Карбин получение. Карбин - новая форма углерода, превосходящая по прочности графен и углеродные нанотрубки


Ширина запрещенной зоны α-карбина меняется в зависимости от величины механического напряжения.

Группа ученых из Университета Райса (Хьюстон, США) опубликовала результаты работы, посвященной изучению свойств карбина , представляющего собой цепочки из атомов углерода. Связи между её звеньями могут быть либо двойными, либо чередующимися (тройными и одинарными). Карбин представляет особый интерес для химиков и нанотехнологов, поскольку он наиболее прочный и жесткий из всех известных материалов.

Шестой элемент таблицы Менделеева, углерод, подарил миру множество необычных материалов. Помимо известных со школьной скамьи форм углерода — графита и алмаза, ученые добавили в эту коллекцию фуллерены, углеродные нанотрубки и множество экзотических модификаций, «сложенных» из листов графена.

Теоретически существование цепочечной формы углерода было предсказано еще в конце 19 века. Астрономы обнаружили признаки присутствия карбина в межзвездной пыли и веществе метеоритов. Карбин может образовываться естественным путем и при ударном сжатии графита. В лабораторных условиях достаточно длинные углеродные цепочки (до 44 атомов) удалось синтезировать лишь пару лет назад. Ученые также смогли получить и стабилизировать карбин при комнатной температуре.

Вокруг карбина было воздвигнуто множество предположений. Например, считалось, что при взаимодействии двух нитей карбина пройдет взрывная реакция их слияния. Ученые единогласно утверждали, что карбин — очень прочный и жесткий, но насколько? Экспериментальной проверкой теорий и численным измерением характеристик карбина исследователи занялись только сейчас.

Карбин действительно оказался «самым-самым». Его удельная жесткость (около 109 Н·м/кг) вдвое превосходит удельную жесткость графена (0,45·109 Н·м/кг), а удельная прочность (6,0·107 — 7,5·107 Н∙м/кг) также оставляет позади все известные материалы, включая графен (4,7·107 — 5,5 ·107 Н∙м/кг), углеродные нанотрубки (4,3·107 — 5,0·107 Н∙м/кг) и алмаз (2,5·107 — 6,5·107 Н∙м/кг). Для того чтобы разорвать цепочку карбина, надо приложить усилие порядка 10 нН.

Гибкость карбина (обычно находящуюся где-то между значениями этого показателя для большинства полимеров и цепочки ДНК) можно «отключать», присоединив к концу цепочки определенную химическую группу. В этом случае цепочка карбина превращается из «нитки» в «иголку».

Что же касается стабильности карбина, исследователи согласились, что «взрыв» при контакте двух углеродных цепочек действительно возможен, но для этого необходимо преодолеть некий активационный энергетический барьер. Благодаря этому барьеру цепочки карбина длиной около 14 нм могут оставаться стабильными при комнатной температуре примерно в течение суток.


Научные открытия в изучении свойств углерода.

Научное открытие "Новая кристаллическая форма углерода – карбин".

Формула открытия: "Экспериментально установлено неизвестное ранее явление существования новой кристаллической формы углерода – карбина, характеризующейся, в отличие от алмаза и графита, цепочечным (линейным) строением углеродных макромолекул".
Авторы: В. И. Касаточкин, А. М. Сладков, Ю. П. Кудрявцев, В. В. Коршак.
Номер и дата приоритета: № 107 от 4 ноября 1960 г.

Описание открытия.
Углерод – уникальный элемент. Он образует бесчисленное множество соединений, служит отличным топливом и исходным сырьем для получения самых разных материалов и изделий из них. Благодаря своему строению он образует громадное число соединений только с водородом, а общее количество всевозможных химических соединений, содержащих углерод, в том числе и в клетках живых существ, превышает два миллиона.

Не сразу подобрали ключи к разгадке поведения углерода, имеющего определенные структуры цепочек атомов. Этому предшествовали десятилетия научных поисков. Долгое время были известны только две кристаллические формы углерода – алмаз и графит, у которых совершенно разные свойства. Алмаз – самое твердое из известных веществ на Земле – прозрачен, обладает характерными свойствами электрического изолятора. Графит – очень мягкий, непрозрачный, хорошо проводит ток.

Доктор химических наук В. И. Касаточкин из Института горючих ископаемых вместе с учеными Института элементоорганических соединений доктором химических наук А. М. Сладковым, кандидатом химических наук Ю. П. Кудрявцевым и членом-корреспондентом АН СССР В. В. Коршаком открыли явление существования новой кристаллической формы углерода, названной карбином. Его получили из ацетилена. Третья форма кристаллического углерода обладает полупроводниковыми свойствами и фотопроводимостью.

Карбин обнаружен и в естественном виде. Недавно в кратере Рис (Бавария), который образовался в результате падения метеорита, был обнаружен кристаллический углерод, по структуре близкий к карбину. Такой же углерод найден учеными Института геохимии Академии Наук СССР в метеорите Новый Урей. Эти факты свидетельствуют о том, что карбин весьма устойчив и образуется в специфических природных условиях. Изучение этих условий поможет развитию космохимии. Резкие различия в структуре и свойствах трех форм кристаллического углерода: алмаза, графита и карбина – связаны с тремя возможными разновидностями гибридной электронной структуры углеродных атомов и, следовательно, с различиями в типах межатомных связей.

Согласно теории переходных форм углерода сочетание неодинаковых гибридных разновидностей атомов в единой полимерной структуре порождает множество аморфных форм этого вещества. Углеродное стекло – типичный пример аморфного углерода, в котором сочетаются все три вида гибридных атомов с тремя типами связей – алмазных, графитовых и карбиновых. Число сочетаний гибридных атомов в разных соотношениях очень велико. Вот почему сейчас появляются все новые углеродные материалы с разнообразными свойствами. Основа этих материалов – аморфный углерод.

Внимание к этим удивительным материалам во всем мире с каждым годом возрастает. Создаются крупные специализированные научные центры. Упорно ведутся поиски новых углеродных материалов. Необыкновенная легкость в сочетании с жаростойкостью, устойчивостью против агрессивных химических сред, неспособностью намагничиваться, несомненно, позволит этим веществам уже в ближайшее время занять ведущее положение среди других конструкционных материалов в прогрессивных областях науки.

Свойства

Карбин представляет собой мелкокристаллический порошок чёрного цвета (плотность 1,9÷2 г/см³), обладает полупроводниковыми свойствами. Получен в искусственных условиях из длинных цепочек атомов углерода , уложенных параллельно друг другу. Карбин - линейный полимер углерода. В молекуле карбина атомы углерода соединены в цепочки поочередно либо тройными и одинарными связями (полииновое строение), либо постоянно двойными связями (поликумуленовое строение). Это вещество впервые получено советскими химиками В. В. Коршаком , А. М. Сладковым, В. И. Касаточкиным и Ю. П. Кудрявцевым в начале 60-х гг. в Академии наук СССР (ИНЭОС) . Карбин обладает полупроводниковыми свойствами, причём под воздействием света его проводимость сильно увеличивается. На этом свойстве основано первое практическое применение - в фотоэлементах .

Предыстория открытия

Вопрос о возможности существования форм углерода с sp-гибридизацией атомов неоднократно рассматривался теоретически. Ещё в 1885 году немецкий химик Адольф Байер пытался синтезировать цепочечный углерод из производных ацетилена ступенчатым методом. Однако попытка Байера получить полиин (соединение, содержащие в молекуле не менее трех изолированных или сопряженных связей С≡С) оказалась неудачной, он получил углеводород , состоящий из четырех молекул ацетилена, соединенных в цепочку, и оказавшийся чрезвычайно неустойчивым. Неустойчивость низших полиинов послужила Байеру основанием для создания теории напряжения, в которой он постулировал невозможность получения цепочечного углерода. Авторитет ученого охладил интерес исследователей к синтезу полиинов, и работы в этом направлении надолго прекратились.

Одномерная (линейная) форма углерода долгое время оставалась недостающим звеном в аллотропии углерода. Важным стимулом для возобновления работ в этой области явилось открытие в 1930-е годы представителей полиацетиленового ряда в природе. В некоторых растениях и низших грибах были обнаружены соединения полиинового ряда, содержащие до пяти сопряженных ацетиленовых группировок. Одними из первых, кто решился бросить вызов авторитету предшественников, стали заведующий лабораторией высокомолекулярных соединений ИНЭОС Василий Владимирович Коршак и Алексей Михайлович Сладков. Проведённая ими работа привела к открытию новой линейной аллотропной формы углерода.

В 1959–1960 годах в лаборатории высокомолекулярных соединений ИНЭОС, возглавляемой академиком Коршаком, проводились систематические исследования реакции окислительного сочетания диацетиленовых соединений. Было установлено, что в присутствии солей двухвалентной меди эта реакция может быть проведена с любыми диацетиленовыми соединениями с образованием полимеров , элементарное звено которых сохраняет углеродный скелет исходного диацетилена. При этом сначала образуются полимерные полиацетилениды Cu(I). Этот вариант реакции окислительного сочетания был назван окислительной дегидрополиконденсацией. Ученые предположили, что в качестве мономера для такой поликонденсации можно взять и ацетилен. Действительно, при пропускании ацетилена в водно-аммиачный раствор соли Cu(II) быстро выпадал черный осадок. Именно этот путь привёл А.М.Сладкова, В.В.Коршака, В.И.Касаточкина и Ю.П.Кудрявцева к открытию линейной формы углерода, которую они, по предложению Сладкова, назвали «карбин ».

По словам первооткрывателей карбина, самым сложным для них было определить, какими же связями соединены в цепочку углеродные атомы. Это могли быть чередующиеся одинарные и тройные связи (–С≡С–С≡С–), только двойные связи (=С=С=С=С=), или и те, и другие одновременно. Лишь через несколько лет удалось доказать, что в полученном карбине двойных связей нет. Подтверждением полиинового строения цепочек послужило образование щавелевой кислоты при озонировании карбина.

Однако теория допускала существование и углеродного линейного полимера только с двойными связями, который и был получен в 1968 году аспиранткой Сладкова В.П.Непочатых: встречный синтез (восстановлением полимерного гликоля) привёл к образованию линейного полимера углерода с кумуленовыми связями, который назвали поликумуленом. Доказательством наличия двойных связей в полученном веществе стал тот факт, что при озонировании поликумулена получается только диоксид углерода .

Итак, были получены две формы линейного углерода: полииновая (–С≡С–) n , или α-карбин, и поликумуленовая (=С=С=) n , или β-карбин. Авторами открытия было проведено детальное исследование структуры карбина различными методами, изучены его термодинамические и электрофизические свойства.

Структура на карбина

По мнению некоторых исследователей, однозначных и строгих доказательств индивидуальности карбина и его строения до сих пор не получено, другие же авторы, наоборот, считают, что такие доказательства имеются. Дискуссия по поводу существования карбина во многом обусловлена тем, что диагностика его имеет ряд технических сложностей, поскольку при использовании высокоэнергетических методов возможен переход карбина в другие формы углерода. К тому же представления о структуре карбина долгое время отличались несовершенством. Авторы открытия карбина предложили модель его кристаллической структуры в виде совокупности цепочек кумуленового или полиинового типа, упакованных в кристаллы за счет вандерваальсовых сил . Цепочки полагались прямолинейными, поскольку каждый атом углерода находится в состоянии sp-гибридизации.

Действительно, к настоящему времени установлено, что структуру карбина образуют атомы углерода, собранные в цепочки двойными связями (β-карбин) или чередующимися одинарными и тройными связями (α-карбин). Полимерные цепочки имеют химически активные концы (т. е. несут локализованный отрицательный заряд) и изгибы с цепочечными вакансиями, в местах которых цепочки соединяются между собой за счет перекрывания π-орбиталей атомов углерода. Важное значение для образования сшивок имеет присутствие таких примесей металлов, как железо , калий . Убедительное свидетельство наличия зигзагов в линейной углеродной цепочке было получено в теоретической работе Коршака: результаты его расчета хорошо согласуются с ИК-спектром карбина.

На основании результатов дальнейших исследований структуры кристаллического карбина была предложена модель его элементарной ячейки. Согласно этой модели элементарная ячейка карбина составлена параллельными цепочками углерода, имеющими зигзаги, благодаря которым ячейка оказывается двуслойной. Толщину одного слоя составляет цепочка из шести атомов углерода. В нижнем слое цепочки плотно упакованы и расположены в центре и по углам гексагона , тогда как в верхнем слое центральная цепочка отсутствует, а в образовавшейся вакансии могут располагаться атомы примеси. Возможно, что они являются катализаторами кристаллизации карбина. Такая модель дает ключ к раскрытию феномена карбина и объясняет, в какой конфигурации может стабилизироваться в общем случае неустойчивая совокупность линейных цепочек углерода.

См. также

Ссылки

  • * В.І. Саранчук, В. В. Ошовський, Г. О. Власов. Хімія і фізика горючих копалин. - Донецьк: Східний видавничий дім, 2003. −204 с.
  • Углерод Алексея Сладкова - история открытия карбина
  • Сладков А. М., Кудрявцев Ю. П. Алмаз, графит, карбин - аллотропные формы углерода // Природа. 1969.№ 5. С.37-44.

Примечания


Wikimedia Foundation . 2010 .

Синонимы :

Карбин представляет собой мелкокристаллический порошок чёрного цвета (плотность 1,9÷2 г/см³), обладает полупроводниковыми свойствами. Получен в искусственных условиях из длинных цепочек атомов углерода , уложенных параллельно друг другу. Карбин - линейный полимер углерода. В молекуле карбина атомы углерода соединены в цепочки либо поочерёдно тройными и одинарными связями (полииновое строение), либо постоянно двойными связями (поликумуленовое строение). Это вещество впервые получено советскими химиками Ю.П.Кудрявцевым, А.М.Сладковым,В.И.Касаточкиным и В. В. Коршаком в начале 60-х гг в Академии наук СССР (ИНЭОС) . Карбин обладает полупроводниковыми свойствами, причём под воздействием света его проводимость сильно увеличивается. На этом свойстве основано первое практическое применение - в фотоэлементах .

Предыстория открытия

Вопрос о возможности существования форм углерода с sp-гибридизацией атомов неоднократно рассматривался теоретически. Ещё в 1885 году немецкий химик Адольф Байер пытался синтезировать цепочечный углерод из производных ацетилена ступенчатым методом. Однако попытка Байера получить полиин (соединение, содержащие в молекуле не менее трёх изолированных или сопряженных связей С≡С) оказалась неудачной, он получил углеводород , состоящий из четырёх молекул ацетилена, соединенных в цепочку, и оказавшийся чрезвычайно неустойчивым. Неустойчивость низших полиинов послужила Байеру основанием для создания теории напряжения, в которой он постулировал невозможность получения цепочечного углерода. Авторитет ученого охладил интерес исследователей к синтезу полиинов, и работы в этом направлении надолго прекратились.

Одномерная (линейная) форма углерода долгое время оставалась недостающим звеном в аллотропии углерода. Важным стимулом для возобновления работ в этой области явилось открытие в 1930-е годы представителей полиацетиленового ряда в природе. В некоторых растениях и низших грибах были обнаружены соединения полиинового ряда, содержащие до пяти сопряженных ацетиленовых группировок. Одними из первых, кто решился бросить вызов авторитету предшественников, стали химики лаборатории высокомолекулярных соединений ИНЭОС Алексей Михайлович Сладков, Юрий Павлович Кудрявцев . Проведённая ими работа привела к открытию новой линейной аллотропной формы углерода.

В 1959–1960 годах в лаборатории высокомолекулярных соединений ИНЭОС, возглавляемой академиком Коршаком, проводились систематические исследования реакции окислительного сочетания диацетиленовых соединений. Было установлено, что в присутствии солей двухвалентной меди эта реакция может быть проведена с любыми диацетиленовыми соединениями с образованием полимеров , элементарное звено которых сохраняет углеродный скелет исходного диацетилена. При этом сначала образуются полимерные полиацетилениды Cu(I). Этот вариант реакции окислительного сочетания был назван окислительной дегидрополиконденсацией. Ученые предположили, что в качестве мономера для такой поликонденсации можно взять и ацетилен. Действительно, при пропускании ацетилена в водно-аммиачный раствор соли Cu(II) быстро выпадал черный осадок. Именно этот путь привёл А.М.Сладкова, Ю.П.Кудрявцева, В.В.Коршака, и В.И.Касаточкина к открытию линейной формы углерода, которую назвали «карбин ».

По словам первооткрывателей карбина, самым сложным для них было определить, какими же связями соединены в цепочку углеродные атомы. Это могли быть чередующиеся одинарные и тройные связи (–С≡С–С≡С–), только двойные связи (=С=С=С=С=), или и те, и другие одновременно. Лишь через несколько лет удалось доказать, что в полученном карбине двойных связей нет. Подтверждением полиинового строения цепочек послужило образование щавелевой кислоты при озонировании карбина.

Однако теория допускала существование и углеродного линейного полимера только с двойными связями, который и был получен в 1968 году В.П.Непочатых: встречный синтез (восстановлением полимерного гликоля) привёл к образованию линейного полимера углерода с кумуленовыми связями, который назвали поликумуленом. Доказательством наличия двойных связей в полученном веществе стал тот факт, что при озонировании поликумулена получается только диоксид углерода .

Итак, были получены две формы линейного углерода: полииновая (–С≡С–) n , или α-карбин, и поликумуленовая (=С=С=) n , или β-карбин. Авторами открытия было проведено детальное исследование структуры карбина различными методами, изучены его термодинамические и электрофизические свойства.

Известно несколько сообщений о находках карбиносодержащих углеродных веществ, сделанных А.Г.Виттакером в цейлонском графите и графите различных штатов США , В.И.Касаточкиным в природном алмазе, Ф.Дж.Рейтингером в графите Шри-Ланки, Г.В.Вдовыкиным в метеорите .

Детальные способы получения, физические и химические свойства карбина и его применения описаны в ряде работ Ю.П.Кудрявцева, С.Е.Евсюкова, М.Б.Гусевой,В.П.Бабаева, Т.Г.Шумиловой .

Структура карбина

По мнению некоторых исследователей, однозначных и строгих доказательств индивидуальности карбина и его строения до сих пор не получено, другие же авторы, наоборот, считают, что такие доказательства имеются. Дискуссия по поводу существования карбина во многом обусловлена тем, что диагностика его имеет ряд технических сложностей, поскольку при использовании высокоэнергетических методов возможен переход карбина в другие формы углерода. К тому же представления о структуре карбина долгое время отличались несовершенством. Авторы открытия карбина предложили модель его кристаллической структуры в виде совокупности цепочек кумуленового или полиинового типа, упакованных в кристаллы за счет вандерваальсовых сил . Цепочки полагались прямолинейными, поскольку каждый атом углерода находится в состоянии sp-гибридизации.

Действительно, к настоящему времени установлено, что структуру карбина образуют атомы углерода, собранные в цепочки двойными связями (β-карбин) или чередующимися одинарными и тройными связями (α-карбин). Полимерные цепочки имеют химически активные концы (т. е. несут локализованный отрицательный заряд) и изгибы с цепочечными вакансиями, в местах которых цепочки соединяются между собой за счет перекрывания π-орбиталей атомов углерода. Важное значение для образования сшивок имеет присутствие таких примесей металлов, как железо , калий . Убедительное свидетельство наличия зигзагов в линейной углеродной цепочке было получено в теоретической работе Коршака: результаты его расчета хорошо согласуются с ИК-спектром карбина.

На основании результатов дальнейших исследований структуры кристаллического карбина была предложена модель его элементарной ячейки. Согласно этой модели элементарная ячейка карбина составлена параллельными цепочками углерода, имеющими зигзаги, благодаря которым ячейка оказывается двуслойной. Толщину одного слоя составляет цепочка из шести атомов углерода. В нижнем слое цепочки плотно упакованы и расположены в центре и по углам гексагона , тогда как в верхнем слое центральная цепочка отсутствует, а в образовавшейся вакансии могут располагаться атомы примеси. Возможно, что они являются Примечания

Свойства

Карбин представляет собой мелкокристаллический порошок чёрного цвета (плотность 1,9÷2 г/см³), обладает полупроводниковыми свойствами. Получен в искусственных условиях из длинных цепочек атомов углерода , уложенных параллельно друг другу. Карбин - линейный полимер углерода. В молекуле карбина атомы углерода соединены в цепочки поочередно либо тройными и одинарными связями (полииновое строение), либо постоянно двойными связями (поликумуленовое строение). Это вещество впервые получено советскими химиками В. В. Коршаком , А. М. Сладковым, В. И. Касаточкиным и Ю. П. Кудрявцевым в начале 60-х гг. в Академии наук СССР (ИНЭОС) . Карбин обладает полупроводниковыми свойствами, причём под воздействием света его проводимость сильно увеличивается. На этом свойстве основано первое практическое применение - в фотоэлементах .

Предыстория открытия

Вопрос о возможности существования форм углерода с sp-гибридизацией атомов неоднократно рассматривался теоретически. Ещё в 1885 году немецкий химик Адольф Байер пытался синтезировать цепочечный углерод из производных ацетилена ступенчатым методом. Однако попытка Байера получить полиин (соединение, содержащие в молекуле не менее трех изолированных или сопряженных связей С≡С) оказалась неудачной, он получил углеводород , состоящий из четырех молекул ацетилена, соединенных в цепочку, и оказавшийся чрезвычайно неустойчивым. Неустойчивость низших полиинов послужила Байеру основанием для создания теории напряжения, в которой он постулировал невозможность получения цепочечного углерода. Авторитет ученого охладил интерес исследователей к синтезу полиинов, и работы в этом направлении надолго прекратились.

Одномерная (линейная) форма углерода долгое время оставалась недостающим звеном в аллотропии углерода. Важным стимулом для возобновления работ в этой области явилось открытие в 1930-е годы представителей полиацетиленового ряда в природе. В некоторых растениях и низших грибах были обнаружены соединения полиинового ряда, содержащие до пяти сопряженных ацетиленовых группировок. Одними из первых, кто решился бросить вызов авторитету предшественников, стали заведующий лабораторией высокомолекулярных соединений ИНЭОС Василий Владимирович Коршак и Алексей Михайлович Сладков. Проведённая ими работа привела к открытию новой линейной аллотропной формы углерода.

В 1959–1960 годах в лаборатории высокомолекулярных соединений ИНЭОС, возглавляемой академиком Коршаком, проводились систематические исследования реакции окислительного сочетания диацетиленовых соединений. Было установлено, что в присутствии солей двухвалентной меди эта реакция может быть проведена с любыми диацетиленовыми соединениями с образованием полимеров , элементарное звено которых сохраняет углеродный скелет исходного диацетилена. При этом сначала образуются полимерные полиацетилениды Cu(I). Этот вариант реакции окислительного сочетания был назван окислительной дегидрополиконденсацией. Ученые предположили, что в качестве мономера для такой поликонденсации можно взять и ацетилен. Действительно, при пропускании ацетилена в водно-аммиачный раствор соли Cu(II) быстро выпадал черный осадок. Именно этот путь привёл А.М.Сладкова, В.В.Коршака, В.И.Касаточкина и Ю.П.Кудрявцева к открытию линейной формы углерода, которую они, по предложению Сладкова, назвали «карбин ».

По словам первооткрывателей карбина, самым сложным для них было определить, какими же связями соединены в цепочку углеродные атомы. Это могли быть чередующиеся одинарные и тройные связи (–С≡С–С≡С–), только двойные связи (=С=С=С=С=), или и те, и другие одновременно. Лишь через несколько лет удалось доказать, что в полученном карбине двойных связей нет. Подтверждением полиинового строения цепочек послужило образование щавелевой кислоты при озонировании карбина.

Однако теория допускала существование и углеродного линейного полимера только с двойными связями, который и был получен в 1968 году аспиранткой Сладкова В.П.Непочатых: встречный синтез (восстановлением полимерного гликоля) привёл к образованию линейного полимера углерода с кумуленовыми связями, который назвали поликумуленом. Доказательством наличия двойных связей в полученном веществе стал тот факт, что при озонировании поликумулена получается только диоксид углерода .

Итак, были получены две формы линейного углерода: полииновая (–С≡С–) n , или α-карбин, и поликумуленовая (=С=С=) n , или β-карбин. Авторами открытия было проведено детальное исследование структуры карбина различными методами, изучены его термодинамические и электрофизические свойства.

Структура на карбина

По мнению некоторых исследователей, однозначных и строгих доказательств индивидуальности карбина и его строения до сих пор не получено, другие же авторы, наоборот, считают, что такие доказательства имеются. Дискуссия по поводу существования карбина во многом обусловлена тем, что диагностика его имеет ряд технических сложностей, поскольку при использовании высокоэнергетических методов возможен переход карбина в другие формы углерода. К тому же представления о структуре карбина долгое время отличались несовершенством. Авторы открытия карбина предложили модель его кристаллической структуры в виде совокупности цепочек кумуленового или полиинового типа, упакованных в кристаллы за счет вандерваальсовых сил . Цепочки полагались прямолинейными, поскольку каждый атом углерода находится в состоянии sp-гибридизации.

Действительно, к настоящему времени установлено, что структуру карбина образуют атомы углерода, собранные в цепочки двойными связями (β-карбин) или чередующимися одинарными и тройными связями (α-карбин). Полимерные цепочки имеют химически активные концы (т. е. несут локализованный отрицательный заряд) и изгибы с цепочечными вакансиями, в местах которых цепочки соединяются между собой за счет перекрывания π-орбиталей атомов углерода. Важное значение для образования сшивок имеет присутствие таких примесей металлов, как железо , калий . Убедительное свидетельство наличия зигзагов в линейной углеродной цепочке было получено в теоретической работе Коршака: результаты его расчета хорошо согласуются с ИК-спектром карбина.

На основании результатов дальнейших исследований структуры кристаллического карбина была предложена модель его элементарной ячейки. Согласно этой модели элементарная ячейка карбина составлена параллельными цепочками углерода, имеющими зигзаги, благодаря которым ячейка оказывается двуслойной. Толщину одного слоя составляет цепочка из шести атомов углерода. В нижнем слое цепочки плотно упакованы и расположены в центре и по углам гексагона , тогда как в верхнем слое центральная цепочка отсутствует, а в образовавшейся вакансии могут располагаться атомы примеси. Возможно, что они являются катализаторами кристаллизации карбина. Такая модель дает ключ к раскрытию феномена карбина и объясняет, в какой конфигурации может стабилизироваться в общем случае неустойчивая совокупность линейных цепочек углерода.

См. также

Ссылки

  • * В.І. Саранчук, В. В. Ошовський, Г. О. Власов. Хімія і фізика горючих копалин. - Донецьк: Східний видавничий дім, 2003. −204 с.
  • Углерод Алексея Сладкова - история открытия карбина
  • Сладков А. М., Кудрявцев Ю. П. Алмаз, графит, карбин - аллотропные формы углерода // Природа. 1969.№ 5. С.37-44.

Примечания


Wikimedia Foundation . 2010 .

Синонимы :