Какие химические элементы входят в состав белка. Какие элементы входят в состав белков и какими свойствами они обладают? Начальные этапы в химии белка

Белки

Лекция 2

Функции белков

Химический состав белков

Характеристика протеиногенных аминокислот

Структура белков

Классификация белков

Свойства белков и методы исследования

Белки являются структур­ными компонентами органов и тканей, проявляют ферментативную активность (ферменты), участвуют в регуляции метаболизма. Транспортные белки, переносящие протоны и электроны через мембраны обеспечивают биоэнергетику: поглощение света, дыхание, выработку АТФ. Запасные белки (характерны в основном для растений) откладываются в семенах и используются для питания проростков в процессе прорастания. Сжигая АТФ, белки обеспечивают механическую деятельность, участву­ют в движении цитоплазмы и дру­гих клеточных органелл. Важна защитная функция белков: гидролитичес­кие ферменты лизосом и вакуолей расщепляют вредные вещества, попавшие в клетку; гликопротеины участвуют в защите растений от патогенов; белки выполняют криозащитную и антифризную функции. Один белок может вы­полнять две или более функций (неко­торые белки мембран могут выполнять структур­ную и ферментативную функции).

Удивительное разнообразие функций белков и большая распростра­ненность отразились в их названии – протеины (от греческого «рrоtos » - первичный, важнейший ). Как правило, содержание белков в растениях ниже, чем у животных: в вегетативных органах количество белка обычно 5-15% от сухой массы. Так, в листьях тимофеевки содержится 7% белка, а в листьях клевера и вики – 15%. Больше белка в семенах: у злаков в среднем 10-20%, у бобовых и масличных – 25-35%. Наиболее богаты белком семена сои – до 40%, а иногда и выше.

В растительных клетках белки обычно связаны с углеводами, липидами и другими соединениями, а также с мембранами, поэтому их трудно извлекать и получать чистые препараты, особенно из вегетативных органов. В связи с этим в растениях лучше изучены белки семян, где их больше и откуда они легче извлекаются.

Белки – органические соединения, имеющие следующий эле­ментарный состав: углерод 51-55 %; кислород 21-23 %; водород 6,6-7,3 %; азот 15-18 %; сера 0,3-2,4 %. В состав некоторых белков входит также фосфор (0,2-2 %), железо и другие элементы. Характерным показателем элементарного состава белков у всех орга­низмов является наличие азота , в среднем его принимают равным 16 % . Относительное постоянство этого показателя дает возможность использовать его для количественного определения белка: относитель­ное значение содержания белкового азота, в процентах, умножают на фактор пересчета – 6,25 (100: 16 = 6,25). По химической природе белки – гетерополимеры , постро­енные из остатков аминокислот . Аминокислотами (АК) называются органические соединения, в молекулах которых один или несколько атомов водорода замещены аминогруппами ( - NН 2 ).

В состав белков входят органогенные элементы и сера. Некоторые белки содержат фосфор, селен, металлы и др. Процентное содержание химических элементов в белках может варьироваться в зависимости от ткани или органа в пределах, представленных в табл. 1.2.

Поскольку белки являются полимерами, то представляют собой цепочку, состоящую из аминокислот. Аминокислотная последовательность в белковой молекуле всегда задана генетически. При этом нить аминокислот еще не является белком как таковым, т.е. она не способна выполнять функции белка. В живой клетке белки представляют собой не бесформенные нити аминокислот, а исключительно структурированные образования, имеющие определенную пространственную конфигурацию.

Таблица 1.2

В пространственной организации белковой молекулы различают четыре уровня. Первичная структура - последовательность аминокислот в виде цепочки. Вторичная структура - цепочка аминокислот закручена в виде а-спирали. Третичная структура - пространственное расположение полипептидной цепи может быть в виде клубка (глобулярные белки) или в виде волокна (фибриллярные белки) (рис. 1.4). Глобулярные белки хорошо растворимы в воде, к ним относятся яичный белок, казеин молока, белки плазмы крови. Фибриллярные белки либо нерастворимы в воде, либо плохо растворимы, к ним относятся белки мышц, костей, некоторые белки крови (фибрин). Четвертичная структура - объединение нескольких полипептидных цепей, которые могут иметь разные первичную, вторичную и третичную структуры.

В зависимости от строения третичной и четвертичной структуры белки делят на простые и сложные. Простые белки - протеины состоят только из аминокислот, сложные белки - протеиды содержат в своем составе белковую и небелковую части. Небелковая часть - кофактор может быть представлена нуклеиновыми кислотами, липидами, сахарами, витаминами, фосфорной кислотой и другими соединениями.

Свойства и структура белка определяются набором входящих в него аминокислот, их общим числом, последовательностью соединения друг с другом и пространственной конфигурацией самой молекулы. Аминокислота - это мелкое органическое соединение, содержащее две функциональные группы, одна из которых имеет кислотные свойства - карбоксильная группа, другая - аминогруппа проявляет себя как основание. Общая структурная формула выглядит следующим образом:

СООН - карбоксильная группа;

NH 2 - аминогруппа;

R - радикал.

Группировка, отмеченная серым цветом, присутствует у всех аминокислот в неизменном виде, а радикал у каждой аминокислоты свой - по строению радикала собственно и отличаются аминокислоты одна от другой

В настоящее время известно около 200 аминокислот, но в состав белка входят лишь 20 из них (табл. 1.3), в связи с чем их еще называют

«волшебными аминокислотами». Главное назначение аминокислот - это участие в построении белковых молекул организма. Но кроме этого аминокислоты самостоятельно выполняют разнообразные функции, представленные в табл. 1.3.

Часть этих аминокислот, а именно 12, могут синтезироваться в организме человека в достаточном или ограниченном количестве. Аминокислоты, которые синтезируются в организме в достаточном количестве, называются заменимыми аминокислотами. К ним относятся аланин, аспарагин, аспарагиновая кислота, глицин, глутамин, глутаминовая кислота, пролин, серин, тирозин, цистеин. Аминокислоты, которые синтезируются в организме в ограниченном количестве, получили название частично заменимые аминокислоты. Такими аминокислотами являются аргинин и гистидин, у взрослого человека они синтезируются в необходимом количестве, а у детей - в недостаточном.

Таблица 1.3

Краткая характеристика аминокислот

Название

Функция

Источник

Потребность, г

Заменимые аминокислоты

Аланин

Превращается в печени в глюкозу, участвуя в процессе глюконеогенеза

Крупа овсяная, крупа рисовая, молоко и молочные продукты, говядина, лосось

Аргинин

Участвует в белковом обмене (орнитиновый цикл). Ускоряет заживление ран. Препятствует образованию опухолей. Очищает печень, укрепляет иммунную систему

Грецкие орехи, кедровые орехи, семена тыквы, семена подсолнечника, семена кунжута, соевые бобы, молоко, мясо, рыба

Аспарагин

Участвует в реакциях пере- аминирования. Играет важную роль в синтезе аммиака. Предшественник аспарагиновой кислоты

Бобовые, спаржа, томаты, орехи, семена, молоко, мясо, яйца, рыба, морепродукты

Аспарагиновая кислота

Участвует в процессе глюконеогенеза и последующем запасании гликогена, в процессах синтеза ДНК и РНК. Ускоряет выработку иммуноглобулинов

Картофель, кокос, орехи, говядина, сыр,яйца

Продолжение

Название

Функция

Источник

Потребность, г

Гистидин

Участвует в формировании иммунного ответа, в процессах кроветворения

Злаки, рис, мясо

Глицин

Участвует в выработке гормонов. Является сырьем для производства других аминокислот. Тормозит передачу нервных импульсов. Активизирует работу иммунной системы

Петрушка, мясные продукты, молочные продукты, рыба

Глутамин

Является предшественником глутаминовой кислоты. Участвует в работе клеток тонкого кишечника и иммунной системы. Улучшает память

Картофель, зерновые, соя,орехи грецкие, свинина, говядина, молоко

Глутаминовая кислота

Играет главную роль в азотистом обмене. Принимает участие в переносе ионов калия в клетках центральной нервной системы и обезвреживает аммиак. Участвует в нормализации сахара в крови

Шпинат, мясо, молоко, рыба, сыр

Пролин

Принимает участие в синтезе коллагена. Способствует заживлению ран, улучшает структуру кожи

Мясо, молочные продукты, рыба, яйца

Серин

Участвует в образовании активных центров ряда ферментов, синтезе аминокислот. Требуется для обмена жирных кислот и жиров

Молочные продукты

Тирозин

Участвует в биосинтезе меланинов, дофамина, адреналина, гормонов щитовидной железы. Стимулирует деятельность головного мозга

Семена кунжута, семена тыквы, миндальные орехи, фрукты, молочные продукты

Продолжение

Название

Функция

Источник

Потребность, г

Цистеин

Участвует в формировании третичной структуры белковых молекул. Обладает антиоксидантными, антиканцерогенными и детоксикант- ными свойствами. Участвует в жировом обмене

Лук, чеснок, красный перец, молочные продукты, мясо, рыба (лосось), сыр

Незаменимые аминокислоты

Валин

Стимулирует умственную деятельность, активность и координацию. Источник энергии для мышц.

Молочные продукты, мясо, икра, зерна, хлебные злаки, бобовые, грибы, орехи

Изолейцин

Нормализует функции центральной нервной системы

Молочные продукты, мясо, рыба, яйца, орехи, соя, рожь, чечевица

Лейцин

Способствует восстановлению костей, кожи, мышц. Понижает уровень сахара в крови и стимулирует выделение гормона роста. Важное промежуточное звено в синтезе холестерина

Бобовые, рис, пшеница, орехи, мясо

Лизин

Участвует в кальциевом обмене, в формировании коллагена. Требуется для роста, восстановления тканей, синтеза гормонов, антител

Картофель, яблоки, молочные продукты, мясо, рыба, сыр

Метионин

Участвует в обмене жиров, витаминов, фосфолипидов. Необходим для формирования волос, кожи, ногтей. Оказывает липотропное действие

Кукуруза, творог, яйца, рыба (судак, сом, севрюга, треска), печень

Треонин

Препятствует отложению жира в печени. Способствует образованию коллагена, эластина и белков зубной эмали. Усиливает иммунную защиту

Орехи, семена, бобовые, молочные продукты, яйца, мясо, рыба (лосось), растительные продукты

Оставшиеся восемь аминокислот не могут синтезироваться в организме человека и животных и должны поступать с пищей, поэтому они получили название незаменимые аминокислоты. К ним относятся валин, изолейцин, лейцин, лизин, треонин, триптофан, фенилаланин и метионин. И отдельно следует выделить две аминокислоты - тирозин и цистеин, которые относятся к частично заменимым, но не потому, что организм не в состоянии их синтезировать, а потому, что для образования этих аминокислот необходимы незаменимые аминокислоты. Тирозин синтезируется из фенилаланина, а для образования цистеина необходима сера, которую он заимствует у метионина. Изложенную информацию можно иллюстрировать схемой, представленной на рис. 1.5.


Вот и дошла очередь до одного из самых важных вопросов в среде бодибилдинга - белков. Фундаментальной тема является потому, что белки являются главным строительным материалом для мышц, именно за счет него (белка) и видны (или, как вариант, не видны) результаты постоянных занятий. Тема не очень легкая, но если разобраться в ней основательно, то лишить себя рельефных мышц просто не получится.

Далеко не все те, кто относит себя к числу бодибилдеров или просто ходит в тренажерный зал, хорошо разбираются в теме белков. Обычно знания заканчиваются где-то на грани «белки - это хорошо, и их нужно есть». Нам же сегодня предстоит разбираться глубоко и основательно в таких вопросах, как:

Строение и функции белков;

Механизмы синтеза белков;

Каким образом белки выстраивают мышцы и прочее.

В целом, рассмотрим каждую мелочь в питании бодибилдеров, и уделим им пристальное внимание.

Белки: начинаем с теории

Как уже неоднократно упоминалось в прошлых материалах, пища попадает в организм человека в виде нутриентов: белков, жиров, углеводов , витаминов , минералов. Но еще ни разу не упоминалась информация о том, а в каком количестве нужно потреблять те или иные вещества, чтобы добиться определенных целей. Сегодня речь пойдет и об этом.

Если говорить об определении белка, то самым простым и понятным будет высказывание Энгельса относительно того, что существование белковых тел и есть жизнь. Тут сразу становится понятно, нет белка - нет жизни. Если же рассматривать это определение в плоскости бодибилдинга, то без белка не будет и рельефных мышц. А теперь самое время немного погрузиться в науку.

Белок (протеин) представляет собой высокомолекуляные органические вещества, которые состоят из альфа-кислот. Эти мельчайшие частицы соединяются в единую цепочку пептидными связями. В состав белка входит 20 видов аминокислот (9 из них незаменимые, то есть они не синтезируются в организме, а остальные 11 - заменимые).

К незаменимым относятся:

  • Лейцин;
  • Валин;
  • Изолейцин;
  • Лицин;
  • Триптофан;
  • Гистидин;
  • Треонин;
  • Метионин;
  • Фенилаланин.

В число заменимых входят:

  • Аланин;
  • Серин;
  • Цистин;
  • Аргенин;
  • Тирозин;
  • Пролин;
  • Глицин;
  • Аспарагин;
  • Глутамин;
  • Аспарагиновая и глутаминовая кислоты.

Кроме этих входящих в состав аминокислот существуют еще и другие, не входящие в состав, но играющие важную роль. Например, гамма-аминомасляная кислота участвует в процессе передачи нервных импульсов нервной системы. такой же функцией обладает и диоксифенилаланин. Без этих веществ, тренировка превратилась бы в непонятно что, а движения были бы похожи на беспорядочные рывки амебы.

Наиболее важные для организма (если рассматривать в плоскости метаболизма) аминокислоты:

Изолейцин;

Также эти аминокислоты известны как BCAA .

Каждая из трех аминокислот играет важную роль в процессах, связанных с энергетическими составляющими в работе мышц. А чтобы эти процессы проходили максимально правильно и эффективно, каждая из них (аминокислот) должна быть частью ежедневного рациона (вместе с натуральной пищей или в качестве добавок). Дабы ознакомиться с конкретными данными относительно того, в каком количестве нужно потреблять важные аминокислоты, изучите таблицу:

В составе всех белковых веществ находятся такие элементы, как:

  • Углерод;
  • Водород;
  • Сера;
  • Кислород;
  • Азот;
  • Фосфор.

Ввиду этого, очень важно не забывать о таком понятии, как азотистый баланс. Человеческий организм можно назвать своеобразной станцией по переработке азота. А все потому, что азот не только поступает внутрь тела вместе с продуктами питания, но также и выделяется из него (в процессе распада белков).

Разница между количеством потребляемого и выделяемого азота и составляет азотистый баланс. Он может быть, как положительным (когда потребляется большее количество, чем выделяется), так и отрицательном (наоборот). И если хочется набрать мышечную массу и нарастить красивые рельефные мышцы, возможным это будет только в условиях положительного азотистого баланса.

Важно :

В зависимости от того, насколько натренирован атлет, может понадобиться разное количество азота для поддержания необходимого уровня азотистого баланса (на 1 кг массы тела). Усредненные цифры такие:

  • Атлет с имеющимся стажем (порядка 2-3 лет) - 2г на 1кг массы тела;
  • Начинающий атлет (до 1 года) - 2 или 3г на 1кг массы тела.

Но белок является не только структурным элементом. Он также способен выполнять ряд других важных функций, о которых подробнее речь пойдет далее.

О функциях белков

Белки способны выполнять не только функцию роста (которая так интересует бодибилдеров), но также и множество других, не менее важных:

Человеческий организм - умная система, которая сама знает, как и что должно функционировать. Так, к примеру, тело знает, что белок может выступать в качестве источника энергии для работы (резервные силы), но расходовать эти запасы будет нецелесообразно, поэтому лучше расщеплять углеводы. Однако, когда в теле содержится малое количество углеводов, организму больше ничего не остается кроме как расщеплять белок. Так что очень важно не забывать о содержании достаточного количества углеводов в своем рационе.

Каждый отдельно взятый вид белка оказывает разное действие на организм и по-разному способствует росту мышечной массы. Обусловлено это разным химическим составом и особенностями структуры молекул. Это приводит лишь к тому, что атлету нужно помнить об источниках высококачественных белков, что и будут выступать в роли строительного материала для мышц. Здесь самая важная роль отведена такому значению, как биологическая ценность белков (то количество, которое откладывается в организме после употребления 100 граммов белков). Еще один важный нюанс - если биологическая ценность равна единице, то в состав этого белка входит весь необходимый набор незаменимых аминокислот.

Важно : рассмотрим важность биологической ценности на примере: в курином или перепелином яйце коэффициент равен 1, а в пшенице - ровно половина (0.54). Вот и получается, что даже если в продуктах будет содержаться одинаковое количество необходимых белков на 100г продукта, то из яиц их усвоится больше, чем из пшеницы.

Как только человек потребляет белки внутрь (вместе с пищей или в качестве пищевых добавок), то они начинают расщепляться в желудочно-кишечном тракте (благодаря ферментам) до более простых продуктов (аминокислот), а далее на:

  • Воду;
  • Углекислый газ;
  • Аммиак.

После этого вещества всасываются в кровь через стенки кишечника, чтобы потом транспортироваться ко всем органам и тканям.

Такие разные белки

Лучшей белковой пищей считается та, что имеет животное происхождение, так как в ней содержится больше питательных элементов и аминокислот, но не нужно пренебрегать и растительными белками. В идеале соотношение должно выглядеть так:

  • 70-80% пищи - животное происхождение;
  • 20-30% пищи - растительное происхождение.

Если рассматривать белки по степени усвояемости, то их можно разделить на две большие категории:

Быстрые. Молекулы расщепляются до своих простейших компонентов очень быстро:

  • Рыба;
  • Куриная грудка;
  • Яйца;
  • Морепродукты.

Медленные. Молекула расщепляются до своих простейших компонентов очень медленно:

  • Творог.

Если рассматривать белок через призму бодибилдинга, то здесь подразумевается высококонцентрированный белок (протеин). Самыми распространенными протеинами считаются такие (в зависимости от того, как их получают из продуктов):

  • Из сыворотки - быстрее всех усваивается, добывается из сыворотки и отличается самым высоким показателем биологической ценности;
  • Из яиц - всасывается в течении 4-6 часов и характеризуется высоким значением биологической ценности;
  • Из сои - высокий уровень биологической ценности и быстрое усвоение;
  • Казеиновый - усваивается дольше остальных.

Атлетам вегетарианцам нужно запомнить одну вещь: растительный белок (из сои и грибов) является неполноценным (в частности по составу аминокислот).

Поэтому не забывайте учитывать всю эту важную информацию в процессе формирования своего рациона. Особенно важно учитывать незаменимые аминокислоты и соблюдать их баланс при употреблении. Далее поговорим о строении белков

Немного информации о строении белков

Как вам уже известно, белки представляют собой сложные высокомолекулярные органические вещества, у которых 4-х уровневая структурная организация:

  • Первичная;
  • Вторичная;
  • Третичная;
  • Четвертичная.

Атлету совсем не обязательно вникать в подробности того, как устроены элементы и связи в белковых структурах, а вот с практической частью этого вопроса нам сейчас и предстоит разобраться.

Одни белки усваиваются в течение короткого отрезка времени, другим - требуется намного больше. И зависит это, в первую очередь, от строения белков. К примеру, белки в яйцах и молоке усваиваются очень быстро за счет того, что находятся в виде отдельных молекул, которые свернуты в клубки. В процессе поедания, часть из этих связей теряется, а организму становится намного проще усвоить измененную (упрощенную) структуру белка.

Конечно, в результате тепловой обработки пищевая ценность продуктов несколько уменьшается, но это еще не повод для того, чтобы есть продукты сырыми (не варить яйца и не кипятить молоко).

Важно : если вы хотите есть сырые яйца, то вместо куриных можно есть перепелиные (перепелки не подвержены сальмонеллезу, так как температура их тела составляет более 42 градусов).

Если говорить о мясе, то их волокна не предназначены изначально для того, чтобы их ели. Их главная задача - выработка силы. Именно из-за этого волокна мяса жесткие, пронизаны поперечными связями и их сложно переваривать. Варка мяса слегка упрощает этот процесс и помогает желудочно-кишечному тракту разрушать поперечные связи в волокнах. Но даже при таких условиях для усвоения мяса потребуется от 3 до 6 часов. В качестве бонуса за такие «мучения» выступает креатин, который является природным источником повышения работоспособности и силы.

Большинство же растительных белков содержатся в бобовых и различных семенах. Белковые связи в них «запрятаны» достаточно сильно, поэтому для того, чтобы достать их для работы организма, нужно много времени и сил. Таким же сложным для переваривания является и грибной белок. Золотой серединой в мире растительных белков является соя, которая легко усваивается и обладает достаточной биологической ценностью. Но это не значит, что одной сои будет достаточно, белок у нее неполноценный, поэтому его обязательно нужно комбинировать с белками животного происхождения.

А сейчас самое время внимательно присмотреться к продуктам, у которых самое большое содержание белка, ведь именно они помогут нарастить рельефные мышцы:

Внимательно изучив таблицу, можно сразу же составить свой идеальный рацион на весь день. Здесь главное не забывать об основных принципах рационального питания, а также о необходимом количестве белка, которое потребляется в течение суток. Чтобы закрепить материал, приведем пример:

Очень важно не забывать о том, что потреблять белковую пищу нужно разнообразную. Не нужно мучить себя и всю неделю кряду есть одну куриную грудку или творог. Намного эффективней чередовать продукты и тогда рельефные мышцы не за горами.

И еще один вопрос, с которым нужно разобраться, на очереди.

Как оценивать качество белков: критерии

В материале уже упоминался термин «биологическая ценность». Если рассматривать его значения с химической точки зрения, то это будет то количество азота, которое задерживается в организме (от общего поступившего количества). Измерения эти основаны на том, что чем выше содержание необходимых незаменимых аминокислот, то тем выше показатели задержки азота.

Но это не единственный показатель. Кроме него существуют и другие:

Аминокислотный профиль (полный). Все белки в организме должны быть сбалансированы по своему составу, то есть белки в пище с незаменимыми аминокислотами должны полностью соответствовать тем белкам, что находятся в организме человека. Только в таких условиях синтез собственных белковых соединений не будет нарушен и перенаправлен не в сторону роста, а в сторону распада.

Доступность в белках аминокислот. Продукты, в которых содержится большое количество красителей и консервантов, имеют меньше доступных аминокислот. Такой же эффект вызывает и сильная тепловая обработка.

Способность усваиваться. Этот показатель отражает то, как много времени необходимо для расщепления белков на простейшие составляющие с их последующим всасыванием в кровь.

Утилизация белков (чистая). Этот показатель дает информацию, как о том насколько задерживается азот, а также общее количество перевариваемого белка.

Эффективность белков. Особый показатель, который демонстрирует эффективность воздействия того или иного белка на прирост мышечной массы.

Уровень усвоения белков по составу аминокислот. Здесь важно учитывать, как химическую важность и ценность, так и биологическую. Когда коэффициент равен единице, это значит, что продукт оптимально сбалансирован и является отличным источником протеина. А теперь самое время более конкретно посмотреть на цифры относительно каждого продукта из рациона атлета (см. рисунок):

А теперь самое время подвести итоги.

Самое важное, что нужно запомнить

Было бы неправильно не подвести итог всего вышесказанного и не выделить самое важное, что нужно запомнить тем, кто стремится научиться ориентироваться в непростом вопросе создания оптимального рациона для роста рельефных мышц. Так что если вы хотите правильно включать белок в свое питание, то не забывайте о таких особенностях и нюансах, как:

  • Важно, чтобы в рационе преобладали белки животного, а не растительного происхождения (в соотношении 80% к 20%);
  • Лучше всего сочетать белки животного и растительного происхождения в своем рационе;
  • Всегда помните о необходимой норме белков в соответствии с массой тела (2-3г на 1кг массы тела);
  • Не забывайте о качестве протеина, который потребляете (то есть следите за тем, откуда вы его получаете);
  • Не исключайте из виду аминокислоты, которые организм не может сам продуцировать;
  • Старайтесь не обеднять свой рацион и избегайте перекосов в сторону тех или иных нутриентов;
  • Для того, чтобы белки лучше всего усваивались, принимайте витамины и целые комплексы.

Понравилось? - Расскажи друзьям!

Белки являются сложными органическими соединениями, состоящими из аминокислот. Химический анализ показал, что белки состоят из следующих элементов:

    Углерод 50-55 %

    Водород 6-7 %

    Кислород 21-23 %

    Азот 15-17 %

    Сера 0,3-2,5 %.

В составе отдельных белков обнаружены также фосфор, йод, железо, медь и др. макро- и микровещества.

Содержание основных химических элементов может различаться в отдельных белках, исключение составляет азот, среднее количество которого характеризуется наибольшим постоянством и составляет 16 %. В связи с этим существует способ определения количества белка по входящему в его состав азоту. Зная, что 6,25 грамм белка содержит 1 грамм азота, можно найти количество белка, умножив найденное количество азота на коэффициент 6,25.

2. 4. Аминокислоты.

Аминокислоты – карбоновые кислоты альфа-углеродный атом водорода которых замещен на аминогруппу. Белки состоят из аминокислот. В настоящее время известно более 200 различных аминокислот. В организме человека их около 60, а в состав белков входят только 20 аминокислот, которые называют природными или протеиногенными. 19 из них являются альфа-аминокислотами, это означает, что аминогруппа присоединена к альфа-углеродному атому карбоновой кислоты. Общая формула этих аминокислот выглядит следующим образом.

Только аминокислота пролин не соответствует этой формуле, её относят к иминокислотам.

Химические названия аминокислот, для краткости сокращают, например, глутаминовая кислота ГЛУ, серин СЕР и т.д. для записи первичной структуры белков в последнее время стали пользоваться только однобуквенными символами.

Во всех аминокислотах есть общие группировки: -СН2, -NН2, -СООН, они придают общие химические свойства белкам, и радикалы, химическая природа которых разнообразна. Именно они определяют структурные и функциональные особенности аминокислот.

Классификации аминокислот основана на их физико-химических свойствах.

По строению радикалов:

    Циклические - гомоциклические ФЕН, ТИР, гетероциклические ТРИ, ГИС.

    Ациклические – моноаминомонокарбоновые ГЛИ, АЛА, СЕР, ЦИС, ТРЕ, МЕТ, ВАЛ, ЛЕЙ, ИЛЕЙ,НЛЕЙ, моноаминодикарбоновые АСП, ГЛУ, диаминомонокарбоновые ЛИЗ, АРГ.

По образованию в организме:

    Заменимые – могут синтезироваться в организме из веществ белковой и небелковой природы.

    Незаменимые – не могут синтезироваться в организме, поэтому должны поступать только с пищей – все циклические аминокислоты, ТРЕ, ВАЛ, ЛЕЙ, ИЛЕЙ.

Биологическое значение аминокислот:

    Входят в состав белков организма человека.

    Входят в состав пептидов организма человека.

    Из аминокислот образованы в организме многие низкомолекулярные биологически активные вещества: ГАМК, биогенные амины и т.д.

    Часть гормонов в организме – производные аминокислот (гормоны щитовидной железы, адреналин).

    Предшественники азотистых оснований, входящих в состав нуклеиновых кислот.

    Предшественники порфиринов, идущих на биосинтез гема для гемоглобина и миоглобина.

    Предшественники азотистых оснований, входящих в состав сложных липидов (холина, этаноламина).

    Участвуют в биосинтезе медиаторов в нервной системе (ацетилхолин, дофамин, серотонин, норадреналин и др.).

Свойства аминокислот:

    Хорошо растворимы в воде.

    В водном растворе существуют в виде равновесной смеси биполярного иона, катионной и анионной форм молекулы. Равновесие зависит от рН среды.

NH3-CH-COOH NH3-CH-COO NH2-CH-COO

R + ОН R R + Н

Катионная форма Биполярный ион Анионная форма

Щелочная среда рН Кислая среда

    Способны двигаться в электрическом поле, что используется для разделения аминокислот с помощью электрофореза.

    Проявляют амфотерные свойства.

    Могут играть роль буферной системы, т.к. могут реагировать как слабое основание и слабая кислота.

Cодержание:

Что такое белок и какие функции в организме он берет на себя. Какие элементы входят в его состав и в чем особенность этого вещества.

Белки – главный строительный материал в человеческом организме. Если рассматривать в целом, то эти вещества составляют пятую часть нашего тела. В природе известна группа подвидов – только в теле человека содержится пять миллионов разных вариантов. С его участием формируются клетки, считающиеся главной составляющей частью живых тканей организма. Какие элементы входят в состав белков и в чем особенность вещества?

Тонкости состава

Молекулы белка в теле человека отличаются строением и берут на себя определенные функции. Так, главным сократительным белком считается миозин, который формирует мускулатуру и гарантирует передвижение тела. Он обеспечивает работу кишечника и движение крови по сосудам человека. Не менее важное вещество в организме – креатин. Функция вещества состоит в защите кожи от негативных действий – лучевых, температурных, механических и прочих. Также креатин защищает от поступления микробов извне.

В состав белков входят аминокислоты. При этом первая из них открыта в начале XIX века, а весь аминокислотный состав известен ученым с 30-х годов прошлого века. Интересно, что из двух сотен аминокислот, которые открыты сегодня, только два десятка формируют миллионы различных по структуре белков.

Главное отличие структуры – в наличии радикалов, имеющих различную природу. Кроме того, аминокислоты часто классифицируются с учетом электрического заряда. Каждая из рассматриваемых составляющих имеет общие характеристики – способность вступать в реакцию со щелочами и кислотами, растворимость в воде и так далее. Почти все представители аминокислотной группы участвуют в метаболических процессах.

Рассматривая состав белков, стоит выделить две категории аминокислот – заменимые и незаменимые. Они отличаются между собой способностью синтезироваться в организме. Первые вырабатываются в органах, что гарантирует хотя бы частичное покрытие текущего дефицита, а вторые – поступают только с едой. Если количество любой из аминокислот снижается, то это приводит к нарушениям, а иногда и к гибели.

Белок, в котором присутствует полный аминокислотный набор, носит название «биологически полноценный». Такие вещества входят в состав животной пищи. Полезными исключениями считаются и некоторые представители растений – например, фасоль, горох и соя. Главный параметр, по которому судят о пользе продукта – биологическая ценность. Если в роли основы рассматривать молоко (100% ), то для рыбы или мяса этот параметр будет равен 95 , для риса – 58 , хлеба (только ржаного) – 74 и так далее.

Незаменимые аминокислоты, входящие в состав белка, участвуют в синтезе новых клеток и ферментов, то есть они покрывают пластические нужды и применяются в роли главных источников энергии. В состав белков входят элементы, которые способны к превращениям, то есть процессам декарбоксилирования и переаминирования. В упомянутых выше реакциях участвуют две группы аминокислот (карбоксильная и аминная).

Наиболее ценным и полезным для организма считается яичный белок, структура и свойства которого идеально сбалансированы. Вот почему процентное содержание аминокислот в этом продукте почти всегда берется за основу при сравнении.

Выше упоминалось, что белки состоят из аминокислот, и главную роль играют независимые представители. Вот некоторые из них:

  • Гистидин – элемент, который получен в 1911 году. Его функция направлена на нормализацию условно-рефректорной работы. Гистидин играет роль источника для образования гистамина – ключевого медиатора ЦНС, участвующего в передаче сигналов к разным участкам организма. Если остаток этой аминокислоты снижается ниже нормы, то подавляется выработка гемоглобина в костном мозге человека.
  • Валин – вещество, открытое в 1879 году, но окончательно расшифрованное только через 27 лет. В случае его нехватки нарушается координация, кожные покровы становятся чувствительными к внешним раздражителям.
  • Тирозин (1846 год). Белки состоят из многих аминокислот, но этот играет одну из ключевых функций. Именно тирозин считается главным предшественником следующих соединений – фенол, тирамин, щитовидная железа и прочих.
  • Метионин синтезирован только к концу 20-х годов прошлого века. Вещество помогает в синтезе холина, защищает печень от чрезмерного образования жира, имеет липотропное действие. Доказано, что такие элементы играют ключевую роль в борьбе с атеросклерозом и в регулировании уровня холестерина. Химическая особенность метионина и в том, что он участвует в выработке адреналина, входит во взаимодействие с витамином В.
  • Цистин – вещество, строение которого установлено только к 1903 году. Его функции направлены на участие в химических реакциях, обменных процессах метионина. Также цистин вступает в реакцию с серосодержащими веществами (ферментами).
  • Триптофан – незаменимая аминокислота, что входит в состав белков. Ее удалось синтезировать к 1907 году. Вещество участвует в обмене белка, гарантирует оптимальный азотистый баланс в организме человека. Триптофан участвует в выработке сывороточных белков крови и гемоглобина.
  • Лейцин – одна из наиболее «ранних» аминокислот, известная с начала XIX века. Ее действие направлено на помощь организму в росте. Нехватка элемента приводит к нарушению работы почек и щитовидки.
  • Изолейцин – ключевой элемент, участвующий в азотистом балансе. Ученые открыли аминокислоту только в 1890 году.
  • Фенилаланин синтезирован в начале 90-х годов XIX века. Вещество считается основой при формировании гормонов надпочечников и щитовидки. Дефицит элемента – главная причина гормональных сбоев.
  • Лизин получен только в начале XX века. Нехватка вещества приводит к накоплению кальция в костных тканях, уменьшению объема мускулатуры в организме, развитию анемии и так далее.

Стоит выделить и химический состав белков. Это не удивительно, ведь рассматриваемые вещества относятся к химическим соединениям.

  • углерод – 50-55%;
  • кислород – 22-23%;
  • азот – 16-17%;
  • водород – 6-7%;
  • сера – 0,4-2,5%.

Кроме перечисленных выше, в состав белков входят следующие элементы (в зависимости от типа):

  • медь;
  • железо;
  • фосфор;
  • микро- и макровещества.

Химическое содержание различных белков отличается. Единственное исключение – азот, содержание которого всегда 16-17%. По этой причине уровень содержания вещества определяется именно по процентному содержанию азота. Процесс вычисления следующий. Ученые знают, что в 6,25 граммах белка содержится один грамм азота. Чтобы определить белковый объем, достаточно умножить текущее количество азота на 6,25.

Тонкости строения

При рассмотрении вопроса, из чего состоят белки, стоит изучить и структуру этого вещества. Выделяют:

  • Первичную структуру. За основу берется чередование аминокислот в составе. Если включается или «выпадает» хотя бы один элемент, то формируется новая молекула. Благодаря такой особенности, общее число последних достигает астрономической цифры.
  • Вторичную структуру. Особенность молекул в составе белка такова, что они находятся не в растянутом состоянии, а имеют различные (иногда сложные) конфигурации. Благодаря этому, жизнедеятельность клетки упрощается. Вторичная структура имеет вид спирали, сформированной из равномерных витков. При этом соседние витки отличаются тесной водородной связью. В случае многократного повторения устойчивость возрастает.
  • Третичная структура формируется, благодаря способности упомянутой спирали укладываться в клубок. Стоит знать, что состав и строение белков во многом зависит от первичной структуры. Третичная база, в свою очередь, гарантирует удержание качественных связей между аминокислотами с различными зарядами.
  • Четвертичная структура характерна для некоторых белков (гемоглобина). Последний формирует не одну, а несколько цепей, которые отличаются по первичной структуре.

Секрет молекул белка – в общей закономерности. Чем больше структурный уровень, тем хуже удерживаются между собой образующиеся химические связи. Так, вторичная, третичная и четвертичная структуры подвержены действию радиации, высоких температур и прочих условий окружающей среды. Итогом часто становится нарушение строения (денатурация). При этом простой белок в случае изменения структуры способен к быстрому восстановлению. Если же вещество подверглось негативному температурному действию или влиянию других факторов, то процесс денатурации необратим, а само вещество не подлежит восстановлению.

Свойства

Выше рассмотрено, что такое белки, определение этих элементов, структура и прочие важные вопросы. Но информация будет неполной, если не выделить главные свойства вещества (физические и химические).

Молекулярная масса белка – от 10 тысяч до одного миллиона (здесь многое зависит от типа). Кроме того, они растворимы в воде.

Отдельно стоит выделить общие черты белка с каллоидными растворами:

  • Способность к набуханию. Чем больше вязкость состава, тем выше молекулярная масса.
  • Медленная диффузия.
  • Способность к диализу, то есть делению аминокислотных групп на другие элементы при помощи мембран полупроницаемого типа. Главное отличие рассматриваемых веществ – их неспособность проходить через мембраны.
  • Двухфакторная устойчивость. Это значит, что белок по структуре гидрофилен. Заряд вещества напрямую зависит, из чего состоит белок, числа аминокислот и их свойств.
  • Размер каждой из частиц составляет 1-100 нм.

Также белки имеют определенные сходства с истинными растворами. Главное – в способности образования гомогенных систем. При этом процесс формирования самопроизвольный и не нуждается в дополнительном стабилизаторе. Кроме того, белковые растворы обладают термодинамической устойчивостью.

Ученые выделяют особые аморфные свойства рассматриваемых веществ. Объясняется это наличием аминогруппы. Если белок представлен в виде водного раствора, то в нем существуют в равной степени различные смеси – катионная, биполяного иона, а также анионная форма.

Также к свойствам белка стоит отнести:

  • Способность играть роль буфера, то есть реагировать аналогично слабой кислоте или основанию. Так, в организме человека присутствует два типа буферных систем – белковая и гемоглобиновая, участвующие в нормализации уровня гомеостаза.
  • Перемещение в электрическом поле. В зависимости от количества аминокислот в белке, их массы и заряда меняется и скорость движения молекул. Такая функция применяется для разделения с помощью электрофореза.
  • Высаливание (обратное осаждение). Если добавить к белковому раствору ионы аммония, щелочноземельные металлы и щелочные соли, эти молекулы и ионы конкурируют между собой за воду. На этом фоне гидратная оболочка удаляется, а белки перестают быть устойчивыми. В итоге они выпадают в осадок. Если же добавить определенный объем воды, то возможно восстановление гидратной оболочки.
  • Чувствительность к внешнему воздействию. Стоит отметить, что в случае негативного внешнего влияния белки разрушаются, что приводит к потере многих химических и физических свойств. Кроме того, денатурация становится причиной разрыва главных связей, стабилизирующих все уровни структуры белка (кроме первичного).

Причин денатурации множество – негативное влияние органических кислот, действие щелочей или ионов тяжелых металлов, негативное влияние мочевины и различных восстановителей, приводящих к разрушению мостиков дисульфидного типа.

  • Наличие цветных реакций с разными химическими элементами (зависит от аминокислотного состава). Такое свойство применяется в лабораторных условиях, когда требуется определить общее количество белка.

Итоги

Белок – ключевой элемента клетки, обеспечивающий нормальное развитие и рост живого организма. Но, несмотря на изученность вещества учеными, впереди предстоит еще много открытий, позволяющих глубже узнать тайну человеческого организма и его строения. Пока же каждый из нас должен знать, где образуются белки, в чем их особенности и для каких целей они необходимы.