Стабилизатор напряжения на lm317. Интегральный стабилизатор напряжения Регулируемый стабилизатор с защитой от кз

В данной статье будет рассмотрена схема простого, но эффективного стабилизатора напряжения с защитой от короткого замыкания на выходе. Основой стабилизатора служит интегральный стабилизатор К157ХП2, в качестве управляющего транзистора используется n-p-n транзистор КТ808А. Схема стабилизатора представлена на рисунке 1.

Для начала рассмотрим внутреннюю структуру микросхемы К157ХП2. Ее схема представлена на рисунке 2.



Помимо собственно самого стабилизатора микросхема имеет еще две отдельных транзисторных структуры, это транзисторы VT29 и VT30. Их, в параллельном включении, мы и будем использовать, как предварительный каскад усиления для управляющего транзистора VT1 КТ808А. Микросхема имеет функцию плавного включения стабилизатора. Время нарастания выходного напряжения зависит от емкости конденсатора С5 рисунок 1, подключенного к выводу 8 DA1. Наличие плавного нарастания напряжения позволяет намного уменьшить амплитуду импульса тока заряда при работе стабилизатора на емкостную нагрузку. Микросхема имеет внутреннюю защиту от превышения тока нагрузки. Датчиком тока в этом случае является резистор R12. Порог ограничения равен 200мА. И еще одна очень полезная опция у данной микросхемы, это – Вкл\Выкл. Если на вывод 9 DA1 подать напряжение более двух вольт, то стабилизатор включится, если убрать напряжение, то стабилизатор выключится практически полностью. Выходное напряжение закрытого стабилизатора составляет лишь несколько десятков милливольт.

Еще один плюс, это тепловая защита. Защита кристалла от перегрева осуществляется транзистором VT18, на базу которого подана часть образцового напряжения, недостаточная для его открывания при нормальной температуре. При повышении температуры кристалла до +165...180°С транзистор VT18 открывается и шунтирует базовую цепь транзистора VT22.

Работа схемы стабилизатора

При подаче напряжения на схему стабилизатора, это напряжение попадает на коллектора транзисторов VT1, рисунок 1, VT29 и VT30 выводы 12 и 3 микросхемы DA1. Так же это напряжение подается на конденсатор С4, который находится в цепи запуска схемы стабилизатора. В момент подачи напряжения на схему ток заряда этого конденсатора включает стабилизатор микросхемы. На выходе стабилизатора микросхемы, вывод 11, появляется открывающее напряжение, которое через ограничивающий резистор R3 подается на базы транзисторов VT29 и VT30 микросхемы DA1. С эмиттеров, вывод 1 DA1, этих транзисторов сигнал подается на базу мощного транзистора VT1 рисунок 1. Напряжение появится на выходе полной схемы стабилизатора. Часть этого напряжения через резистор R3, величиной более 2В поступит на вывод 9 DA1- On/Off. Теперь уже стабилизатор во включенном состоянии будет удерживаться не током заряда конденсатора С4, а током протекающим через резистор обратной связи R3. Исходя из выше сказанного, становиться понятно, как работает схемы защиты стабилизатора от режима короткого замыкания. При замыкании выходных клемм стабилизатора, верхний вывод резистора R3 оказывается замкнутым на общий провод устройства, напряжение на выводе 9 DA1 пропадает, стабилизатор выключается. Вернуть схему в рабочее состояние можно будет отключением и повторным включением стабилизатора. Можно поставить кнопку «Перезапуск» параллельно конденсатору запуска С4.

Регулировка выходного напряжения осуществляется при помощи переменного резистора R4. Минимальное выходное напряжение стабилизатора равно напряжению внутреннего ИОН и соответствует 1,3 В. Максимальное напряжение зависит естественно от величины входного, но не более 40 вольт, падения напряжения на схеме стабилизатора и величины резистора R5. Если вам не нужно ограничение выходного напряжения, то этот резистор из схемы можно исключить.

Детали и конструкция

В качестве мощного управляющего транзистора VT1 использован транзистор n-p-n структуры КТ808А

Его можно заменить любыми подходящими транзисторами КТ819, КТ827, КТ829, импортными транзисторами из серии ТИР и т.д. и т.п. Конденсатор фильтра С3 лучше использовать танталовый, типа ЭТО, но за неимением можно поставить и обычный электролит. Конденсатор С1 любой. Он стоит параллельно входным клеммам схемы, но физически он должен находиться непосредственно у микросхемы DA1. Как и конденсатор С2, по схеме он стоит параллельно выходу, но так же должен находиться рядом с микросхемой. Усилитель ошибки данной микросхемы имеет большой коэффициент усиления, чем больше Кус, тем больше склонность к возбуждению. Поэтому, как вы выполните монтаж стабилизатора, зависит устойчивость его работы. В конечном счете, от этого зависит надежность работы тех устройств, которые будут питаться от этого стабилизатора.

Внешний вид экспериментального модуля стабилизатора показан на фото 1.

На фото показана экспериментальная плата, но вы, когда будете делать свою, то обязательно придерживайтесь показанной компоновки. Резистор R1 можно расположить на плате, а можно припаять прямо к выводам транзистора VT1. Что бы уменьшить выходное сопротивление стабилизатора, верхний и нижний выводы регулирующей цепочки R4 и R5 необходимо подключать к выходным клемма устройства, чтобы исключить влияние падения напряжения на монтажных проводах, да и о сечении проводов для соответствующего тока нагрузки не забывайте.

Успехов, удачи. К.В.Ю.

Скачать статью.


Рассматриваемый компенсационный стабилизатор напряжения непрерывного действия снижает максимальное значение мощности, рассеиваемое регулирующим транзистором в режиме короткого замыкания. Принципиальная электрическая схема стабилизатора приведена на рис. 5.

Режим ограничение тока

Резистор R 1 является датчиком тока. При перегрузке по току на R 1 возникает напряжение, которое через резистор R 2 подается на базо-эмиттерный переход транзистора VT 3 , которыйприоткрывается. В результате появляются базовый и коллекторный токи VT 3 , которые уменьшают базовый ток транзистора VT 2 , соответственно уменьшаются коллекторные токи транзисторов VT 2 иVT 1 , что приводит к ограничению выходного тока стабилизатора напряжения.

Защита от короткого замыкания

Для защиты используется 2 резистора – R 2 и R 3 и при нормальном режиме работы

напряжение на эмиттере транзистора VT 1 равно выходному. При коротком замыкании выходное напряжение равно нулю, соответственно напряжение на эмиттере транзистора VT 1

тоже равно нулю и все входное напряжение приложено к резисторам R 2 и R 3 . Напряжение на

R 2 возрастает и к нему прибавляется падение напряжения на R 1 , что приводит к открытию

Рис. 5. Принципиальная электрическая схема стабилизатора напряжения

на ОУ с изменяющимся уровнем ограничения тока

и с защитой от короткого замыкания

транзистора VT 3 . Резисторы R 2 и R 3 рассчитаны таким образом, чтобы коллекторный ток VT 3 в режиме короткого замыкания составлял примерно 80% от базового тока VT 2 . Соответственно, базовый ток VT 2 снижается примерно в 5 раз, что приводит к снижению коллекторного тока VT 1 тоже в 5 раз. Тем самым транзистор VT 1 защищается от перегрузки при коротком замыкании.

Стабилизация выходного напряжения

Если в нормальном режиме работы по каким-то причинам выходное напряжение стабилизатора изменяется, то изменяется и напряжение, создаваемое делителем R 6 , R 7 , R 8 в точке А. Операционный усилитель DA 1 усиливает разницу между опорным напряжением () и напряжением в точкеA (), которое можно посчитать по формуле

Если напряжение на выходе стабилизатора уменьшилось, то разница будетположительной иувеличивается, что приводит к уменьшению тока, проходящего через стабилитронVD 3 , который является частью тока, проходящего через R 4 .Другая часть уходит на базу транзистораVT 2 и на выход операционного усилителяDA 1 . Соответственно, если уменьшается, то увеличиваются токи,и,и, соответственно, увеличивается. При увеличениисхема стабилизации работает по аналогичной цепочке (уменьшая отклонение.

Стабилитрон VD 3 включается для того, чтобы операционный усилитель DA 1 работал в активном режиме, при котором должно составлять примерно половину напряжения питания операционного усилителя(+U). Выходное напряжение самого стабилизатора () может быть значительно выше. На базе транзистораVT 2 напряжение выше, чем на 2. Соответственно, разница междуи напряжением на базеVT 2 составляет определенную величину, которая компенсируется с помощью стабилитрона VD 3

Собственно стабилизатор состоит из источника опорного напряжения (лампа HL1 и стабилитроны VD2, VD3), усилителя постоянного тока (транзисторы VT3, VT4) и регулирующего транзистора (VT5). В источнике опорного напряжения протекающий через стабилитроны ток стабилизируется лампой накаливания, что улучшает коэффициент стабилизации, а значит, снижает пульсации выпрямленного напряжения. Лампа одновременно служит индикатором перегрузки, вспыхивающим при срабатывании электронной защиты. Для увеличения выходного тока до 3...5 А применен мощный транзистор VT5.

Электронная защита выполнена на транзисторе VT1 и тринисторе VS1. При достижении максимально допустимого тока нагрузки увеличивается падение напряжения на резисторе R3, транзистор VT1 открывается, и положительный импульс напряжения через диод VD1 открывает тринистор. Он шунтирует источник опорного напряжения и закрывает транзисторы VT3—VT5. После устранения перегрузки и установки регулятора выходного напряжения (переменный резистор R4) в нижнее по схеме положение устройство возвращается в исходное состояние кратковременным нажатием кнопки SB1.

Применение дополнительной электромагнитной защиты необходимо по следующим соображениям. В определенной ситуации перегрузка *или короткое замыкание в цепи нагрузки может наступить тогда, когда стабилизатор уже работал продолжительное время при токе, близком к максимальному.

В этом случае транзистор VT5 разогрет и при срабатывании электронной защиты не закрывается полностью. Через транзистор продолжает протекать большой ток, способный перегреть транзистор и вывести его из строя.
Вот здесь и пригодится электромагнитная защита, выполненная на транзисторе VT2 и реле К1. При открывании тринистора VS1 база транзистора VT2 подключается через резистор R5 к плюсовому проводу стабилизатора. Транзистор открывается, срабатывает реле К1 и подключает контактами К1.1 базу транзистора VT5 к плюсовому проводу.


Выходное напряжение стабилизатора устанавливают переменным резистором R4 от 0,2 до 15 В, а максимальный ток нагрузки, при котором срабатывает защита,— под-строечным резистором R2. Использование для транзистора VT5 радиатора 1201-Б из наборов «Старт» позволяет при выходном напряжении 15 В пропускать через транзистор ток 1 А в длительном режиме или 2...3 А в течение 30...40 мин (в зависимости от условий конвекции воздуха у радиатора и температуры транзистора).

Для увеличения тока нагрузки до 5 А потребуется радиатор с большей площадью поверхности или принудительное охлаждение транзистора (небольшим вентилятором).

Указанный на схеме транзистор КТ315В можно заменить транзисторами КТ3157, КТ342А, КТ373АГ КТ375А; КТ361Е — транзисторами КТ361Г, КТ361К, КТ203Б, КТ104Г; П215 — П213—П217 с любым буквенным индексом, КТ814Б, КТ816Б; П210Б—П210В, ГТ701А. Вместо тринистора КУ101Б подойдут КУ101Г, КУ101Е, КУ101И, КУ201В, КУ201Г (мощность двух последних тринисто-ров намного выше требуемой для данной конструкции). Вместо диодов Д223 подойдут Д219А, Д220, КД509А, КД522Б, а вместо стабилитронов Д814А—Д808. Подстроеч-ный резистор R2— проволочный, типа ППЗ; постоянный резистор R3— тоже проволочный, изготовленный из отрезка провода ПЭВ-1 0,59 длиной 156 см, намотанного на фарфоровом каркасе диаметром 17 и высотой 40 мм (подойдет корпус резистора ПЭВ-10); переменный резистор R4 — любого типа с линейной функциональной характеристикой (А); остальные резисторы — МЛТ указанной на схеме или большей мощности. Лампа HL1—КМ 24-35 (на напряжение 24 В и ток 35 мА), реле — РЭС9, паспорт РС4.524.200 (обе группы контактов соединены параллельно).

Большая часть указанных деталей смонтирована на печатной плате (рис. С-1 2) из фольгированного стеклотекстолита. Вместе с остальными деталями и выпрямителем плату размещают в корпусе, на передней стенке которого устанавливают ручки управления и выходные зажимы для подключения нагрузки.

Налаживание устройства начинают с электронной защиты. Левый по схеме вывод резистора R5 отключают от деталей, а движок резистора R2 устанавливают в верхнее положение. Подключают к выходу стабилизатора нагрузку, потребляющую ток 3,5...4 А при напряжении 6...10 В. Если электронная защита сразу же срабатывает, перемещают движок резистора R2 вниз по схеме. Более точным подбором сопротивления резистора R3 (отматыванием или доматыванием провода) добиваются, чтобы электронная защита срабатывала примерно при среднем положении движка резистора R2.

Вы наверняка обратили внимание на одно неудобство при эксплуатации стабилизатора — после устранения КЗ или перегрузки приходится устанавливать движок регулятора выходного напряжения R4 в нулевое положение, после чего нажимать кнопку SB1 и вновь ставить выходное напряжение переменным резистором R4.

Избавиться от этого неудобства нетрудно, если применить вместо одинарной кнопки SB1 сдвоенную, но с контактами на размыкание. Одну группу контактов следует включить в разрыв цепи коллектора транзистора VT1, а другую — в разрыв верхнего по схеме вывода лампы HL1. Причем при нажатии кнопки первая группа должна срабатывать несколько позже второй. Если используется кнопочный выключатель типа КМ2-1, в нем для указанных целей изгибают пинцетом пружинящую пластину вверх примерно на 20° над выключателем первой группы контактов.

Стабилизатор тока с защитой от КЗ

Защита стабилизатора тока от перегрузки

Стабилизаторы тока широко используются в различных устройствах. Их схемы бывают простыми и не очень. Но в любом случае будет лучше, если он будет иметь защиту от перегрузки. Проблема, которую мы рассмотрим, заключается в следующем, есть у нас стабилизатор напряжения с ограничение тока нагрузки. То есть такому стабилизатору не страшны короткие замыкания на его выходе.

Но в режиме КЗ на регулирующем транзисторе такого стабилизатора будет выделяться большая мощность, это потребует применение соответствующего теплоотвода, что повлечет за собой увеличения размеров устройства, ну и его цены. А иначе – тепловой пробой структуры мощного транзистора.

Для примера возьмем простую схему стабилизатора тока на микросхеме, показанную на рисунке 1.

Все в общих чертах. Ток стабилизации, в соответствии с формулой 1, равен 1А. Допустим, нормальное сопротивление нагрузки 6 Ом. Тогда при токе в 1А на микросхеме упадет напряжение, равное: U = IxR — IxRн = 12-1,25-6 = 4,75В. Соответственно на микросхеме выделится мощность P = UxI = 4,75Вт. Если замкнуть выход стабилизатора тока, то на микросхеме уже будет падать напряжение 10,75В и соответственно мощность, выделяющаяся на микросхеме будет равна 10,75Вт. Вот на эту мощность и надо рассчитывать радиатор, тогда надежность вашего устройства будет на высоте. Но, что делать, если нет возможности установить радиатор бо’льших размеров? Правильно! Надо еще ограничить и мощность, выделяемую на микросхеме. Можно перед данной схемой поставить следящий стабилизатор, который бы в случае КЗ брал на себя часть выделяющейся тепловой мощности, но это сложновато. Лучше мы сделаем полное отключение стабилизатора при КЗ на его входе. Зная, что мощность равна произведению на ток, а ток мы выставляем сами и он стабилизирован, то мы будем следить за падение напряжения на регуляторе тока.

Схема регулируемого стабилизатора тока взята из статьи . Подробно о работе данного регулируемого стабилизатора тока можно прочитать в статье .

Работа схемы защиты от превышения мощности

Для обеспечения защиты стабилизатора тока вводим в схему всего пять деталей. Транзистор VT1, выполняющий роль ключа и полностью отключающий стабилизатор во время режима КЗ. Здесь применен MOSFET транзистор с каналом P. При небольших токах, порядка одного, двух ампер, подойдет IRFR5505

При больших токах лучше применить транзистор с большим рабочим током стока и меньшим сопротивлением открытого канала. Например — IRF4905

Тиристорный оптрон, можно отечественный – АОУ103 с любой буквой, можно подобрать импортный, например — TLP747GF

Стабилитрон, любой маломощный, дочитаете статью до конца и сами себе, если потребуется, выберете нужный. R1 – это резистор, через который на затвор ключа, подается отрицательное открывающее напряжение. R2 – резистор, ограничивающий ток светодиода тиристорного оптрона. Да, если входное напряжение будет больше 20В, то параллельно тиристору оптрона необходимо поставить еще один стабилитрон на 12В, который будет защищать переход затвор – исток ключевого транзистора. Так как у большинства транзисторов MOSFET максимально допустимое напряжение этого перехода 20В.

Для примера возьмем случай зарядки двенадцативольтового аккумулятора стабильным током 3А. При подаче напряжения питания на схему транзистор VT1 будет открыт, так как на его затвор поступает отрицательное напряжение и схема работает в нормальном режиме. Падение напряжения на ключе учитывать не будем из-за его малой величины. При таких условиях на самом стабилизаторе тока будет падать мощность Р = (20 — 12)∙I= 8 ∙ 3 = 24Вт. При КЗ мощность увеличится до 60Вт, если без защиты. Многовато, и для транзистора VT2 не безопасно, поэтому после 30Вт мы отключим стабилизатор, поставив в цепь защиты стабилитрон с напряжением стабилизации 10В. Таким образом, мы получаем схему с защитой не только от КЗ, но и от превышения допустимой мощности рассеяния на стабилизаторе тока. Допустим, по каким либо причинам, совершенно нам не нужным, начало падать сопротивление нагрузки. Это вызовет увеличение падения напряжения на стабилизаторе и соответственно мощности рассеяния на нем. Но как только напряжение между входом и выходом превысит 10 вольт, «пробьется» стабилитрон VD1, через светодиод оптрона U1 потечет ток. Излучение светодиода откроет фототиристор, который зашунтирует переход затвор – исток ключевого транзистора. Тот в сою очередь закроется и отключит схему стабилизатора. Возвратить схему в рабочее состояние можно будет, или отключением питания и повторным подключением, или кратковременным закорачиванием фототиристора, например кнопкой. Таким образом, отслеживая напряжение между входом и выходом стабилизатора тока, вы можете сами с помощью стабилитронов на разные напряжения стабилизации, установить нужный вам порог ограничения по мощности.

Эта схема применима практически ко всем стабилизаторам, хоть по току, хоть по напряжению. Ее можно встроить уже в готовый стабилизатор, не имеющий защиты от КЗ.
Успехов и удачи. К.В.Ю.

В транзисторных стабилизаторах наиболее часто применяются три вида защиты: от повышения выходного напряжения, от понижения выходного напряжения, от перегрузки по току или короткого замыкания в нагрузке.

Защита от перегрузки по току в стабилизаторах может быть выполнена с ограничением на постоянном уровне I К.З. превышающем значение I НОМ или же с резким уменьшением тока потребления до I К.З.0 в режиме короткого замыкания. В первом случае режим перегрузки по току характеризуется большей мощностью, выделяемой на регулирующем транзисторе. Поэтому в таких случаях обычно выключают напряжение питания на входе стабилизатора. Во втором случае рассеиваемая мощность на транзисторе при коротком замыкании значительно меньше мощности при номинальном токе нагрузки. Поэтому выключение питания в такой схеме не обязательно.

У традиционных транзисторных стабилизаторов нередко ненадежна защита от перегрузки. Безынерционные системы защиты ложно срабатывают даже от кратковременных перегрузок при подключении емкостной нагрузки. Инерционные же средства защиты не успевают сработать при сильном импульсе тока, например, при коротком замыкании приводящем к пробою транзисторов, Устройства с ограничителем выходного тока - безынерционны в них отсутствует триггерный эффект, но при коротком замыкании на регулирующем транзисторе рассеивается большая мощности что требует применения соответствующего теплоотвода.

Единственный выход при такой ситуации - одновременное применение средств ограничения выходного тока и инерционной защиты регулирующего транзистора от перегрузку что обеспечит ему в два-три раза меньшую мощность и габариты теплоотвода. Но это приводит к увеличению числа элементов, габаритов конструкции и усложняет повторяемость устройства в любительских условиях.

Принципиальная схема стабилизатора, число элементов в котором минимально, приведена на рис. 1. Источником образцового напряжения служит термостабилизированный стабилитрон VD1.

Для исключения влияния входного напряжения стабилизатора на режим стабилитрона его ток задается генератором стабильного тока (ГСТ), построенным на полевом транзисторе VT1. Термостабилизация и стабилизация тока стабилитрона повышают коэффициент стабилизации выходного напряжения.

Образцовое напряжение поступает на левый (по схеме) вход дифференциального усилителя на транзисторах VT2.2 и VT2.3 микросборки К125НТ1 и резисторе R7, где сравнивается с напряжением обратной связи, снимаемым с делителя выходного напряжения R8R9. Разность напряжений на входах дифференциального усилителя изменяет баланс коллекторных токов его транзисторов.

Регулирующий транзистор VT4, управляемый коллекторным током транзистора VT2.2, обладает большим коэффициентом передачи тока базы. Это увеличивает глубину ООС и повышает коэффициент стабилизации устройства, а также уменьшает мощность, рассеиваемую транзисторами дифференциального усилителя.

Рассмотрим работу устройства более подробно.

Допустим, что в установившемся режиме при увеличении тока нагрузки выходное напряжение несколько уменьшится, что вызовет и уменьшение напряжения на эмиттерном переходе транзистора VT3.2. При этом ток коллектора также уменьшится. Это приведет к увеличению тока транзистора VT2.2, поскольку сумма выходных токов транзисторов дифференциального усилителя равна току, текущему через резистор R7, и практически не зависит от режима работы его транзисторов.

В свою очередь, растущий ток транзистора VT2.2 вызывает увеличение тока коллектора регулирующего транзистора VT4, пропорциональное его коэффициенту передачи тока базы, повышая выходное напряжение до первоначального уровня и позволяет поддерживать его неизменным независимо от тока нагрузки.

Для кратковременной защиты устройства с возвратом его в исходное состояние введен ограничитель тока коллектора регулирующего транзистора, выполненный на транзисторе VT3 и резисторах R1, R2.

РезисторП1 выполняет функцию датчика тока, протекающего через регулирующий транзистор VT4. В случае превышения тока этого транзистора максимального значения (около 0,5 А) падение напряжения на резисторе R1 достигнет 0,6 В, т е. порогового напряжения открывания транзистора VT3, Открываясь, он шунтирует эмиттерный переход регулирующего транзистора, тем самым ограничивая его ток примерно до 0,5 А.

Таким образом, при кратковременных превышениях током нагрузки максимального значения транзисторы VT3 и VT4 работают в режиме ГСТ, что вызывает падение выходного напряжения без срабатывания защиты от перегрузки по току. Через некоторое время, пропорциональное постоянной времени цепи R5C1, это приводит к открыванию транзистора VT2.1 и дальнейшему открыванию транзистора VT3, закрывающего транзистор VT4. Такое состояние транзисторов устойчивое, поэтому после устранения короткого замыкания или обесточивания нагрузки необходимо Отключить устройство от сети и вновь включить после разрядки конденсатора С1.