Derivative of a complex function explanation. Complex derivatives

On this lesson we will learn to find derivative of a complex function. The lesson is a logical continuation of the lesson How to find the derivative?, in which we examined the simplest derivatives, and also became acquainted with the rules of differentiation and some technical techniques for finding derivatives. Thus, if you are not very good with derivatives of functions or some points in this article are not entirely clear, then first read the above lesson. Please get in a serious mood - the material is not simple, but I will still try to present it simply and clearly.

In practice, you have to deal with the derivative of a complex function very often, I would even say, almost always, when you are given tasks to find derivatives.

We look at the table at the rule (No. 5) for differentiating a complex function:

Let's figure it out. First of all, let's pay attention to the entry. Here we have two functions – and , and the function, figuratively speaking, is nested within the function . A function of this type (when one function is nested within another) is called a complex function.

I will call the function external function, and the function – internal (or nested) function.

! These definitions are not theoretical and should not appear in the final design of assignments. I use informal expressions “external function”, “internal” function only to make it easier for you to understand the material.

To clarify the situation, consider:

Example 1

Find the derivative of a function

Under the sine we have not just the letter “X”, but an entire expression, so finding the derivative right away from the table will not work. We also notice that it is impossible to apply the first four rules here, there seems to be a difference, but the fact is that the sine cannot be “torn into pieces”:

IN in this example It is already intuitively clear from my explanations that a function is a complex function, and the polynomial is an internal function (embedding), and an external function.

First step what you need to do when finding the derivative of a complex function is to understand which function is internal and which is external.

In case simple examples It seems clear that a polynomial is embedded under the sine. But what if everything is not obvious? How to accurately determine which function is external and which is internal? To do this, I suggest using the following technique, which can be done mentally or in a draft.

Let's imagine that we need to calculate the value of the expression at on a calculator (instead of one there can be any number).

What will we calculate first? First of all you will need to perform the following action: , therefore the polynomial will be an internal function:

Secondly will need to be found, so sine – will be an external function:

After we SOLD OUT With internal and external functions, it's time to apply the rule of differentiation of complex functions.

Let's start deciding. From class How to find the derivative? we remember that the design of a solution to any derivative always begins like this - we enclose the expression in brackets and put a stroke at the top right:

At first we find the derivative of the external function (sine), look at the table of derivatives of elementary functions and notice that . All table formulas are also applicable if “x” is replaced with a complex expression, V in this case:

Please note that the inner function hasn't changed, we don't touch it.

Well, it's quite obvious that

The final result of applying the formula looks like this:

The constant factor is usually placed at the beginning of the expression:

If there is any misunderstanding, write the solution down on paper and read the explanations again.

Example 2

Find the derivative of a function

Example 3

Find the derivative of a function

As always, we write down:

Let's figure out where we have an external function and where we have an internal one. To do this, we try (mentally or in a draft) to calculate the value of the expression at . What should you do first? First of all, you need to calculate what the base is equal to: therefore, the polynomial is the internal function:

And, only then is the exponentiation performed, therefore, the power function is an external function:

According to the formula, you first need to find the derivative of the external function, in this case, the degree. We look for the required formula in the table: . We repeat again: any tabular formula is valid not only for “X”, but also for a complex expression. Thus, the result of applying the rule for differentiating a complex function is as follows:

I emphasize again that when we take the derivative of the external function, our internal function does not change:

Now all that remains is to find a very simple derivative of the internal function and tweak the result a little:

Example 4

Find the derivative of a function

This is an example for you to solve on your own (answer at the end of the lesson).

To consolidate your understanding of the derivative of a complex function, I will give an example without comments, try to figure it out on your own, reason where the external and where the internal function is, why the tasks are solved this way?

Example 5

a) Find the derivative of the function

b) Find the derivative of the function

Example 6

Find the derivative of a function

Here we have a root, and in order to differentiate the root, it must be represented as a power. Thus, first we bring the function into the form appropriate for differentiation:

Analyzing the function, we come to the conclusion that the sum of the three terms is an internal function, and raising to a power is an external function. We apply the rule of differentiation of complex functions:

We again represent the degree as a radical (root), and for the derivative of the internal function we apply a simple rule for differentiating the sum:

Ready. You can also reduce the expression to a common denominator in brackets and write everything down as one fraction. It’s beautiful, of course, but when you get cumbersome long derivatives, it’s better not to do this (it’s easy to get confused, make an unnecessary mistake, and it will be inconvenient for the teacher to check).

Example 7

Find the derivative of a function

This is an example for you to solve on your own (answer at the end of the lesson).

It is interesting to note that sometimes instead of the rule for differentiating a complex function, you can use the rule for differentiating a quotient , but such a solution will look like a funny perversion. Here is a typical example:

Example 8

Find the derivative of a function

Here you can use the rule of differentiation of the quotient , but it is much more profitable to find the derivative through the rule of differentiation of a complex function:

We prepare the function for differentiation - we move the minus out of the derivative sign, and raise the cosine into the numerator:

Cosine is an internal function, exponentiation is an external function.
Let's use our rule:

We find the derivative of the internal function and reset the cosine back down:

Ready. In the example considered, it is important not to get confused in the signs. By the way, try to solve it using the rule , the answers must match.

Example 9

Find the derivative of a function

This is an example for you to solve on your own (answer at the end of the lesson).

So far we have looked at cases where we had only one nesting in a complex function. In practical tasks, you can often find derivatives, where, like nesting dolls, one inside the other, 3 or even 4-5 functions are nested at once.

Example 10

Find the derivative of a function

Let's understand the attachments of this function. Let's try to calculate the expression using the experimental value. How would we count on a calculator?

First you need to find , which means the arcsine is the deepest embedding:

This arcsine of one should then be squared:

And finally, we raise seven to a power:

That is, in this example we have three different functions and two embeddings, while the innermost function is the arcsine, and the outermost function is the exponential function.

Let's start deciding

According to the rule, you first need to take the derivative of the external function. We look at the table of derivatives and find the derivative of the exponential function: The only difference is that instead of “x” we have a complex expression, which does not negate the validity of this formula. So, the result of applying the rule for differentiating a complex function is as follows:

Under the stroke we have a complex function again! But it’s already simpler. It is easy to verify that the inner function is the arcsine, the outer function is the degree. According to the rule for differentiating a complex function, you first need to take the derivative of the power.

On which we examined the simplest derivatives, and also became acquainted with the rules of differentiation and some technical techniques for finding derivatives. Thus, if you are not very good with derivatives of functions or some points in this article are not entirely clear, then first read the above lesson. Please get in a serious mood - the material is not simple, but I will still try to present it simply and clearly.

In practice, you have to deal with the derivative of a complex function very often, I would even say, almost always, when you are given tasks to find derivatives.

We look at the table at the rule (No. 5) for differentiating a complex function:

Let's figure it out. First of all, let's pay attention to the entry. Here we have two functions – and , and the function, figuratively speaking, is nested within the function . A function of this type (when one function is nested within another) is called a complex function.

I will call the function external function, and the function – internal (or nested) function.

! These definitions are not theoretical and should not appear in the final design of assignments. I use informal expressions “external function”, “internal” function only to make it easier for you to understand the material.

To clarify the situation, consider:

Example 1

Find the derivative of a function

Under the sine we have not just the letter “X”, but an entire expression, so finding the derivative right away from the table will not work. We also notice that it is impossible to apply the first four rules here, there seems to be a difference, but the fact is that the sine cannot be “torn into pieces”:

In this example, it is already intuitively clear from my explanations that a function is a complex function, and the polynomial is an internal function (embedding), and an external function.

First step what you need to do when finding the derivative of a complex function is to understand which function is internal and which is external.

In the case of simple examples, it seems clear that a polynomial is embedded under the sine. But what if everything is not obvious? How to accurately determine which function is external and which is internal? To do this, I suggest using the following technique, which can be done mentally or in a draft.

Let's imagine that we need to calculate the value of the expression at on a calculator (instead of one there can be any number).

What will we calculate first? First of all you will need to perform the following action: , therefore the polynomial will be an internal function:

Secondly will need to be found, so sine – will be an external function:

After we SOLD OUT with internal and external functions, it’s time to apply the rule of differentiation of complex functions .

Let's start deciding. From the lesson How to find the derivative? we remember that the design of a solution to any derivative always begins like this - we enclose the expression in brackets and put a stroke at the top right:

At first we find the derivative of the external function (sine), look at the table of derivatives of elementary functions and notice that . All table formulas are also applicable if “x” is replaced with a complex expression, in this case:

Please note that the inner function hasn't changed, we don't touch it.

Well, it's quite obvious that

The result of applying the formula in its final form it looks like this:

The constant factor is usually placed at the beginning of the expression:

If there is any misunderstanding, write the solution down on paper and read the explanations again.

Example 2

Find the derivative of a function

Example 3

Find the derivative of a function

As always, we write down:

Let's figure out where we have an external function and where we have an internal one. To do this, we try (mentally or in a draft) to calculate the value of the expression at . What should you do first? First of all, you need to calculate what the base is equal to: therefore, the polynomial is the internal function:

And, only then is the exponentiation performed, therefore, the power function is an external function:

According to the formula , first you need to find the derivative of the external function, in this case, the degree. We look for the required formula in the table: . We repeat again: any tabular formula is valid not only for “X”, but also for a complex expression. Thus, the result of applying the rule for differentiating a complex function next:

I emphasize again that when we take the derivative of the external function, our internal function does not change:

Now all that remains is to find a very simple derivative of the internal function and tweak the result a little:

Example 4

Find the derivative of a function

This is an example for you to solve on your own (answer at the end of the lesson).

To consolidate your understanding of the derivative of a complex function, I will give an example without comments, try to figure it out on your own, reason where the external and where the internal function is, why the tasks are solved this way?

Example 5

a) Find the derivative of the function

b) Find the derivative of the function

Example 6

Find the derivative of a function

Here we have a root, and in order to differentiate the root, it must be represented as a power. Thus, first we bring the function into the form appropriate for differentiation:

Analyzing the function, we come to the conclusion that the sum of the three terms is an internal function, and raising to a power is an external function. We apply the rule of differentiation of complex functions :

We again represent the degree as a radical (root), and for the derivative of the internal function we apply a simple rule for differentiating the sum:

Ready. You can also reduce the expression to a common denominator in brackets and write everything down as one fraction. It’s beautiful, of course, but when you get cumbersome long derivatives, it’s better not to do this (it’s easy to get confused, make an unnecessary mistake, and it will be inconvenient for the teacher to check).

Example 7

Find the derivative of a function

This is an example for you to solve on your own (answer at the end of the lesson).

It is interesting to note that sometimes instead of the rule for differentiating a complex function, you can use the rule for differentiating a quotient , but such a solution will look like an unusual perversion. Here is a typical example:

Example 8

Find the derivative of a function

Here you can use the rule of differentiation of the quotient , but it is much more profitable to find the derivative through the rule of differentiation of a complex function:

We prepare the function for differentiation - we move the minus out of the derivative sign, and raise the cosine into the numerator:

Cosine is an internal function, exponentiation is an external function.
Let's use our rule :

We find the derivative of the internal function and reset the cosine back down:

Ready. In the example considered, it is important not to get confused in the signs. By the way, try to solve it using the rule , the answers must match.

Example 9

Find the derivative of a function

This is an example for you to solve on your own (answer at the end of the lesson).

So far we have looked at cases where we had only one nesting in a complex function. In practical tasks, you can often find derivatives, where, like nesting dolls, one inside the other, 3 or even 4-5 functions are nested at once.

Example 10

Find the derivative of a function

Let's understand the attachments of this function. Let's try to calculate the expression using the experimental value. How would we count on a calculator?

First you need to find , which means the arcsine is the deepest embedding:

This arcsine of one should then be squared:

And finally, we raise seven to a power:

That is, in this example we have three different functions and two embeddings, while the innermost function is the arcsine, and the outermost function is the exponential function.

Let's start deciding

According to the rule First you need to take the derivative of the outer function. We look at the table of derivatives and find the derivative of the exponential function: The only difference is that instead of “x” we have a complex expression, which does not negate the validity of this formula. So, the result of applying the rule for differentiating a complex function next.

Since you came here, you probably already saw this formula in the textbook

and make a face like this:

Friend, don't worry! In fact, everything is simply outrageous. You will definitely understand everything. Just one request - read the article taking your time, try to understand every step. I wrote as simply and clearly as possible, but you still need to understand the idea. And be sure to solve the tasks from the article.

What is a complex function?

Imagine that you are moving to another apartment and therefore packing things into large boxes. Suppose you need to collect some small items, for example, school writing materials. If you just throw them into a huge box, they will get lost among other things. To avoid this, you first put them, for example, in a bag, which you then put in a large box, after which you seal it. This “complex” process is presented in the diagram below:

It would seem, what does mathematics have to do with it? Yes, despite the fact that a complex function is formed in EXACTLY THE SAME way! Only we “pack” not notebooks and pens, but \(x\), while the “packages” and “boxes” are different.

For example, let's take x and “pack” it into a function:


As a result, we get, of course, \(\cos⁡x\). This is our “bag of things”. Now let’s put it in a “box” - pack it, for example, into a cubic function.


What will happen in the end? Yes, that’s right, there will be a “bag of things in a box,” that is, “cosine of X cubed.”

The resulting design is a complex function. It differs from simple one in that SEVERAL “impacts” (packages) are applied to one X in a row and it turns out to be “function from function” - “packaging within packaging”.

In the school course there are very few types of these “packages”, only four:

Let's now “pack” X first into an exponential function with base 7, and then into a trigonometric function. We get:

\(x → 7^x → tg⁡(7^x)\)

Now let’s “pack” X twice into trigonometric functions, first in , and then in:

\(x → sin⁡x → cotg⁡ (sin⁡x)\)

Simple, right?

Now write the functions yourself, where x:
- first it is “packed” into a cosine, and then into an exponential function with base \(3\);
- first to the fifth power, and then to the tangent;
- first to the logarithm to the base \(4\) , then to the power \(-2\).

Find the answers to this task at the end of the article.

Can we “pack” X not two, but three times? Yes, no problem! And four, and five, and twenty-five times. Here, for example, is a function in which x is “packed” \(4\) times:

\(y=5^(\log_2⁡(\sin⁡(x^4)))\)

But such formulas will not be found in school practice (students are luckier - theirs may be more complicated☺).

"Unpacking" a complex function

Look at the previous function again. Can you figure out the “packing” sequence? What X was stuffed into first, what then, and so on until the very end. That is, which function is nested within which? Take a piece of paper and write down what you think. You can do this with a chain with arrows as we wrote above or in any other way.

Now the correct answer is: first, x was “packed” into the \(4\)th power, then the result was packed into the sine, it, in turn, was placed into the logarithm to the base \(2\), and in the end this whole construction was shoved into the power fives.

That is, you need to unwind the sequence IN REVERSE ORDER. And here’s a hint on how to do it easier: immediately look at the X – you should dance from it. Let's look at a few examples.

For example, here is the following function: \(y=tg⁡(\log_2⁡x)\). We look at X - what happens to it first? Taken from him. And then? The tangent of the result is taken. The sequence will be the same:

\(x → \log_2⁡x → tg⁡(\log_2⁡x)\)

Another example: \(y=\cos⁡((x^3))\). Let's analyze - first we cubed X, and then took the cosine of the result. This means the sequence will be: \(x → x^3 → \cos⁡((x^3))\). Pay attention, the function seems to be similar to the very first one (where it has pictures). But this is a completely different function: here in the cube is x (that is, \(\cos⁡((x·x·x)))\), and there in the cube is the cosine \(x\) (that is, \(\cos⁡ x·\cos⁡x·\cos⁡x\)). This difference arises from different "packing" sequences.

The last example (with important information in it): \(y=\sin⁡((2x+5))\). It is clear that here they first did arithmetic operations with x, then took the sine of the result: \(x → 2x+5 → \sin⁡((2x+5))\). And this important point: despite the fact that arithmetic operations are not functions in themselves, here they also act as a way of “packing”. Let's delve a little deeper into this subtlety.

As I said above, in simple functions x is “packed” once, and in complex functions - two or more. Moreover, any combination of simple functions (that is, their sum, difference, multiplication or division) is also a simple function. For example, \(x^7\) is a simple function and so is \(ctg x\). This means that all their combinations are simple functions:

\(x^7+ ctg x\) - simple,
\(x^7· cot x\) – simple,
\(\frac(x^7)(ctg x)\) – simple, etc.

However, if one more function is applied to such a combination, it will become a complex function, since there will be two “packages”. See diagram:



Okay, go ahead now. Write the sequence of “wrapping” functions:
\(y=cos(⁡(sin⁡x))\)
\(y=5^(x^7)\)
\(y=arctg⁡(11^x)\)
\(y=log_2⁡(1+x)\)
The answers are again at the end of the article.

Internal and external functions

Why do we need to understand function nesting? What does this give us? The fact is that without such an analysis we will not be able to reliably find derivatives of the functions discussed above.

And in order to move on, we will need two more concepts: internal and external functions. This is very simple thing, moreover, in fact, we have already analyzed them above: if we recall our analogy at the very beginning, then the internal function is a “package”, and the external function is a “box”. Those. what X is “wrapped” in first is an internal function, and what the internal function is “wrapped” in is already external. Well, it’s clear why - she’s outside, that means external.

In this example: \(y=tg⁡(log_2⁡x)\), the function \(\log_2⁡x\) is internal, and
- external.

And in this: \(y=\cos⁡((x^3+2x+1))\), \(x^3+2x+1\) is internal, and
- external.

Complete the last practice of analyzing complex functions, and let's finally move on to what we were all started for - we will find derivatives of complex functions:

Fill in the blanks in the table:


Derivative of a complex function

Bravo to us, we finally got to the “boss” of this topic - in fact, the derivative of a complex function, and specifically, to that very terrible formula from the beginning of the article.☺

\((f(g(x)))"=f"(g(x))\cdot g"(x)\)

This formula reads like this:

The derivative of a complex function is equal to the product of the derivative of the external function with respect to a constant internal function and the derivative of the internal function.

And immediately look at the “word by word” parsing diagram to understand what is what:

I hope the terms “derivative” and “product” do not cause any difficulties. “Complex function” - we have already sorted it out. The catch is in the “derivative of an external function with respect to a constant internal function.” What is it?

Answer: This is the usual derivative of an external function, in which only the external function changes, and the internal one remains the same. Still not clear? Okay, let's use an example.

Let us have a function \(y=\sin⁡(x^3)\). It is clear that the internal function here is \(x^3\), and the external
. Let us now find the derivative of the exterior with respect to the constant interior.

And the theorem on the derivative of a complex function, the formulation of which is as follows:

Let 1) the function $u=\varphi (x)$ have at some point $x_0$ the derivative $u_(x)"=\varphi"(x_0)$, 2) the function $y=f(u)$ have at the corresponding at the point $u_0=\varphi (x_0)$ the derivative $y_(u)"=f"(u)$. Then the complex function $y=f\left(\varphi (x) \right)$ at the mentioned point will also have a derivative equal to the product of the derivatives of the functions $f(u)$ and $\varphi (x)$:

$$ \left(f(\varphi (x))\right)"=f_(u)"\left(\varphi (x_0) \right)\cdot \varphi"(x_0) $$

or, in shorter notation: $y_(x)"=y_(u)"\cdot u_(x)"$.

In the examples in this section, all functions have the form $y=f(x)$ (i.e., we consider only functions of one variable $x$). Accordingly, in all examples the derivative $y"$ is taken with respect to the variable $x$. To emphasize that the derivative is taken with respect to the variable $x$, $y"_x$ is often written instead of $y"$.

Examples No. 1, No. 2 and No. 3 outline detailed process finding the derivative of complex functions. Example No. 4 is intended for a more complete understanding of the derivative table and it makes sense to familiarize yourself with it.

It is advisable after studying the material in examples No. 1-3 to move on to independent decision examples No. 5, No. 6 and No. 7. Examples #5, #6 and #7 contain a short solution so that the reader can check the correctness of his result.

Example No. 1

Find the derivative of the function $y=e^(\cos x)$.

We need to find the derivative of a complex function $y"$. Since $y=e^(\cos x)$, then $y"=\left(e^(\cos x)\right)"$. To find the derivative $ \left(e^(\cos x)\right)"$ we use formula No. 6 from the table of derivatives. In order to use formula No. 6, we need to take into account that in our case $u=\cos x$. The further solution consists in simply substituting the expression $\cos x$ instead of $u$ into formula No. 6:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)" \tag (1.1)$$

Now we need to find the value of the expression $(\cos x)"$. We turn again to the table of derivatives, choosing formula No. 10 from it. Substituting $u=x$ into formula No. 10, we have: $(\cos x)"=-\ sin x\cdot x"$. Now let's continue equality (1.1), supplementing it with the result found:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x") \tag (1.2) $$

Since $x"=1$, we continue equality (1.2):

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x")=e^(\cos x)\cdot (-\sin x\cdot 1)=-\sin x\cdot e^(\cos x) \tag (1.3) $$

So, from equality (1.3) we have: $y"=-\sin x\cdot e^(\cos x)$. Naturally, explanations and intermediate equalities are usually skipped, writing down the finding of the derivative in one line, as in the equality ( 1.3). So, the derivative of the complex function has been found, all that remains is to write down the answer.

Answer: $y"=-\sin x\cdot e^(\cos x)$.

Example No. 2

Find the derivative of the function $y=9\cdot \arctg^(12)(4\cdot \ln x)$.

We need to calculate the derivative $y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"$. To begin with, we note that the constant (i.e. the number 9) can be taken out of the derivative sign:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)" \tag (2.1) $$

Now let's turn to the expression $\left(\arctg^(12)(4\cdot \ln x) \right)"$. To make it easier to select the desired formula from the table of derivatives, I will present the expression in question in this form: $\left( \left(\arctg(4\cdot \ln x) \right)^(12)\right)"$. Now it is clear that it is necessary to use formula No. 2, i.e. $\left(u^\alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Let’s substitute $u=\arctg(4\cdot \ln x)$ and $\alpha=12$ into this formula:

Supplementing equality (2.1) with the result obtained, we have:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"= 108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))" \tag (2.2) $$

In this situation, a mistake is often made when the solver at the first step chooses the formula $(\arctg \; u)"=\frac(1)(1+u^2)\cdot u"$ instead of the formula $\left(u^\ alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. The point is that the derivative of the external function must come first. To understand which function will be external to the expression $\arctg^(12)(4\cdot 5^x)$, imagine that you are calculating the value of the expression $\arctg^(12)(4\cdot 5^x)$ at some value $x$. First you will calculate the value of $5^x$, then multiply the result by 4, getting $4\cdot 5^x$. Now we take the arctangent from this result, obtaining $\arctg(4\cdot 5^x)$. Then we raise the resulting number to the twelfth power, getting $\arctg^(12)(4\cdot 5^x)$. Last action, - i.e. raising to the power of 12 will be an external function. And it is from this that we must begin to find the derivative, which was done in equality (2.2).

Now we need to find $(\arctg(4\cdot \ln x))"$. We use formula No. 19 of the derivatives table, substituting $u=4\cdot \ln x$ into it:

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)" $$

Let's simplify the resulting expression a little, taking into account $(4\cdot \ln x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$.

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)"=\frac( 1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" $$

Equality (2.2) will now become:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" \tag (2.3) $$

It remains to find $(4\cdot \ln x)"$. Let's take the constant (i.e. 4) out of the derivative sign: $(4\cdot \ln x)"=4\cdot (\ln x)"$. For In order to find $(\ln x)"$ we use formula No. 8, substituting $u=x$ into it: $(\ln x)"=\frac(1)(x)\cdot x"$. Since $x"=1$, then $(\ln x)"=\frac(1)(x)\cdot x"=\frac(1)(x)\cdot 1=\frac(1)(x )$. Substituting the obtained result into formula (2.3), we obtain:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" =\\ =108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot 4\ cdot \frac(1)(x)=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x)). $

Let me remind you that the derivative of a complex function is most often found in one line, as written in the last equality. Therefore, when preparing standard calculations or tests It is not at all necessary to describe the solution in such detail.

Answer: $y"=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x))$.

Example No. 3

Find $y"$ of the function $y=\sqrt(\sin^3(5\cdot9^x))$.

First, let's slightly transform the function $y$, expressing the radical (root) as a power: $y=\sqrt(\sin^3(5\cdot9^x))=\left(\sin(5\cdot 9^x) \right)^(\frac(3)(7))$. Now let's start finding the derivative. Since $y=\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))$, then:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)" \tag (3.1) $$

Let's use formula No. 2 from the table of derivatives, substituting $u=\sin(5\cdot 9^x)$ and $\alpha=\frac(3)(7)$ into it:

$$ \left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"= \frac(3)(7)\cdot \left( \sin(5\cdot 9^x)\right)^(\frac(3)(7)-1) (\sin(5\cdot 9^x))"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" $$

Let us continue equality (3.1) using the result obtained:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" \tag (3.2) $$

Now we need to find $(\sin(5\cdot 9^x))"$. For this we use formula No. 9 from the table of derivatives, substituting $u=5\cdot 9^x$ into it:

$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$

Having supplemented equality (3.2) with the result obtained, we have:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)" \tag (3.3) $$

It remains to find $(5\cdot 9^x)"$. First, let's take the constant (the number $5$) outside the derivative sign, i.e. $(5\cdot 9^x)"=5\cdot (9^x) "$. To find the derivative $(9^x)"$, apply formula No. 5 of the table of derivatives, substituting $a=9$ and $u=x$ into it: $(9^x)"=9^x\cdot \ ln9\cdot x"$. Since $x"=1$, then $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Now we can continue equality (3.3):

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)"= \frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9 ^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right) ^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x. $$

We can again return from powers to radicals (i.e., roots), writing $\left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))$ in the form $\ frac(1)(\left(\sin(5\cdot 9^x)\right)^(\frac(4)(7)))=\frac(1)(\sqrt(\sin^4(5\ cdot 9^x)))$. Then the derivative will be written in this form:

$$ y"=\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x) (\sqrt(\sin^4(5\cdot 9^x))).

Answer: $y"=\frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x)(\sqrt(\sin^4(5\ cdot 9^x)))$.

Example No. 4

Show that formulas No. 3 and No. 4 of the table of derivatives are a special case of formula No. 2 of this table.

Formula No. 2 of the table of derivatives contains the derivative of the function $u^\alpha$. Substituting $\alpha=-1$ into formula No. 2, we get:

$$(u^(-1))"=-1\cdot u^(-1-1)\cdot u"=-u^(-2)\cdot u"\tag (4.1)$$

Since $u^(-1)=\frac(1)(u)$ and $u^(-2)=\frac(1)(u^2)$, then equality (4.1) can be rewritten as follows: $ \left(\frac(1)(u) \right)"=-\frac(1)(u^2)\cdot u"$. This is formula No. 3 of the derivatives table.

Let us turn again to formula No. 2 of the table of derivatives. Let's substitute $\alpha=\frac(1)(2)$ into it:

$$\left(u^(\frac(1)(2))\right)"=\frac(1)(2)\cdot u^(\frac(1)(2)-1)\cdot u" =\frac(1)(2)u^(-\frac(1)(2))\cdot u"\tag (4.2) $$

Since $u^(\frac(1)(2))=\sqrt(u)$ and $u^(-\frac(1)(2))=\frac(1)(u^(\frac( 1)(2)))=\frac(1)(\sqrt(u))$, then equality (4.2) can be rewritten as follows:

$$ (\sqrt(u))"=\frac(1)(2)\cdot \frac(1)(\sqrt(u))\cdot u"=\frac(1)(2\sqrt(u) )\cdot u" $$

The resulting equality $(\sqrt(u))"=\frac(1)(2\sqrt(u))\cdot u"$ is formula No. 4 of the table of derivatives. As you can see, formulas No. 3 and No. 4 of the derivative table are obtained from formula No. 2 by substituting the corresponding $\alpha$ value.

Functions complex type do not always fit the definition of a complex function. If there is a function of the form y = sin x - (2 - 3) · a r c t g x x 5 7 x 10 - 17 x 3 + x - 11, then it cannot be considered complex, unlike y = sin 2 x.

This article will show the concept of a complex function and its identification. Let's work with formulas for finding the derivative with examples of solutions in the conclusion. The use of the derivative table and differentiation rules significantly reduces the time for finding the derivative.

Basic definitions

Definition 1

A complex function is one whose argument is also a function.

It is denoted this way: f (g (x)). We have that the function g (x) is considered an argument f (g (x)).

Definition 2

If there is a function f and is a cotangent function, then g(x) = ln x is the function natural logarithm. We find that the complex function f (g (x)) will be written as arctg(lnx). Or a function f, which is a function raised to the 4th power, where g (x) = x 2 + 2 x - 3 is considered an entire rational function, we obtain that f (g (x)) = (x 2 + 2 x - 3) 4 .

Obviously g(x) can be complex. From the example y = sin 2 x + 1 x 3 - 5 it is clear that the value of g has the cube root of the fraction. This expression can be denoted as y = f (f 1 (f 2 (x))). From where we have that f is a sine function, and f 1 is a function located under square root, f 2 (x) = 2 x + 1 x 3 - 5 - fractional rational function.

Definition 3

The degree of nesting is determined by any natural number and is written as y = f (f 1 (f 2 (f 3 (... (f n (x)))))) .

Definition 4

The concept of function composition refers to the number of nested functions according to the conditions of the problem. To solve, use the formula for finding the derivative of a complex function of the form

(f (g (x))) " = f " (g (x)) g " (x)

Examples

Example 1

Find the derivative of a complex function of the form y = (2 x + 1) 2.

Solution

The condition shows that f is a squaring function, and g(x) = 2 x + 1 is considered a linear function.

Let's apply the derivative formula for a complex function and write:

f " (g (x)) = ((g (x)) 2) " = 2 (g (x)) 2 - 1 = 2 g (x) = 2 (2 x + 1) ; g " (x) = (2 x + 1) " = (2 x) " + 1 " = 2 x " + 0 = 2 1 x 1 - 1 = 2 ⇒ (f (g (x))) " = f " (g (x)) g " (x) = 2 (2 x + 1) 2 = 8 x + 4

It is necessary to find the derivative with a simplified original form of the function. We get:

y = (2 x + 1) 2 = 4 x 2 + 4 x + 1

From here we have that

y " = (4 x 2 + 4 x + 1) " = (4 x 2) " + (4 x) " + 1 " = 4 (x 2) " + 4 (x) " + 0 = = 4 · 2 · x 2 - 1 + 4 · 1 · x 1 - 1 = 8 x + 4

The results were the same.

When solving problems of this type, it is important to understand where the function of the form f and g (x) will be located.

Example 2

You should find the derivatives of complex functions of the form y = sin 2 x and y = sin x 2.

Solution

The first function notation says that f is the squaring function and g(x) is the sine function. Then we get that

y " = (sin 2 x) " = 2 sin 2 - 1 x (sin x) " = 2 sin x cos x

The second entry shows that f is a sine function, and g(x) = x 2 denotes a power function. It follows that we write the product of a complex function as

y " = (sin x 2) " = cos (x 2) (x 2) " = cos (x 2) 2 x 2 - 1 = 2 x cos (x 2)

The formula for the derivative y = f (f 1 (f 2 (f 3 (. . . (f n (x))))) will be written as y " = f " (f 1 (f 2 (f 3 (. . . ( f n (x))))) · f 1 " (f 2 (f 3 (. . . (f n (x)))) · · f 2 " (f 3 (. . . (f n (x))) )) · . . . fn "(x)

Example 3

Find the derivative of the function y = sin (ln 3 a r c t g (2 x)).

Solution

This example shows the difficulty of writing and determining the location of functions. Then y = f (f 1 (f 2 (f 3 (f 4 (x))))) denote where f , f 1 , f 2 , f 3 , f 4 (x) is the sine function, the function of raising to 3 degree, function with logarithm and base e, arctangent and linear function.

From the formula for defining a complex function we have that

y " = f " (f 1 (f 2 (f 3 (f 4 (x)))) f 1 " (f 2 (f 3 (f 4 (x)))) f 2 " (f 3 (f 4 (x)) f 3 " (f 4 (x)) f 4 " (x)

We get what we need to find

  1. f " (f 1 (f 2 (f 3 (f 4 (x))))) as the derivative of the sine according to the table of derivatives, then f " (f 1 (f 2 (f 3 (f 4 (x)))) ) = cos (ln 3 a r c t g (2 x)) .
  2. f 1 " (f 2 (f 3 (f 4 (x)))) as the derivative of a power function, then f 1 " (f 2 (f 3 (f 4 (x)))) = 3 ln 3 - 1 a r c t g (2 x) = 3 ln 2 a r c t g (2 x) .
  3. f 2 " (f 3 (f 4 (x))) as a logarithmic derivative, then f 2 " (f 3 (f 4 (x))) = 1 a r c t g (2 x) .
  4. f 3 " (f 4 (x)) as the derivative of the arctangent, then f 3 " (f 4 (x)) = 1 1 + (2 x) 2 = 1 1 + 4 x 2.
  5. When finding the derivative f 4 (x) = 2 x, remove 2 from the sign of the derivative using the formula for the derivative of a power function with an exponent equal to 1, then f 4 " (x) = (2 x) " = 2 x " = 2 · 1 · x 1 - 1 = 2 .

We combine the intermediate results and get that

y " = f " (f 1 (f 2 (f 3 (f 4 (x)))) f 1 " (f 2 (f 3 (f 4 (x)))) f 2 " (f 3 (f 4 (x)) f 3 " (f 4 (x)) f 4 " (x) = = cos (ln 3 a r c t g (2 x)) 3 ln 2 a r c t g (2 x) 1 a r c t g (2 x) 1 1 + 4 x 2 2 = = 6 cos (ln 3 a r c t g (2 x)) ln 2 a r c t g (2 x) a r c t g (2 x) (1 + 4 x 2)

Analysis of such functions is reminiscent of nesting dolls. Differentiation rules cannot always be applied explicitly using a derivative table. Often you need to use a formula for finding derivatives of complex functions.

There are some differences between complex appearance and complex functions. With a clear ability to distinguish this, finding derivatives will be especially easy.

Example 4

It is necessary to consider giving such an example. If there is a function of the form y = t g 2 x + 3 t g x + 1, then it can be considered as a complex function of the form g (x) = t g x, f (g) = g 2 + 3 g + 1. Obviously, it is necessary to use the formula for a complex derivative:

f " (g (x)) = (g 2 (x) + 3 g (x) + 1) " = (g 2 (x)) " + (3 g (x)) " + 1 " = = 2 · g 2 - 1 (x) + 3 g " (x) + 0 = 2 g (x) + 3 1 g 1 - 1 (x) = = 2 g (x) + 3 = 2 t g x + 3 ; g " (x) = (t g x) " = 1 cos 2 x ⇒ y " = (f (g (x))) " = f " (g (x)) g " (x) = (2 t g x + 3 ) · 1 cos 2 x = 2 t g x + 3 cos 2 x

A function of the form y = t g x 2 + 3 t g x + 1 is not considered complex, since it has the sum of t g x 2, 3 t g x and 1. However, t g x 2 is considered a complex function, then we obtain a power function of the form g (x) = x 2 and f, which is a tangent function. To do this, differentiate by amount. We get that

y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + (3 t g x) " + 1 " = = (t g x 2) " + 3 (t g x) " + 0 = (t g x 2) " + 3 cos 2 x

Let's move on to finding the derivative of a complex function (t g x 2) ":

f " (g (x)) = (t g (g (x))) " = 1 cos 2 g (x) = 1 cos 2 (x 2) g " (x) = (x 2) " = 2 x 2 - 1 = 2 x ⇒ (t g x 2) " = f " (g (x)) g " (x) = 2 x cos 2 (x 2)

We get that y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + 3 cos 2 x = 2 x cos 2 (x 2) + 3 cos 2 x

Functions of a complex type can be included in complex functions, and complex functions themselves can be components of functions of a complex type.

Example 5

For example, consider a complex function of the form y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x (x 2 + 1)

This function can be represented as y = f (g (x)), where the value of f is a function of the base 3 logarithm, and g (x) is considered the sum of two functions of the form h (x) = x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 and k (x) = ln 2 x (x 2 + 1) . Obviously, y = f (h (x) + k (x)).

Consider the function h(x). This is the ratio l (x) = x 2 + 3 cos 3 (2 x + 1) + 7 to m (x) = e x 2 + 3 3

We have that l (x) = x 2 + 3 cos 2 (2 x + 1) + 7 = n (x) + p (x) is the sum of two functions n (x) = x 2 + 7 and p (x) = 3 cos 3 (2 x + 1) , where p (x) = 3 p 1 (p 2 (p 3 (x))) is a complex function with numerical coefficient 3, and p 1 is a cube function, p 2 by a cosine function, p 3 (x) = 2 x + 1 by a linear function.

We found that m (x) = e x 2 + 3 3 = q (x) + r (x) is the sum of two functions q (x) = e x 2 and r (x) = 3 3, where q (x) = q 1 (q 2 (x)) is a complex function, q 1 is a function with an exponential, q 2 (x) = x 2 is a power function.

This shows that h (x) = l (x) m (x) = n (x) + p (x) q (x) + r (x) = n (x) + 3 p 1 (p 2 ( p 3 (x))) q 1 (q 2 (x)) + r (x)

When moving to an expression of the form k (x) = ln 2 x (x 2 + 1) = s (x) t (x), it is clear that the function is presented in the form of a complex s (x) = ln 2 x = s 1 ( s 2 (x)) with a rational integer t (x) = x 2 + 1, where s 1 is a squaring function, and s 2 (x) = ln x is logarithmic with base e.

It follows that the expression will take the form k (x) = s (x) · t (x) = s 1 (s 2 (x)) · t (x).

Then we get that

y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x (x 2 + 1) = = f n (x) + 3 p 1 (p 2 (p 3 (x))) q 1 (q 2 (x)) = r (x) + s 1 (s 2 (x)) t (x)

Based on the structures of the function, it became clear how and what formulas need to be used to simplify the expression when differentiating it. To become familiar with such problems and for the concept of their solution, it is necessary to turn to the point of differentiating a function, that is, finding its derivative.

If you notice an error in the text, please highlight it and press Ctrl+Enter