Стандартна форма на квадратно уравнение. Как се решават квадратни уравнения

Надявам се, че след изучаването на тази статия ще научите как да намирате корените на пълно квадратно уравнение.

С помощта на дискриминанта се решават само пълни квадратни уравнения за решаване на непълни; квадратни уравненияизползвайте други методи, които ще намерите в статията "Решаване на непълни квадратни уравнения".

Кои квадратни уравнения се наричат ​​пълни? Това уравнения от вида ax 2 + b x + c = 0, където коефициентите a, b и c не са равни на нула. И така, за да решим пълно квадратно уравнение, трябва да изчислим дискриминанта D.

D = b 2 – 4ac.

В зависимост от стойността на дискриминанта ще запишем отговора.

Ако дискриминантът е отрицателно число (D< 0),то корней нет.

Ако дискриминантът е нула, тогава x = (-b)/2a. Когато дискриминантът положително число(D > 0),

тогава x 1 = (-b - √D)/2a и x 2 = (-b + √D)/2a.

Например. Решете уравнението х 2– 4x + 4= 0.

D = 4 2 – 4 4 = 0

x = (- (-4))/2 = 2

Отговор: 2.

Решете уравнение 2 х 2 + x + 3 = 0.

D = 1 2 – 4 2 3 = – 23

Отговор: няма корени.

Решете уравнение 2 х 2 + 5x – 7 = 0.

D = 5 2 – 4 2 (–7) = 81

x 1 = (-5 - √81)/(2 2)= (-5 - 9)/4= – 3,5

x 2 = (-5 + √81)/(2 2) = (-5 + 9)/4=1

Отговор: – 3,5; 1.

Така че нека си представим решението на пълни квадратни уравнения, използвайки диаграмата на Фигура 1.

С помощта на тези формули можете да решите всяко пълно квадратно уравнение. Просто трябва да внимавате да уравнението беше написано като полином от стандартната форма

А х 2 + bx + c,в противен случай може да направите грешка. Например, като пишете уравнението x + 3 + 2x 2 = 0, можете погрешно да решите, че

a = 1, b = 3 и c = 2. Тогава

D = 3 2 – 4 1 2 = 1 и тогава уравнението има два корена. И това не е вярно. (Вижте решение на пример 2 по-горе).

Следователно, ако уравнението не е написано като полином от стандартната форма, първо пълното квадратно уравнение трябва да бъде написано като полином от стандартната форма (мономът с най-голям показател трябва да е първи, т.е. А х 2 , след това с по-малко bxи след това безплатен член с.

Когато решавате редуцирано квадратно уравнение и квадратно уравнение с четен коефициент във втория член, можете да използвате други формули. Нека се запознаем с тези формули. Ако в пълно квадратно уравнение вторият член има четен коефициент (b = 2k), тогава можете да решите уравнението, като използвате формулите, показани на диаграмата на Фигура 2.

Пълно квадратно уравнение се нарича намалено, ако коефициентът при х 2 е равно на едно и уравнението приема формата x 2 + px + q = 0. Такова уравнение може да бъде дадено за решение или може да бъде получено чрез разделяне на всички коефициенти на уравнението на коефициента А, застанал на х 2 .

Фигура 3 показва диаграма за решаване на редуцирания квадрат
уравнения. Нека да разгледаме пример за приложението на формулите, обсъдени в тази статия.

Пример. Решете уравнението

3х 2 + 6x – 6 = 0.

Нека решим това уравнение с помощта на формулите, показани на диаграмата на Фигура 1.

D = 6 2 – 4 3 (– 6) = 36 + 72 = 108

√D = √108 = √(36 3) = 6√3

x 1 = (-6 - 6√3)/(2 3) = (6 (-1- √(3)))/6 = –1 – √3

x 2 = (-6 + 6√3)/(2 3) = (6 (-1+ √(3)))/6 = –1 + √3

Отговор: –1 – √3; –1 + √3

Можете да забележите, че коефициентът на x в това уравнение е четно число, тоест b = 6 или b = 2k, откъдето k = 3. Тогава нека се опитаме да решим уравнението, като използваме формулите, показани в диаграмата на фигура D 1 = 3 2 – 3 · (– 6 ) = 9 + 18 = 27

√(D 1) = √27 = √(9 3) = 3√3

x 1 = (-3 - 3√3)/3 = (3 (-1 - √(3)))/3 = – 1 – √3

x 2 = (-3 + 3√3)/3 = (3 (-1 + √(3)))/3 = – 1 + √3

Отговор: –1 – √3; –1 + √3. Забелязвайки, че всички коефициенти в това квадратно уравнение се делят на 3 и извършвайки делението, получаваме намаленото квадратно уравнение x 2 + 2x – 2 = 0. Решете това уравнение, като използвате формулите за намаленото квадратно уравнение
уравнения фигура 3.

D 2 = 2 2 – 4 (– 2) = 4 + 8 = 12

√(D 2) = √12 = √(4 3) = 2√3

x 1 = (-2 - 2√3)/2 = (2 (-1 - √(3)))/2 = – 1 – √3

x 2 = (-2 + 2√3)/2 = (2 (-1+ √(3)))/2 = – 1 + √3

Отговор: –1 – √3; –1 + √3.

Както можете да видите, при решаването на това уравнение с помощта на различни формули получихме един и същ отговор. Следователно, след като сте усвоили напълно формулите, показани на диаграмата на фигура 1, вие винаги ще можете да решите всяко пълно квадратно уравнение.

blog.site, при пълно или частично копиране на материал се изисква връзка към първоизточника.

В тази статия ще разгледаме решаването на непълни квадратни уравнения.

Но първо, нека повторим кои уравнения се наричат ​​квадратни. Уравнение от вида ax 2 + bx + c = 0, където x е променлива, а коефициентите a, b и c са някои числа и a ≠ 0, се нарича квадрат. Както виждаме, коефициентът за x 2 не е равен на нула и следователно коефициентите за x или свободният член могат да бъдат равни на нула, в който случай получаваме непълно квадратно уравнение.

Има три вида непълни квадратни уравнения:

1) Ако b = 0, c ≠ 0, тогава ax 2 + c = 0;

2) Ако b ≠ 0, c = 0, тогава ax 2 + bx = 0;

3) Ако b = 0, c = 0, тогава ax 2 = 0.

  • Нека да разберем как да решим уравнения от вида ax 2 + c = 0.

За да решим уравнението, преместваме свободния член c в дясната страна на уравнението, получаваме

брадва 2 = ‒s. Тъй като a ≠ 0, разделяме двете страни на уравнението на a, тогава x 2 = ‒c/a.

Ако ‒с/а > 0, то уравнението има два корена

x = ±√(–c/a) .

Ако ‒c/a< 0, то это уравнение решений не имеет. Более наглядно решение данных уравнений представлено на схеме.

Нека се опитаме да разберем с примери как да решаваме такива уравнения.

Пример 1. Решете уравнението 2x 2 ‒ 32 = 0.

Отговор: x 1 = - 4, x 2 = 4.

Пример 2. Решете уравнението 2x 2 + 8 = 0.

Отговор: уравнението няма решения.

  • Нека да разберем как да го решим уравнения от вида ax 2 + bx = 0.

За да решим уравнението ax 2 + bx = 0, нека го разложим на множители, тоест изваждаме x извън скоби, получаваме x(ax + b) = 0. Продуктът е равен на нула, ако поне един от факторите е равен до нула. Тогава или x = 0, или ax + b = 0. Решавайки уравнението ax + b = 0, получаваме ax = - b, откъдето x = - b/a. Уравнение от вида ax 2 + bx = 0 винаги има два корена x 1 = 0 и x 2 = ‒ b/a. Вижте как изглежда решението на уравнения от този тип на диаграмата.

Нека консолидираме знанията си с конкретен пример.

Пример 3. Решете уравнението 3x 2 ‒ 12x = 0.

x(3x ‒ 12) = 0

x= 0 или 3x – 12 = 0

Отговор: x 1 = 0, x 2 = 4.

  • Уравнения от трети тип ax 2 = 0се решават много просто.

Ако ax 2 = 0, тогава x 2 = 0. Уравнението има два равни корена x 1 = 0, x 2 = 0.

За по-голяма яснота, нека да разгледаме диаграмата.

Нека се уверим, че при решаването на пример 4 уравнения от този тип могат да бъдат решени много просто.

Пример 4.Решете уравнението 7x 2 = 0.

Отговор: x 1, 2 = 0.

Не винаги е веднага ясно какъв тип непълно квадратно уравнение трябва да решим. Помислете за следния пример.

Пример 5.Решете уравнението

Нека умножим двете страни на уравнението по общ знаменател, тоест по 30

Нека го намалим

5(5x 2 + 9) – 6(4x 2 – 9) = 90.

Нека отворим скобите

25x 2 + 45 – 24x 2 + 54 = 90.

Да дадем подобни

Нека преместим 99 от лявата страна на уравнението вдясно, променяйки знака на противоположния

Отговор: няма корени.

Разгледахме как се решават непълни квадратни уравнения. Надявам се, че сега няма да имате затруднения с подобни задачи. Бъдете внимателни, когато определяте вида на непълното квадратно уравнение, тогава ще успеете.

Ако имате въпроси по тази тема, запишете се за моите уроци, ще решим проблемите, които възникват заедно.

уебсайт, при пълно или частично копиране на материал се изисква връзка към източника.

Библиографско описание:Гасанов А. Р., Курамшин А. А., Елков А. А., Шилненков Н. В., Уланов Д. Д., Шмелева О. В. Методи за решаване на квадратни уравнения // Млад учен. 2016. № 6.1. С. 17-20..02.2019 г.).





Нашият проект е за начини за решаване на квадратни уравнения. Цел на проекта: да се научат да решават квадратни уравнения по начини, които не са включени в училищната програма. Задача: намери всичко възможни начинирешаване на квадратни уравнения и научаване как да ги използвате сами и представяне на тези методи на вашите съученици.

Какво представляват „квадратните уравнения“?

Квадратно уравнение- уравнение на формата брадва2 + bx + c = 0, Където а, b, ° С- някои числа ( a ≠ 0), х- неизвестен.

Числата a, b, c се наричат ​​коефициенти на квадратното уравнение.

  • а се нарича първи коефициент;
  • b се нарича втори коефициент;
  • c - свободен член.

Кой беше първият, който „изобрети“ квадратни уравнения?

Някои алгебрични техники за решаване на линейни и квадратни уравнения са били известни преди 4000 години в древен Вавилон. Откриването на древни вавилонски глинени плочки, датиращи някъде между 1800 и 1600 г. пр. н. е., предоставя най-ранните доказателства за изучаването на квадратни уравнения. Същите таблички съдържат методи за решаване на някои видове квадратни уравнения.

Необходимостта от решаване на уравнения не само от първа, но и от втора степен в древността е била причинена от необходимостта от решаване на проблеми, свързани с намирането на области парцелии със земни работиот военен характер, както и с развитието на самата астрономия и математика.

Правилото за решаване на тези уравнения, изложено във вавилонските текстове, по същество съвпада със съвременното, но не е известно как вавилонците са стигнали до това правило. Почти всички клинописни текстове, открити досега, предоставят само проблеми с решения, изложени под формата на рецепти, без индикация как са намерени. Въпреки високо ниворазвитието на алгебрата във Вавилон, в клинописните текстове липсва концепцията за отрицателно число и общи методирешаване на квадратни уравнения.

Вавилонски математици от около 4 век пр.н.е. използва метода на квадратното допълнение за решаване на уравнения с положителни корени. Около 300 г. пр.н.е Евклид излезе с по-общ геометричен метод за решение. Първият математик, който намери решения на уравнения с отрицателни корени във формата алгебрична формула, беше индийски учен Брахмагупта(Индия, 7 век сл. Хр.).

Брахмагупта изложи общо правило за решаване на квадратни уравнения, сведени до една единствена канонична форма:

ax2 + bx = c, a>0

Коефициентите в това уравнение могат да бъдат и отрицателни. Правилото на Брахмагупта по същество е същото като нашето.

Публичните състезания за решаване на трудни проблеми са често срещани в Индия. Една от старите индийски книги казва следното за такива състезания: „Както слънцето засенчва звездите с блясъка си, така учен човекще засенчи славата в народни събрания, предлагане и решаване на алгебрични задачи.“ Проблемите често се представят в поетична форма.

В алгебричен трактат Ал-Хорезмидадена е класификация на линейни и квадратни уравнения. Авторът брои 6 вида уравнения, изразявайки ги по следния начин:

1) „Квадратите са равни на корени“, т.е. ax2 = bx.

2) „Квадратите са равни на числа“, т.е. ax2 = c.

3) „Корените са равни на числото“, т.е. ax2 = c.

4) „Квадратите и числата са равни на корени“, т.е. ax2 + c = bx.

5) „Квадратите и корените са равни на числото“, т.е. ax2 + bx = c.

6) „Корените и числата са равни на квадрати“, т.е. bx + c == ax2.

За Ал-Хорезми, който избягва използването на отрицателни числа, членовете на всяко от тези уравнения са събираеми, а не изваждаеми. В този случай уравненията, които нямат положителни решения, очевидно не се вземат предвид. Авторът излага методи за решаване на тези уравнения, използвайки техниките на ал-джабр и ал-мукабал. Неговото решение, разбира се, не съвпада напълно с нашето. Да не говорим, че е чисто риторично, трябва да се отбележи например, че при решаването на непълно квадратно уравнение от първи тип Ал-Хорезми, както всички математици до 17 век, не взема предвид нулевото решение, вероятно защото в конкретни практически няма значение в задачите. При решаването на пълни квадратни уравнения Ал-Хорезми излага правилата за решаването им, като използва конкретни числени примери и след това техните геометрични доказателства.

Формите за решаване на квадратни уравнения, следващи модела на Ал-Хорезми в Европа, са изложени за първи път в „Книгата на абака“, написана през 1202 г. италиански математик Леонард Фибоначи. Авторът самостоятелно разработва някои нови алгебрични примери за решаване на задачи и пръв в Европа се приближава към въвеждането на отрицателни числа.

Тази книга допринесе за разпространението на алгебричните знания не само в Италия, но и в Германия, Франция и други европейски страни. Много задачи от тази книга са използвани в почти всички европейски учебници от 14-17 век. Общо правилорешението на квадратни уравнения, сведени до единна канонична форма x2 + bх = с за всички възможни комбинации от знаци и коефициенти b, c, е формулирано в Европа през 1544 г. М. Щифел.

Извеждане на формулата за решаване на квадратно уравнение в общ изгледВиет го има, но Виет признаваше само положителни корени. италиански математици Тарталия, Кардано, Бомбелисред първите през 16 век. В допълнение към положителните се вземат предвид и отрицателните корени. Едва през 17в. благодарение на усилията Жирар, Декарт, Нютони други учени, методът за решаване на квадратни уравнения приема съвременна форма.

Нека да разгледаме няколко начина за решаване на квадратни уравнения.

Стандартни методи за решаване на квадратни уравнения от училищната програма:

  1. Факторизиране на лявата страна на уравнението.
  2. Метод за избор на пълен квадрат.
  3. Решаване на квадратни уравнения по формулата.
  4. Графично решение на квадратно уравнение.
  5. Решаване на уравнения с помощта на теоремата на Виета.

Нека се спрем по-подробно на решението на редуцирани и нередуцирани квадратни уравнения с помощта на теоремата на Vieta.

Спомнете си, че за решаване на горните квадратни уравнения е достатъчно да се намерят две числа, чийто продукт е равен на свободния член и чиято сума е равна на втория коефициент с противоположен знак.

Пример.х 2 -5x+6=0

Трябва да намерите числа, чийто продукт е 6 и чиято сума е 5. Тези числа ще бъдат 3 и 2.

Отговор: x 1 =2, х 2 =3.

Но можете също да използвате този метод за уравнения с първия коефициент, който не е равен на единица.

Пример.3x 2 +2x-5=0

Вземете първия коефициент и го умножете по свободния член: x 2 +2x-15=0

Корените на това уравнение ще бъдат числа, чийто продукт е равен на - 15 и чиято сума е равна на - 2. Тези числа са 5 и 3. За да намерите корените на оригиналното уравнение, разделете получените корени на първия коефициент.

Отговор: x 1 =-5/3, х 2 =1

6. Решаване на уравнения по метода "хвърляне".

Да разгледаме квадратното уравнение ax 2 + bx + c = 0, където a≠0.

Умножавайки двете страни по a, получаваме уравнението a 2 x 2 + abx + ac = 0.

Нека ax = y, откъдето x = y/a; тогава стигаме до уравнението y 2 + by + ac = 0, еквивалентно на даденото. Намираме неговите корени за 1 и 2, използвайки теоремата на Виета.

Накрая получаваме x 1 = y 1 /a и x 2 = y 2 /a.

С този метод коефициентът a се умножава по свободния термин, сякаш се „хвърля“ към него, поради което се нарича метод „хвърляне“. Този метод се използва, когато корените на уравнението могат лесно да бъдат намерени с помощта на теоремата на Виета и най-важното, когато дискриминантът е точен квадрат.

Пример.2x 2 - 11x + 15 = 0.

Нека „хвърлим“ коефициента 2 към свободния член и да направим заместване и да получим уравнението y 2 - 11y + 30 = 0.

Според обратната теорема на Виета

y 1 = 5, x 1 = 5/2, x 1 = 2,5; y 2 ​​​​= 6, x 2 = 6/2, x 2 = 3.

Отговор: x 1 =2,5; х 2 = 3.

7. Свойства на коефициентите на квадратно уравнение.

Нека е дадено квадратното уравнение ax 2 + bx + c = 0, a ≠ 0.

1. Ако a+ b + c = 0 (т.е. сумата от коефициентите на уравнението е нула), тогава x 1 = 1.

2. Ако a - b + c = 0 или b = a + c, тогава x 1 = - 1.

Пример.345x 2 - 137x - 208 = 0.

Тъй като a + b + c = 0 (345 - 137 - 208 = 0), тогава x 1 = 1, x 2 = -208/345.

Отговор: x 1 =1; х 2 = -208/345 .

Пример.132x 2 + 247x + 115 = 0

защото a-b+c = 0 (132 - 247 +115=0), тогава x 1 = - 1, x 2 = - 115/132

Отговор: x 1 = - 1; х 2 =- 115/132

Има и други свойства на коефициентите на квадратно уравнение. но използването им е по-сложно.

8. Решаване на квадратни уравнения с помощта на номограма.

Фигура 1. Номограма

Това е стар и позабравен метод за решаване на квадратни уравнения, поместен на стр. 83 от сборника: Брадис В.М. Четирицифрени математически таблици. - М., Образование, 1990.

Таблица XXII. Номограма за решаване на уравнението z 2 + pz + q = 0. Тази номограма позволява, без да се решава квадратно уравнение, да се определят корените на уравнението от неговите коефициенти.

Криволинейната скала на номограмата е изградена по формулите (фиг. 1):

Вярвайки OS = p, ED = q, OE = a(всички в cm), от фиг. 1 подобия на триъгълници SANИ CDFполучаваме пропорцията

което, след замествания и опростявания, дава уравнението z 2 + pz + q = 0,и писмото zозначава белег на всяка точка върху извита скала.

Ориз. 2 Решаване на квадратни уравнения с помощта на номограма

Примери.

1) За уравнението z 2 - 9z + 8 = 0номограмата дава корените z 1 = 8.0 и z 2 = 1.0

Отговор:8,0; 1.0.

2) С помощта на номограма решаваме уравнението

2z 2 - 9z + 2 = 0.

Разделяме коефициентите на това уравнение на 2, получаваме уравнението z 2 - 4,5z + 1 = 0.

Номограмата дава корени z 1 = 4 и z 2 = 0,5.

Отговор: 4; 0,5.

9. Геометричен метод за решаване на квадратни уравнения.

Пример.х 2 + 10x = 39.

В оригинала тази задача е формулирана по следния начин: „Квадратният и десетият корен са равни на 39.“

Помислете за квадрат със страна x, правоъгълниците са построени от страните му, така че другата страна на всеки от тях е 2,5, следователно площта на всеки е 2,5x. След това получената фигура се допълва до нов квадрат ABCD, като се изграждат четири равни квадрата в ъглите, страната на всеки от които е 2,5, а площта е 6,25

Ориз. 3 Графичен метод за решаване на уравнението x 2 + 10x = 39

Площта S на квадрат ABCD може да бъде представена като сбор от площите на: оригиналния квадрат x 2, четири правоъгълника (4∙2,5x = 10x) и четири допълнителни квадрата (6,25∙4 = 25), т.е. S = x 2 + 10x = 25. Заменяйки x 2 + 10x с числото 39, получаваме, че S = 39 + 25 = 64, което означава, че страната на квадрата е ABCD, т.е. сегмент AB = 8. За търсената страна x на първоначалния квадрат получаваме

10. Решаване на уравнения чрез теоремата на Безу.

Теорема на Безу. Остатъкът от деленето на полинома P(x) на бинома x - α е равен на P(α) (т.е. стойността на P(x) при x = α).

Ако числото α е корен на полинома P(x), то този полином се дели на x -α без остатък.

Пример.x²-4x+3=0

Р(x)= x²-4x+3, α: ±1,±3, α =1, 1-4+3=0. Разделете P(x) на (x-1): (x²-4x+3)/(x-1)=x-3

x²-4x+3=(x-1)(x-3), (x-1)(x-3)=0

х-1=0; x=1, или x-3=0, x=3; Отговор: x1 =2, х2 =3.

Заключение:Способността за бързо и рационално решаване на квадратни уравнения е просто необходима за решаване на повече сложни уравнения, например, дробни рационални уравнения, уравнения по-високи степени, биквадратни уравнения и в гимназиятригонометрични, експоненциални и логаритмични уравнения. След като проучихме всички намерени начини за решаване на квадратни уравнения, можем да посъветваме нашите съученици, освен стандартни методи, решение чрез метод на трансфер (6) и решение на уравнения, използвайки свойствата на коефициентите (7), тъй като те са по-достъпни за разбиране.

Литература:

  1. Брадис В.М. Четирицифрени математически таблици. - М., Образование, 1990.
  2. Алгебра 8. клас: учебник за 8. клас. общо образование институции Макаричев Ю. Н., Миндюк Н. Г., Нешков К. И., Суворова С. Б. изд. С. А. Теляковски 15-то изд., преработено. - М.: Образование, 2015
  3. https://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%B4%D1%80%D0%B0%D1%82%D0%BD%D0%BE%D0 %B5_%D1%83%D1%80%D0%B0%D0%B2%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5
  4. Глейзър Г.И. История на математиката в училище. Наръчник за учители. / Ед. В.Н. По-млад. - М.: Образование, 1964.

Квадратни уравнения. Дискриминанта. Решение, примери.

внимание!
Има допълнителни
материали в специален раздел 555.
За тези, които са много "не много..."
И за тези, които „много...“)

Видове квадратни уравнения

Какво е квадратно уравнение? Как изглежда? В срок квадратно уравнениеключовата дума е "квадрат".Това означава, че в уравнението Задължителнотрябва да има x на квадрат. В допълнение към него уравнението може (или не!) да съдържа само X (на първа степен) и само число (безплатен член).И не трябва да има X на степен по-голяма от две.

От математически термини квадратното уравнение е уравнение от формата:

Тук a, b и c- някои числа. b и c- абсолютно всякакви, но А– нещо различно от нула. Например:

Тук А =1; b = 3; ° С = -4

Тук А =2; b = -0,5; ° С = 2,2

Тук А =-3; b = 6; ° С = -18

Е, разбирате...

В тези квадратни уравнения отляво има пълен комплектчленове. Х на квадрат с коефициент а, x на първа степен с коефициент bИ безплатен член s.

Такива квадратни уравнения се наричат пълен.

И ако b= 0, какво получаваме? Ние имаме X ще се загуби на първа степен.Това се случва, когато се умножи по нула.) Оказва се, например:

5x 2 -25 = 0,

2x 2 -6x=0,

-x 2 +4x=0

И така нататък. И ако и двата коефициента bИ ° Сса равни на нула, тогава е още по-просто:

2x 2 =0,

-0,3x 2 =0

Такива уравнения, при които нещо липсва, се наричат непълни квадратни уравнения.Което е съвсем логично.) Моля, обърнете внимание, че x на квадрат присъства във всички уравнения.

Между другото защо Ане може да е равно на нула? И вие замествате вместо това Анула.) Нашият X на квадрат ще изчезне! Уравнението ще стане линейно. И решението е съвсем друго...

Това са всички основни типове квадратни уравнения. Пълна и непълна.

Решаване на квадратни уравнения.

Решаване на пълни квадратни уравнения.

Квадратните уравнения са лесни за решаване. По формули и ясни, прости правила. На първия етап е необходимо даденото уравнение да се приведе в стандартна форма, т.е. към формата:

Ако уравнението вече ви е дадено в тази форма, не е необходимо да правите първия етап.) Основното е да определите правилно всички коефициенти, А, bИ ° С.

Формулата за намиране на корените на квадратно уравнение изглежда така:

Изразът под знака за корен се нарича дискриминанта. Но повече за него по-долу. Както можете да видите, за да намерим X, използваме само a, b и c. Тези. коефициенти от квадратно уравнение. Просто внимателно заменете стойностите a, b и cИзчисляваме по тази формула. Да заместим със собствените си знаци! Например в уравнението:

А =1; b = 3; ° С= -4. Тук го записваме:

Примерът е почти решен:

Това е отговорът.

Всичко е много просто. И какво, мислите, че е невъзможно да направите грешка? Ами да, как...

Най-честите грешки са объркване със стойностите на знаците a, b и c. Или по-скоро не с техните знаци (къде да се объркате?), А със заместването на отрицателни стойности във формулата за изчисляване на корените. Това, което помага тук, е подробен запис на формулата с конкретни числа. Ако има проблеми с изчисленията, направи го!

Да предположим, че трябва да решим следния пример:

Тук а = -6; b = -5; ° С = -1

Да приемем, че знаете, че рядко получавате отговори от първия път.

Е, не бъдете мързеливи. Ще отнеме около 30 секунди, за да напишете допълнителен ред и броя на грешките рязко ще намалее. Така че ние пишем подробно, с всички скоби и знаци:

Изглежда невероятно трудно да се пише толкова внимателно. Но така само изглежда. Пробвам. Е, или изберете. Кое е по-добро, бързо или правилно? Освен това ще те направя щастлив. След известно време няма да има нужда да записвате всичко толкова внимателно. Ще се оправи от само себе си. Особено ако използвате практически техники, описани по-долу. Този зъл пример с куп минуси се решава лесно и без грешки!

Но често квадратните уравнения изглеждат малко по-различно. Например така:

Разпознахте ли го?) Да! Това непълни квадратни уравнения.

Решаване на непълни квадратни уравнения.

Те могат да бъдат решени и с обща формула. Просто трябва да разберете правилно на какво са равни тук. a, b и c.

Разбрахте ли го? В първия пример а = 1; b = -4;А ° С? Изобщо го няма! Ами да, точно така. В математиката това означава, че c = 0 ! Това е всичко. Вместо това заменете нула във формулата ° С,и ще успеем. Същото и с втория пример. Само ние нямаме нула тук с, А b !

Но непълните квадратни уравнения могат да бъдат решени много по-лесно. Без никакви формули. Нека разгледаме първото непълно уравнение. Какво можете да направите от лявата страна? Можете да извадите X от скоби! Да го извадим.

И какво от това? И фактът, че продуктът е равен на нула тогава и само ако някой от факторите е равен на нула! не ми вярваш Добре, тогава измислете две ненулеви числа, които, когато се умножат, ще дадат нула!
Не работи? Това е...
Следователно можем уверено да напишем: x 1 = 0, х 2 = 4.

Всичко. Това ще бъдат корените на нашето уравнение. И двете са подходящи. Когато заместваме някое от тях в оригиналното уравнение, получаваме правилната идентичност 0 = 0. Както можете да видите, решението е много по-просто от използването на общата формула. Между другото да отбележа кое X ще е първото и кое второто - абсолютно безразлично. Удобно е да пишете в ред, х 1- какво е по-малък и х 2- това, което е по-голямо.

Второто уравнение също може да бъде решено просто. Преместете 9 надясно. Получаваме:

Всичко, което остава, е да извлечем корена от 9 и това е. Ще се окаже:

Също така два корена . х 1 = -3, х 2 = 3.

Ето как се решават всички непълни квадратни уравнения. Или като поставите X извън скоби, или просто като преместите числото надясно и след това извлечете корена.
Изключително трудно е да се объркат тези техники. Просто защото в първия случай ще трябва да извлечете корена на X, което е някак неразбираемо, а във втория случай няма какво да извадите от скоби...

Дискриминанта. Дискриминантна формула.

Вълшебна дума дискриминанта ! Рядко гимназист не е чувал тази дума! Фразата „ние решаваме чрез дискриминант“ вдъхва увереност и увереност. Защото няма нужда да очаквате трикове от дискриминанта! Използва се лесно и безпроблемно.) Напомням ви най-много обща формулаза решения всякаквиквадратни уравнения:

Изразът под знака за корен се нарича дискриминант. Обикновено дискриминантът се обозначава с буквата д. Дискриминантна формула:

D = b 2 - 4ac

И какво е толкова забележително в този израз? Защо заслужаваше специално име? Какво значението на дискриминанта?След всичко -б,или в тази формула те не го наричат ​​конкретно... Букви и букви.

Ето това е нещото. При решаване на квадратно уравнение с помощта на тази формула е възможно само три случая.

1. Дискриминантът е положителен.Това означава, че коренът може да бъде извлечен от него. Друг е въпросът дали коренът се извлича добре или зле. Важно е какво се извлича по принцип. Тогава вашето квадратно уравнение има два корена. Две различни решения.

2. Дискриминантът е нула.Тогава ще имате едно решение. Тъй като добавянето или изваждането на нула в числителя не променя нищо. Строго погледнато, това не е един корен, а две еднакви. Но в опростена версия е обичайно да се говори за едно решение.

3. Дискриминантът е отрицателен.Не може да се вземе корен квадратен от отрицателно число. Ми добре. Това означава, че няма решения.

Честно казано, кога просто решениеквадратни уравнения, концепцията за дискриминант не е особено необходима. Заместваме стойностите на коефициентите във формулата и броим. Там всичко става от само себе си, два корена, един и нито един. При решаване на по-сложни задачи обаче, без знания значение и формула на дискриминантане достатъчно. Особено в уравненията с параметри. Такива уравнения са висш пилотаж за държавния изпит и единния държавен изпит!)

Така, как се решават квадратни уравнениячрез дискриминанта, който запомнихте. Или сте научили, което също не е лошо.) Знаете как да определите правилно a, b и c. Знаете ли как? внимателнозаменете ги в коренната формула и внимателнопребройте резултата. Разбирате, че ключовата дума тук е внимателно?

Сега вземете под внимание практическите техники, които значително намаляват броя на грешките. Същите, които са от невнимание... За които после става болезнено и обидно...

Първа среща . Не бъдете мързеливи, преди да решите квадратно уравнение и да го приведете в стандартна форма. Какво означава това?
Да кажем, че след всички трансформации получавате следното уравнение:

Не бързайте да пишете коренната формула! Почти сигурно ще объркате шансовете a, b и c.Конструирайте примера правилно. Първо X на квадрат, след това без квадрат, след това свободният член. Като този:

И отново, не бързайте! Минус пред Х на квадрат може наистина да ви разстрои. Лесно се забравя... Махни минуса. как? Да, както беше казано в предишната тема! Трябва да умножим цялото уравнение по -1. Получаваме:

Но сега можете спокойно да запишете формулата за корените, да изчислите дискриминанта и да завършите решаването на примера. Решете сами. Сега трябва да имате корени 2 и -1.

Рецепция втори. Проверете корените! Според теоремата на Виета. Не се страхувайте, ще ви обясня всичко! Проверка последно нещоуравнението. Тези. тази, която използвахме, за да запишем формулата на корена. Ако (както в този пример) коеф а = 1, проверката на корените е лесна. Достатъчно е да ги умножите. Резултатът трябва да е безплатен член, т.е. в нашия случай -2. Моля, обърнете внимание, не 2, а -2! Безплатен член с твоя знак . Ако не се получи, значи вече са се прецакали някъде. Потърсете грешката.

Ако работи, трябва да добавите корените. Последна и последна проверка. Коефициентът трябва да бъде bс противоположност познат. В нашия случай -1+2 = +1. Коефициент b, което е преди X, е равно на -1. Значи всичко е точно!
Жалко е, че това е толкова просто само за примери, където x на квадрат е чисто, с коефициент а = 1.Но поне проверете такива уравнения! Ще има все по-малко грешки.

Прием трети . Ако вашето уравнение има дробни коефициенти, отървете се от дробите! Умножете уравнението по общ знаменател, както е описано в урока "Как се решават уравнения? Трансформации на идентичност." Когато работите с дроби, грешките продължават да се прокрадват по някаква причина...

Между другото, обещах да опростя злия пример с куп минуси. Моля те! Ето го.

За да не се объркаме от минусите, умножаваме уравнението по -1. Получаваме:

Това е всичко! Решаването е удоволствие!

И така, нека обобщим темата.

Практически съвети:

1. Преди да решим, привеждаме квадратното уравнение в стандартна форма и го изграждаме вярно.

2. Ако има отрицателен коефициент пред X на квадрат, ние го елиминираме, като умножим цялото уравнение по -1.

3. Ако коефициентите са дробни, елиминираме дробите, като умножим цялото уравнение по съответния коефициент.

4. Ако х на квадрат е чисто, неговият коефициент е равен на едно, решението може лесно да се провери с помощта на теоремата на Виета. Направи го!

Сега можем да решим.)

Решете уравнения:

8x 2 - 6x + 1 = 0

x 2 + 3x + 8 = 0

x 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1)(x+2)

Отговори (в безпорядък):

x 1 = 0
х 2 = 5

х 1,2 =2

х 1 = 2
х 2 = -0,5

x - произволно число

х 1 = -3
х 2 = 3

няма решения

х 1 = 0,25
х 2 = 0,5

Всичко ли пасва? Страхотен! Квадратните уравнения не са вашето нещо главоболие. Първите три проработиха, но останалите не? Тогава проблемът не е в квадратните уравнения. Проблемът е в тъждествените трансформации на уравнения. Разгледайте линка, полезен е.

Не се получава съвсем? Или изобщо не се получава? Тогава раздел 555 ще ви помогне. Всички тези примери са разбити там. Показано основенгрешки в решението. Разбира се, говорим и за използването на идентични трансформации при решаване на различни уравнения. Помага много!

Ако харесвате този сайт...

Между другото, имам още няколко интересни сайта за вас.)

Можете да практикувате решаване на примери и да разберете вашето ниво. Тестване с незабавна проверка. Да учим - с интерес!)

Можете да се запознаете с функции и производни.

Продължавайки темата „Решаване на уравнения“, материалът в тази статия ще ви запознае с квадратни уравнения.

Нека разгледаме всичко подробно: същността и записа на квадратно уравнение, дефиниране на придружаващите термини, анализ на схемата за решаване на непълни и пълни уравнения, запознаване с формулата на корените и дискриминанта, установяване на връзки между корените и коефициентите, и разбира се ще дадем визуално решение на практически примери.

Yandex.RTB R-A-339285-1

Квадратно уравнение, неговите видове

Определение 1

Квадратно уравнениее уравнение, написано като a x 2 + b x + c = 0, Където х– променлива, a , b и ° С– някои числа, докато ане е нула.

Често квадратните уравнения се наричат ​​също уравнения от втора степен, тъй като по същество квадратното уравнение е алгебрично уравнение от втора степен.

Нека дадем пример, за да илюстрираме даденото определение: 9 x 2 + 16 x + 2 = 0 ; 7, 5 x 2 + 3, 1 x + 0, 11 = 0 и т.н. Това са квадратни уравнения.

Определение 2

Числата a, b и ° Сса коефициентите на квадратното уравнение a x 2 + b x + c = 0, докато коеф асе нарича първи, или старши, или коефициент при x 2, b - вторият коефициент, или коефициент при х, А ° Снаречен безплатен член.

Например в квадратното уравнение 6 x 2 − 2 x − 11 = 0водещият коефициент е 6, вторият коефициент е − 2 , а свободният член е равен на − 11 . Нека обърнем внимание на факта, че когато коефициентите bи/или c са отрицателни, тогава използвайте кратка формазаписи като 6 x 2 − 2 x − 11 = 0, но не 6 x 2 + (− 2) x + (− 11) = 0.

Нека изясним и този аспект: ако коефициентите аи/или bравен 1 или − 1 , то те могат да не вземат изрично участие в записването на квадратното уравнение, което се обяснява с особеностите на записване на посочените числови коефициенти. Например в квадратното уравнение y 2 − y + 7 = 0водещият коефициент е 1, а вторият коефициент е − 1 .

Редуцирани и нередуцирани квадратни уравнения

Въз основа на стойността на първия коефициент квадратните уравнения се разделят на редуцирани и нередуцирани.

Определение 3

Редуцирано квадратно уравнениее квадратно уравнение, където водещият коефициент е 1. За други стойности на водещия коефициент квадратното уравнение е нередуцирано.

Да дадем примери: приведени са квадратни уравнения x 2 − 4 · x + 3 = 0, x 2 − x − 4 5 = 0, във всяко от които водещият коефициент е 1.

9 x 2 − x − 2 = 0- нередуцирано квадратно уравнение, където първият коефициент е различен от 1 .

Всяко нередуцирано квадратно уравнение може да бъде преобразувано в редуцирано уравнение чрез разделяне на двете страни на първия коефициент (еквивалентна трансформация). Трансформираното уравнение ще има същите корени като даденото нередуцирано уравнение или също няма да има никакви корени.

Разглеждане конкретен примерще ни позволи ясно да демонстрираме прехода от нередуцирано квадратно уравнение към редуцирано.

Пример 1

Дадено е уравнението 6 x 2 + 18 x − 7 = 0 . Необходимо е оригиналното уравнение да се преобразува в намалена форма.

Решение

Съгласно горната схема, ние разделяме двете страни на оригиналното уравнение на водещия коефициент 6. Тогава получаваме: (6 x 2 + 18 x − 7) : 3 = 0: 3, и това е същото като: (6 x 2) : 3 + (18 x) : 3 − 7: 3 = 0и по-нататък: (6: 6) x 2 + (18: 6) x − 7: 6 = 0.Оттук: x 2 + 3 x - 1 1 6 = 0 . Така се получава уравнение, еквивалентно на даденото.

Отговор: x 2 + 3 x - 1 1 6 = 0 .

Пълни и непълни квадратни уравнения

Нека се обърнем към дефиницията на квадратно уравнение. В него уточнихме, че a ≠ 0. Подобно условие е необходимо за уравнението a x 2 + b x + c = 0беше точно квадрат, тъй като при а = 0по същество се трансформира в линейно уравнение b x + c = 0.

В случай, че коеф bИ ° Сса равни на нула (което е възможно, както поотделно, така и заедно), квадратното уравнение се нарича непълно.

Определение 4

Непълно квадратно уравнение- такова квадратно уравнение a x 2 + b x + c = 0,където поне един от коефициентите bИ ° С(или и двете) е нула.

Пълно квадратно уравнение– квадратно уравнение, в което всички числени коефициенти не са равни на нула.

Нека обсъдим защо видовете квадратни уравнения са дадени точно с тези имена.

Когато b = 0, квадратното уравнение приема формата a x 2 + 0 x + c = 0, което е същото като a x 2 + c = 0. При c = 0квадратното уравнение се записва като a x 2 + b x + 0 = 0, което е еквивалентно a x 2 + b x = 0. При b = 0И c = 0уравнението ще приеме формата a x 2 = 0. Уравненията, които получихме, се различават от пълното квадратно уравнение по това, че техните леви части не съдържат нито член с променливата x, нито свободен член, нито и двете. Всъщност този факт даде името на този тип уравнения – непълни.

Например, x 2 + 3 x + 4 = 0 и − 7 x 2 − 2 x + 1, 3 = 0 са пълни квадратни уравнения; x 2 = 0, − 5 x 2 = 0; 11 · x 2 + 2 = 0 , − x 2 − 6 · x = 0 – непълни квадратни уравнения.

Решаване на непълни квадратни уравнения

Дефиницията, дадена по-горе, позволява да се разграничат следните видове непълни квадратни уравнения:

  • a x 2 = 0, това уравнение съответства на коефициентите b = 0и с = 0;
  • a · x 2 + c = 0 при b = 0;
  • a · x 2 + b · x = 0 при c = 0.

Нека разгледаме последователно решението на всеки тип непълно квадратно уравнение.

Решение на уравнението a x 2 =0

Както бе споменато по-горе, това уравнение съответства на коефициентите bИ ° С, равно на нула. Уравнението a x 2 = 0може да се преобразува в еквивалентно уравнение х 2 = 0, което получаваме, като разделим двете страни на първоначалното уравнение на числото а, не е равно на нула. Очевидният факт е, че коренът на уравнението х 2 = 0това е нула, защото 0 2 = 0 . Това уравнение няма други корени, което може да се обясни със свойствата на степента: за всяко число п,не е равно на нула, неравенството е вярно p 2 > 0, от което следва, че когато p ≠ 0равенство p 2 = 0никога няма да бъде постигнато.

Определение 5

Така за непълното квадратно уравнение a x 2 = 0 има един корен х = 0.

Пример 2

Например, нека решим непълно квадратно уравнение − 3 x 2 = 0. То е еквивалентно на уравнението х 2 = 0, единственият му корен е х = 0, тогава първоначалното уравнение има един корен - нула.

Накратко решението е написано по следния начин:

− 3 x 2 = 0, x 2 = 0, x = 0.

Решаване на уравнението a x 2 + c = 0

Следващото по ред е решението на непълни квадратни уравнения, където b = 0, c ≠ 0, тоест уравнения от вида a x 2 + c = 0. Нека трансформираме това уравнение, като преместим член от едната страна на уравнението в другата, променим знака на противоположния и разделим двете страни на уравнението на число, което не е равно на нула:

  • трансфер ° Св дясната страна, което дава уравнението a x 2 = − c;
  • разделете двете страни на уравнението на а, завършваме с x = - c a .

Нашите трансформации са еквивалентни; съответно полученото уравнение също е еквивалентно на оригиналното и този факт позволява да се направят изводи за корените на уравнението. От това какви са стойностите аИ ° Сстойността на израза - c a зависи: може да има знак минус (например ако а = 1И c = 2, след това - c a = - 2 1 = - 2) или знак плюс (например, ако a = − 2И c = 6, тогава - c a = - 6 - 2 = 3); не е нула, защото c ≠ 0. Нека се спрем по-подробно на ситуации, когато - c a< 0 и - c a > 0 .

В случай, когато - c a< 0 , уравнение x 2 = - c a не будет иметь корней. Утверждая это, мы опираемся на то, что квадратом любого числа является число неотрицательное. Из сказанного следует, что при - c a < 0 ни для какого числа стрравенството p 2 = - c a не може да бъде вярно.

Всичко е различно, когато - c a > 0: запомнете квадратния корен и ще стане очевидно, че коренът на уравнението x 2 = - c a ще бъде числото - c a, тъй като - c a 2 = - c a. Не е трудно да се разбере, че числото - - c a също е коренът на уравнението x 2 = - c a: наистина, - - c a 2 = - c a.

Уравнението няма да има други корени. Можем да демонстрираме това с помощта на метода на противоречието. Като начало, нека дефинираме обозначенията за корените, намерени по-горе, като х 1И − x 1. Да приемем, че уравнението x 2 = - c a също има корен х 2, което е различно от корените х 1И − x 1. Знаем това чрез заместване в уравнението хнеговите корени, трансформираме уравнението в справедливо числово равенство.

За х 1И − x 1записваме: x 1 2 = - c a , и за х 2- x 2 2 = - c a . Въз основа на свойствата на числовите равенства, ние изваждаме един правилен член по член от друг, което ще ни даде: x 1 2 − x 2 2 = 0. Използваме свойствата на операциите с числа, за да пренапишем последното равенство като (x 1 − x 2) · (x 1 + x 2) = 0. Известно е, че произведението на две числа е нула тогава и само ако поне едно от числата е нула. От горното следва, че x 1 − x 2 = 0и/или x 1 + x 2 = 0, което е същото x 2 = x 1и/или x 2 = − x 1. Възникна очевидно противоречие, тъй като първоначално беше договорено, че коренът на уравнението х 2се различава от х 1И − x 1. И така, доказахме, че уравнението няма други корени освен x = - c a и x = - - c a.

Нека обобщим всички аргументи по-горе.

Определение 6

Непълно квадратно уравнение a x 2 + c = 0е еквивалентно на уравнението x 2 = - c a, което:

  • няма да има корени в - c a< 0 ;
  • ще има два корена x = - c a и x = - - c a за - c a > 0.

Нека дадем примери за решаване на уравненията a x 2 + c = 0.

Пример 3

Дадено е квадратно уравнение 9 х 2 + 7 = 0.Необходимо е да се намери решение.

Решение

Нека преместим свободния член в дясната страна на уравнението, тогава уравнението ще приеме формата 9 x 2 = − 7.
Нека разделим двете страни на полученото уравнение на 9 , стигаме до x 2 = - 7 9 . От дясната страна виждаме число със знак минус, което означава: даденото уравнение няма корени. Тогава първоначалното непълно квадратно уравнение 9 х 2 + 7 = 0няма да има корени.

Отговор:уравнението 9 х 2 + 7 = 0няма корени.

Пример 4

Уравнението трябва да се реши − x 2 + 36 = 0.

Решение

Нека преместим 36 надясно: − x 2 = − 36.
Нека разделим двете части на − 1 , получаваме х 2 = 36. От дясната страна има положително число, от което можем да заключим, че x = 36 или x = - 36 .
Нека извлечем корена и запишем крайния резултат: непълно квадратно уравнение − x 2 + 36 = 0има два корена х=6или x = − 6.

Отговор: х=6или x = − 6.

Решение на уравнението a x 2 +b x=0

Нека анализираме третия тип непълни квадратни уравнения, когато c = 0. Да се ​​намери решение на непълно квадратно уравнение a x 2 + b x = 0, ще използваме метода на факторизиране. Нека факторизираме полинома, който е от лявата страна на уравнението, като извадим общия множител от скоби х. Тази стъпка ще направи възможно трансформирането на оригиналното непълно квадратно уравнение в негов еквивалент x (a x + b) = 0. И това уравнение от своя страна е еквивалентно на набор от уравнения х = 0И a x + b = 0. Уравнението a x + b = 0линеен и неговия корен: x = − b a.

Определение 7

По този начин непълното квадратно уравнение a x 2 + b x = 0ще има два корена х = 0И x = − b a.

Нека затвърдим материала с пример.

Пример 5

Необходимо е да се намери решение на уравнението 2 3 · x 2 - 2 2 7 · x = 0.

Решение

Ще го извадим хизвън скобите получаваме уравнението x · 2 3 · x - 2 2 7 = 0 . Това уравнение е еквивалентно на уравненията х = 0и 2 3 x - 2 2 7 = 0. Сега трябва да решите полученото линейно уравнение: 2 3 · x = 2 2 7, x = 2 2 7 2 3.

Запишете накратко решението на уравнението, както следва:

2 3 x 2 - 2 2 7 x = 0 x 2 3 x - 2 2 7 = 0

x = 0 или 2 3 x - 2 2 7 = 0

x = 0 или x = 3 3 7

Отговор: x = 0, x = 3 3 7.

Дискриминант, формула за корените на квадратно уравнение

За намиране на решения на квадратни уравнения има коренна формула:

Определение 8

x = - b ± D 2 · a, където D = b 2 − 4 a c– така нареченият дискриминант на квадратно уравнение.

Записването на x = - b ± D 2 · a по същество означава, че x 1 = - b + D 2 · a, x 2 = - b - D 2 · a.

Би било полезно да разберете как е получена тази формула и как да я приложите.

Извеждане на формулата за корените на квадратно уравнение

Нека се сблъскаме със задачата да решим квадратно уравнение a x 2 + b x + c = 0. Нека извършим няколко еквивалентни трансформации:

  • разделете двете страни на уравнението на число а, различни от нула, се получава следното квадратно уравнение: x 2 + b a · x + c a = 0 ;
  • Нека изберем пълния квадрат от лявата страна на полученото уравнение:
    x 2 + b a · x + c a = x 2 + 2 · b 2 · a · x + b 2 · a 2 - b 2 · a 2 + c a = = x + b 2 · a 2 - b 2 · a 2 + в а
    След това уравнението ще приеме формата: x + b 2 · a 2 - b 2 · a 2 + c a = 0;
  • Сега е възможно да прехвърлим последните два термина от дясната страна, променяйки знака на противоположния, след което получаваме: x + b 2 · a 2 = b 2 · a 2 - c a ;
  • Накрая трансформираме израза, записан от дясната страна на последното равенство:
    b 2 · a 2 - c a = b 2 4 · a 2 - c a = b 2 4 · a 2 - 4 · a · c 4 · a 2 = b 2 - 4 · a · c 4 · a 2 .

Така стигаме до уравнението x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 , еквивалентно на първоначалното уравнение a x 2 + b x + c = 0.

Разгледахме решението на такива уравнения в предишните параграфи (решаване на непълни квадратни уравнения). Вече натрупаният опит позволява да се направи заключение относно корените на уравнението x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2:

  • с b 2 - 4 a c 4 a 2< 0 уравнение не имеет действительных решений;
  • когато b 2 - 4 · a · c 4 · a 2 = 0, уравнението е x + b 2 · a 2 = 0, тогава x + b 2 · a = 0.

От тук единственият корен x = - b 2 · a е очевиден;

  • за b 2 - 4 · a · c 4 · a 2 > 0 ще бъде вярно следното: x + b 2 · a = b 2 - 4 · a · c 4 · a 2 или x = b 2 · a - b 2 - 4 · a · c 4 · a 2 , което е същото като x + - b 2 · a = b 2 - 4 · a · c 4 · a 2 или x = - b 2 · a - b 2 - 4 · a · c 4 · a 2 , т.е. уравнението има два корена.

Възможно е да се заключи, че наличието или отсъствието на корени на уравнението x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 (и следователно първоначалното уравнение) зависи от знака на израза b 2 - 4 · a · c 4 · a 2, написани от дясната страна. И знакът на този израз се дава от знака на числителя (знаменател 4 а 2винаги ще бъде положителен), тоест знакът на израза b 2 − 4 a c. Този израз b 2 − 4 a cдадено е името - дискриминантът на квадратното уравнение и буквата D е определена като негово обозначение. Тук можете да запишете същността на дискриминанта - по стойността и знака му могат да направят извод дали квадратното уравнение ще има реални корени и ако да, какъв е броят на корените - един или два.

Нека се върнем към уравнението x + b 2 · a 2 = b 2 - 4 · a · c 4 · a 2 . Нека го пренапишем с помощта на дискриминантна нотация: x + b 2 · a 2 = D 4 · a 2 .

Нека отново формулираме изводите си:

Определение 9

  • при д< 0 уравнението няма реални корени;
  • при D=0уравнението има един корен x = - b 2 · a ;
  • при D > 0уравнението има два корена: x = - b 2 · a + D 4 · a 2 или x = - b 2 · a - D 4 · a 2. Въз основа на свойствата на радикалите тези корени могат да бъдат записани във формата: x = - b 2 · a + D 2 · a или - b 2 · a - D 2 · a. И когато отворим модулите и приведем дробите към общ знаменател, получаваме: x = - b + D 2 · a, x = - b - D 2 · a.

И така, резултатът от нашите разсъждения беше извеждането на формулата за корените на квадратно уравнение:

x = - b + D 2 a, x = - b - D 2 a, дискриминант дизчислено по формулата D = b 2 − 4 a c.

Тези формули позволяват да се определят и двата реални корена, когато дискриминантът е по-голям от нула. Когато дискриминантът е нула, прилагането на двете формули ще даде същия корен като единственото решение на квадратното уравнение. В случай, че дискриминантът е отрицателен, ако се опитаме да използваме формулата за корен на квадратно уравнение, ще се сблъскаме с необходимостта да извлечем Корен квадратенот отрицателно число, което ще ни отведе отвъд реални числа. При отрицателен дискриминантКвадратното уравнение няма да има реални корени, но е възможна двойка комплексно спрегнати корени, определени от същите формули за корени, които получихме.

Алгоритъм за решаване на квадратни уравнения с помощта на коренни формули

Възможно е да решите квадратно уравнение, като незабавно използвате формулата за корен, но основно това се прави, когато трябва да намерите сложни корени.

В повечето случаи това обикновено означава търсене не на комплексни, а на реални корени на квадратно уравнение. Тогава е оптимално, преди да използвате формулите за корените на квадратно уравнение, първо да определите дискриминанта и да се уверите, че той не е отрицателен (в противен случай ще заключим, че уравнението няма реални корени) и след това да преминете към изчисляване на стойност на корените.

Разсъждението по-горе дава възможност да се формулира алгоритъм за решаване на квадратно уравнение.

Определение 10

За решаване на квадратно уравнение a x 2 + b x + c = 0, необходимо:

  • според формулата D = b 2 − 4 a cнамиране на дискриминантната стойност;
  • при Д< 0 сделать вывод об отсутствии у квадратного уравнения действительных корней;
  • за D = 0, намерете единствения корен на уравнението по формулата x = - b 2 · a;
  • за D > 0, определете два реални корена на квадратното уравнение, като използвате формулата x = - b ± D 2 · a.

Имайте предвид, че когато дискриминантът е нула, можете да използвате формулата x = - b ± D 2 · a, тя ще даде същия резултат като формулата x = - b 2 · a.

Нека да разгледаме примерите.

Примери за решаване на квадратни уравнения

Нека дадем решение на примерите за различни значениядискриминанта.

Пример 6

Трябва да намерим корените на уравнението x 2 + 2 x − 6 = 0.

Решение

Нека запишем числените коефициенти на квадратното уравнение: a = 1, b = 2 и c = − 6. След това продължаваме според алгоритъма, т.е. Нека започнем да изчисляваме дискриминанта, за който ще заместим коефициентите a, b И ° Свъв формулата на дискриминанта: D = b 2 − 4 · a · c = 2 2 − 4 · 1 · (− 6) = 4 + 24 = 28 .

Така че получаваме D > 0, което означава, че оригиналното уравнение ще има два реални корена.
За да ги намерим, използваме коренната формула x = - b ± D 2 · a и, замествайки съответните стойности, получаваме: x = - 2 ± 28 2 · 1. Нека опростим получения израз, като извадим фактора от знака за корен и след това намалим дробта:

x = - 2 ± 2 7 2

x = - 2 + 2 7 2 или x = - 2 - 2 7 2

x = - 1 + 7 или x = - 1 - 7

Отговор: x = - 1 + 7 ​​​​​​, x = - 1 - 7 .

Пример 7

Трябва да се реши квадратно уравнение − 4 x 2 + 28 x − 49 = 0.

Решение

Нека дефинираме дискриминанта: D = 28 2 − 4 · (− 4) · (− 49) = 784 − 784 = 0. При тази стойност на дискриминанта оригиналното уравнение ще има само един корен, определен по формулата x = - b 2 · a.

x = - 28 2 (- 4) x = 3,5

Отговор: х = 3,5.

Пример 8

Уравнението трябва да се реши 5 y 2 + 6 y + 2 = 0

Решение

Числените коефициенти на това уравнение ще бъдат: a = 5, b = 6 и c = 2. Използваме тези стойности, за да намерим дискриминанта: D = b 2 − 4 · a · c = 6 2 − 4 · 5 · 2 = 36 − 40 = − 4 . Изчисленият дискриминант е отрицателен, така че оригиналното квадратно уравнение няма реални корени.

В случай, че задачата е да посочим сложни корени, прилагаме формулата на корена, извършвайки действия с сложни числа:

x = - 6 ± - 4 2 5,

x = - 6 + 2 i 10 или x = - 6 - 2 i 10,

x = - 3 5 + 1 5 · i или x = - 3 5 - 1 5 · i.

Отговор:няма реални корени; сложните корени са както следва: - 3 5 + 1 5 · i, - 3 5 - 1 5 · i.

IN училищна програмаНяма стандартно изискване за търсене на сложни корени, следователно, ако по време на решението дискриминантът е определен като отрицателен, веднага се записва отговорът, че няма реални корени.

Коренна формула за четни втори коефициенти

Коренната формула x = - b ± D 2 · a (D = b 2 − 4 · a · c) дава възможност да се получи друга формула, по-компактна, позволяваща да се намерят решения на квадратни уравнения с четен коефициент за x ( или с коефициент от формата 2 · n, например 2 3 или 14 ln 5 = 2 7 ln 5). Нека покажем как се получава тази формула.

Нека се изправим пред задачата да намерим решение на квадратното уравнение a · x 2 + 2 · n · x + c = 0 . Продължаваме според алгоритъма: определяме дискриминанта D = (2 n) 2 − 4 a c = 4 n 2 − 4 a c = 4 (n 2 − a c) и след това използваме коренната формула:

x = - 2 n ± D 2 a, x = - 2 n ± 4 n 2 - a c 2 a, x = - 2 n ± 2 n 2 - a c 2 a, x = - n ± n 2 - a · c a .

Нека изразът n 2 − a · c бъде означен като D 1 (понякога се обозначава с D "). Тогава формулата за корените на разглежданото квадратно уравнение с втория коефициент 2 · n ще приеме формата:

x = - n ± D 1 a, където D 1 = n 2 − a · c.

Лесно се вижда, че D = 4 · D 1, или D 1 = D 4. С други думи, D 1 е една четвърт от дискриминанта. Очевидно знакът на D 1 е същият като знака на D, което означава, че знакът на D 1 може също да служи като индикатор за наличието или отсъствието на корени на квадратно уравнение.

Определение 11

По този начин, за да се намери решение на квадратно уравнение с втори коефициент от 2 n, е необходимо:

  • намерете D 1 = n 2 − a · c ;
  • в D 1< 0 сделать вывод, что действительных корней нет;
  • когато D 1 = 0, определете единствения корен на уравнението, като използвате формулата x = - n a;
  • за D 1 > 0, определете два реални корена, като използвате формулата x = - n ± D 1 a.

Пример 9

Необходимо е да се реши квадратното уравнение 5 x 2 − 6 x − 32 = 0.

Решение

Можем да представим втория коефициент на даденото уравнение като 2 · (− 3) . След това пренаписваме даденото квадратно уравнение като 5 x 2 + 2 (− 3) x − 32 = 0, където a = 5, n = − 3 и c = − 32.

Нека изчислим четвъртата част от дискриминанта: D 1 = n 2 − a · c = (− 3) 2 − 5 · (− 32) = 9 + 160 = 169. Получената стойност е положителна, което означава, че уравнението има два реални корена. Нека ги определим с помощта на съответната коренна формула:

x = - n ± D 1 a, x = - - 3 ± 169 5, x = 3 ± 13 5,

x = 3 + 13 5 или x = 3 - 13 5

x = 3 1 5 или x = - 2

Би било възможно да се извършат изчисления, като се използва обичайната формула за корените на квадратно уравнение, но в този случай решението би било по-тромаво.

Отговор: x = 3 1 5 или x = - 2 .

Опростяване на формата на квадратни уравнения

Понякога е възможно да се оптимизира формата на оригиналното уравнение, което ще опрости процеса на изчисляване на корените.

Например, квадратното уравнение 12 x 2 − 4 x − 7 = 0 очевидно е по-удобно за решаване от 1200 x 2 − 400 x − 700 = 0.

По-често опростяването на формата на квадратно уравнение се извършва чрез умножаване или разделяне на двете му страни на определено число. Например, по-горе показахме опростено представяне на уравнението 1200 x 2 − 400 x − 700 = 0, получено чрез разделяне на двете страни на 100.

Такова преобразуване е възможно, когато коефициентите на квадратното уравнение не са взаимно прости числа. Тогава обикновено разделяме двете страни на уравнението на най-голямата общ делителабсолютни стойности на неговите коефициенти.

Като пример използваме квадратното уравнение 12 x 2 − 42 x + 48 = 0. Нека определим GCD на абсолютните стойности на неговите коефициенти: GCD (12, 42, 48) = GCD (GCD (12, 42), 48) = GCD (6, 48) = 6. Нека разделим двете страни на първоначалното квадратно уравнение на 6 и да получим еквивалентното квадратно уравнение 2 x 2 − 7 x + 8 = 0.

Като умножите двете страни на квадратно уравнение, обикновено се отървавате от дробните коефициенти. В този случай те се умножават по най-малкото общо кратно на знаменателите на неговите коефициенти. Например, ако всяка част от квадратното уравнение 1 6 x 2 + 2 3 x - 3 = 0 се умножи с LCM (6, 3, 1) = 6, тогава то ще бъде написано в повече в проста форма x 2 + 4 x − 18 = 0 .

Накрая отбелязваме, че почти винаги се отърваваме от минуса при първия коефициент на квадратно уравнение, като променяме знаците на всеки член на уравнението, което се постига чрез умножаване (или деление) на двете страни по −1. Например от квадратното уравнение − 2 x 2 − 3 x + 7 = 0 можете да отидете до неговата опростена версия 2 x 2 + 3 x − 7 = 0.

Връзка между корени и коефициенти

Формулата за корените на квадратните уравнения, която вече ни е известна, x = - b ± D 2 · a, изразява корените на уравнението чрез неговите числени коефициенти. Разчитайки на тази формула, имаме възможност да зададем други зависимости между корените и коефициентите.

Най-известните и приложими са формулите на теоремата на Виета:

x 1 + x 2 = - b a и x 2 = c a.

По-специално, за даденото квадратно уравнение сборът от корените е вторият коефициент с противоположен знак, а произведението на корените е равно на свободния член. Например, като разгледаме формата на квадратното уравнение 3 x 2 − 7 x + 22 = 0, е възможно незабавно да определим, че сумата от неговите корени е 7 3, а произведението от корените е 22 3.

Можете също така да намерите редица други връзки между корените и коефициентите на квадратно уравнение. Например сумата от квадратите на корените на квадратно уравнение може да бъде изразена чрез коефициенти:

x 1 2 + x 2 2 = (x 1 + x 2) 2 - 2 x 1 x 2 = - b a 2 - 2 c a = b 2 a 2 - 2 c a = b 2 - 2 a c a 2.

Ако забележите грешка в текста, моля, маркирайте я и натиснете Ctrl+Enter