого возьмите логарифм для всего из чисел, обнаружьте их сумму и поделите ее на число чисел. Из полученного числа возьмите антилогарифм. Это и будет среднее геометрическое чисел. Скажем, для того дабы обнаружить среднее геометрическое тех же чисел 2, 4 и 64, сделайте на калькуляторе комплект операций. Наберите число 2, позже чего нажмите кнопку log, нажмите кнопку “+”, наберите число 4 и вновь нажмите log и “+”, наберите 64, нажмите log и “=”. Итогом будет число, равное сумме десятичных логарифмов чисел 2, 4 и 64. Полученное число поделите на 3, от того что это число чисел, по которым ищется среднее геометрическое. Из итога возьмите антилогарифм, переключив кнопку регистра, и используйте ту же клавишу log. В итоге получится число 8, это и есть желанное среднее геометрическое.

Обратите внимание!
Среднее значение не может быть огромнее самого большого числа в комплекте и поменьше самого маленького.

Полезный совет
В математической статистике среднее значение величины именуется математическим ожиданием.

Наиболее распространенной формой статистических показателей, используемых в социально-экономических исследованиях, является средняя величина, представляющая собой обобщенную количественную характеристику признака статистической совокупности. Средние величины являются как бы «представителями» всего ряда наблюдений. Определить среднюю можно во многих случаях через исходное соотношение средней (ИСС) или ее логическую формулу: . Так, например, для расчета средней заработной платы работников предприятия необходимо общий фонд заработной платы разделить на число работников: Числитель исходного соотношения средней представляет собой ее определяющий показатель. Для средней заработной платы таким определяющим показателем является фонд заработной платы. Для каждого показателя, используемого в социально-экономическом анализе, можно составить только одно истинное исходное соотношение для расчета средней. Следует еще добавить, что для того, чтобы более точно оценить стандартное отклонение для малых выборок (с числом элементов менее 30), в знаменателе выражения под корнем надо использовать не n , а n- 1.

Понятие и виды средних величин

Средняя величина - это обобщающий показатель статистической совокупности, который погашает индивидуальные различия значений статистических величин, позволяя сравнивать разные совокупности между собой. Существует 2 класса средних величин: степенные и структурные. К структурным средним относятсямода имедиана , но наиболее часто применяютсястепенные средние различных видов.

Степенные средние величины

Степенные средние могут быть простыми и взвешенными .

Простая средняя величина рассчитывается при наличии двух и более несгруппированных статистических величин, расположенных в произвольном порядке по следующей общей формуле средней степенной (при различной величине k (m)):

Взвешенная средняя величина рассчитывается по сгруппированным статистическим величинам с использованием следующей общей формулы:

Где x - средняя величина исследуемого явления; x i – i -й вариант усредняемого признака ;

f i – вес i -го варианта.

Где X – значения отдельных статистических величин или середин группировочных интервалов;
m - показатель степени, от значения которого зависят следующие виды степенных средних величин:
при m = -1 средняя гармоническая;
при m = 0 средняя геометрическая;
при m = 1 средняя арифметическая;
при m = 2 средняя квадратическая;
при m = 3 средняя кубическая.

Используя общие формулы простой и взвешенной средних при разных показателях степени m, получаем частные формулы каждого вида, которые будут далее подробно рассмотрены.

Средняя арифметическая

Средняя арифметическая – начальный момент первого порядка, математическое ожидание значений случайной величины при большом числе испытаний;

Средняя арифметическая - это самая часто используемая средняя величина, которая получается, если подставить в общую формулу m=1. Средняя арифметическая простая имеет следующий вид:

или

Где X - значения величин, для которых необходимо рассчитать среднее значение; N - общее количество значений X (число единиц в изучаемой совокупности).

Например, студент сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Рассчитаем средний балл по формуле средней арифметической простой: (3+4+4+5)/4 = 16/4 = 4. Средняя арифметическая взвешенная имеет следующий вид:

Где f - количество величин с одинаковым значением X (частота). >Например, студент сдал 4 экзамена и получил следующие оценки: 3, 4, 4 и 5. Рассчитаем средний балл по формуле средней арифметической взвешенной: (3*1 + 4*2 + 5*1)/4 = 16/4 = 4. Если значения X заданы в виде интервалов, то для расчетов используют середины интервалов X, которые определяются как полусумма верхней и нижней границ интервала. А если у интервала X отсутствует нижняя или верхняя граница (открытый интервал), то для ее нахождения применяют размах (разность между верхней и нижней границей) соседнего интервала X. Например, на предприятии 10 работников со стажем работы до 3 лет, 20 - со стажем от 3 до 5 лет, 5 работников - со стажем более 5 лет. Тогда рассчитаем средний стаж работников по формуле средней арифметической взвешенной, приняв в качестве X середины интервалов стажа (2, 4 и 6 лет): (2*10+4*20+6*5)/(10+20+5) = 3,71 года.

Функция СРЗНАЧ

Эта функция вычисляет среднее (арифметическое) своих аргументов.

СРЗНАЧ(число1; число2; ...)

Число1, число2, ... - это от 1 до 30 аргументов, для которых вычисляется среднее.

Аргументы должны быть числами или именами, массивами или ссылками, содержащими числа. Если аргумент, который является массивом или ссылкой, содержит тексты, логические значения или пустые ячейки, то такие значения игнорируются; однако, ячейки, которые содержат нулевые значения, учитываются.

Функция СРЗНАЧА

Вычисляет среднее арифметическое значений, заданных в списке аргументов. Помимо чисел в расчете могут участвовать текст и логические значения, такие как ИСТИНА и ЛОЖЬ.

СРЗНАЧА(значение1,значение2,...)

Значение1, значение2,... - это от 1 до 30 ячеек, интервалов ячеек или значений, для которых вычисляется среднее.

Аргументы должны быть числами, именами, массивами или ссылками. Массивы и ссылки, содержащие текст, интерпретируются как 0 (ноль). Пустой текст ("") интерпретируется как 0 (ноль). Аргументы, содержащие значение ИСТИНА, интерпретируются как 1, Аргументы, содержащие значение ЛОЖЬ, интерпретируются как 0 (ноль).

Средняя арифметическая применяется чаще всего, но бывают случаи, когда необходимо применение других видов средних величин. Рассмотрим такие случаи далее.

Средняя гармоническая

Средняя гармоническая для определения средней суммы обратных величин;

Средняя гармоническая применяется, когда исходные данные не содержат частот f по отдельным значениям X, а представлены как их произведение Xf. Обозначив Xf=w, выразим f=w/X, и, подставив эти обозначения в формулу средней арифметической взвешенной, получим формулу средней гармонической взвешенной:

Таким образом, средняя гармоническая взвешенная применяется тогда, когда неизвестны частоты f, а известно w=Xf. В тех случаях, когда все w=1, то есть индивидуальные значения X встречаются по 1 разу, применяется формула средней гармонической простой: или Например, автомобиль ехал из пункта А в пункт Б со скоростью 90 км/ч, а обратно - со скоростью 110 км/ч. Для определения средней скорости применим формулу средней гармонической простой, так как в примере дано расстояние w 1 =w 2 (расстояние из пункта А в пункт Б такое, же как и из Б в А), которое равно произведению скорости (X) на время (f). Средняя скорость = (1+1)/(1/90+1/110) = 99 км/ч.

Функция СРГАРМ

Возвращает среднее гармоническое множества данных. Среднее гармоническое - это величина, обратная к среднему арифметическому обратных величин.

СРГАРМ(число1;число2; ...)

Число1, число2, ... - это от 1 до 30 аргументов, для которых вычисляется среднее. Можно использовать массив или ссылку на массив вместо аргументов, разделяемых точкой с запятой.

Среднее гармоническое всегда меньше среднего геометрического, которое всегда меньше среднего арифметического.

Средняя геометрическая

Средняя геометрическая для оценки средних темпов роста случайной величин, нахождения значения признака, равноудаленного от минимального и максимального значения;

Средняя геометрическая применяется при определении средних относительных изменений. Геометрическая средняя величина дает наиболее точный результат осреднения, если задача стоит в нахождении такого значения X, который был бы равноудален как от максимального, так и от минимального значения X. Например, в период с 2005 по 2008 годы индекс инфляции в России составлял: в 2005 году - 1,109; в 2006 - 1,090; в 2007 - 1,119; в 2008 - 1,133. Так как индекс инфляции - это относительное изменение (индекс динамики), то рассчитывать среднее значение нужно по средней геометрической: (1,109*1,090*1,119*1,133)^(1/4) = 1,1126, то есть за период с 2005 по 2008 ежегодно цены росли в среднем на 11,26%. Ошибочный расчет по средней арифметической дал бы неверный результат 11,28%.

Функция СРГЕОМ

Возвращает среднее геометрическое значений массива или интервала положительных чисел. Например, функцию СРГЕОМ можно использовать для вычисления средних темпов роста, если задан составной доход с переменными ставками.

СРГЕОМ (число1; число2; ...)

Число1, число2, ... - это от 1 до 30 аргументов, для которых вычисляется среднее геометрическое. Можно использовать массив или ссылку на массив вместо аргументов, разделяемых точкой с запятой.

Средняя квадратическая

Средняя квадратическая – начальный момент второго порядка.

Средняя квадратическая применяется в тех случая, когда исходные значения X могут быть как положительными, так и отрицательными, например при расчете средних отклонений. Главной сферой применения квадратической средней является измерение вариации значений X.

Средняя кубическая

Средняя кубическая – начальный момент третьего порядка.

Средняя кубическая применяется крайне редко, например, при расчете индексов нищеты населения для развивающихся стран (ИНН-1) и для развитых (ИНН-2), предложенных и рассчитываемых ООН.