Кислородная революция. Кислород как фактор эволюции жизни на земле

Кислородная революция June 30th, 2016

Биологические свойства молекулярного кислорода (O 2) как минимум двуедины. Кислород - мощный окислитель, с помощью которого можно получить много полезной энергии, и в то же время сильный яд, разрушающий клетки, если с ним неаккуратно обращаться. Иногда говорят, что кислород - это обоюдоострый меч (Sessions et al., 2009). У всех организмов, имеющих дело с кислородом, обязательно есть специальные ферментные системы, гасящие его химическое действие. Те, у кого таких ферментных систем нет, обречены быть строгими анаэробами, выживающими только в бескислородной среде. На современной Земле это некоторые бактерии и археи.
Практически весь кислород на Земле имеет биогенное происхождение, то есть выделяется живыми существами (конечно, мы сейчас говорим о свободном кислороде, а не об атомах кислорода, входящих в состав других молекул). Главный источник свободного кислорода - это кислородный фотосинтез; других известных реакций, способных давать его в сравнимых количествах, просто нет. Напомню, что фотосинтезом называется синтез глюкозы (С 6 H 12 O 6) из углекислоты (CO 2) и воды (H 2 O), происходящий с помощью энергии света. Кислород (O 2) является в этой реакции ничем иным, как побочным продуктом, отходом. Фотосинтез может и не приводить к выделению кислорода, если вместо воды в нем используется какое-нибудь другое вещество - например, сероводород (H 2 S), свободный водород (H 2) или некоторые соединения железа; такой фотосинтез называется бескислородным, есть несколько его разных вариантов. Практически наверняка бескислородный фотосинтез появился гораздо раньше кислородного. Поэтому в первый миллиард лет существования жизни (а скорее всего дольше) фотосинтез хотя и шел, но никакого насыщения атмосферы Земли кислородом не вызывал. Содержание кислорода в атмосфере в те времена составляло не больше 0,001% от современного - попросту говоря, это значит, что его там толком не было.
Все изменилось, когда на сцену вышли сине-зеленые водоросли, или цианобактерии. Именно эти существа стали предками пластид, фотосинтезирующих органелл эукариотной клетки. Цианобактерии - это фотосинтезирующие прокариоты, у которых фотосинтез кислородный. Я не случайно употребил здесь выражение "вышли на сцену", а не "возникли". Цианобактерии - на самом деле очень древняя эволюционная ветвь. Первое время они не были многочисленны, потому что кислородный фотосинтез не давал им никаких серьезных преимуществ по сравнению с бескислородным, которым владели другие группы микробов. Но химическое окружение этих микробов постепенно менялось. Наступил момент, когда "сырья" для бескислородного фотосинтеза (главным образом растворенных в океане солей железа) просто перестало хватать. И вот тогда час цианобактерий пробил. Кислородный фотосинтез имеет одно большое преимущество - совершенно неограниченный запас исходного реагента (воды), и один большой недостаток - высокую токсичность побочного продукта (кислорода). Неудивительно, что поначалу этот тип обмена не был "популярен". Зато при малейшем дефиците других субстратов, кроме воды, обладатели кислородного фотосинтеза должны сразу получать конкурентное преимущество, что и произошло. Наступила эпоха длиной примерно в миллиард лет, в течение которой облик Земли определяли в основном цианобактерии. Недавно эту эпоху предложили неофициально назвать в честь них "цианозоем" (Barbieri, 2015).
Именно из-за цианобактерий 2,4 миллиарда лет назад началась кислородная революция, она же кислородная катастрофа или Великое окислительное событие (Great Oxidation Event, GOE). Строго говоря, это событие не было ни мгновенным, ни абсолютно уникальным (Lyons et al., 2014). Короткие всплески концентрации кислорода, так называемые "кислородные дуновения", случались и раньше, это палеонтологически зафиксировано. И все же 2,4 миллиарда лет назад произошло нечто новое. За короткое по меркам земной истории время (считанные десятки миллионов лет) концентрация кислорода в атмосфере выросла примерно в тысячу раз и осталась на этом уровне; до прежних ничтожных величин она не опустилась больше никогда. Биосфера необратимо стала кислородной.
Для подавляющего большинства древних прокариот такая концентрация кислорода была смертельно опасна. Неудивительно, что первым следствием кислородной революции стало массовое вымирание. Выжили в основном те, кто успел создать защищающие от кислорода ферменты и толстые клеточные стенки (в том числе это пришлось сделать и самим цианобактериям). Есть основания полагать, что в первые 100-200 миллионов лет "нового кислородного мира" кислород был для живых организмов только ядом. А вот потом ситуация поменялась. Ответом биоты на кислородный вызов стало появление бактерий, которые включили кислород в цепочку реакций, разлагающих глюкозу, и таким образом начали использовать его для получения энергии.
Сразу оказалось, что кислородное окисление глюкозы (дыхание) в плане энергии намного полезнее бескислородного (брожения). Оно дает в несколько раз больше АТФ на молекулу глюкозы, чем любой сколь угодно сложный вариант бескислородного обмена. При этом начальные этапы распада глюкозы у пользователей дыхания и брожения остались общими: кислородное окисление послужило всего лишь "надстройкой" над уже имевшимся древним биохимическим механизмом, который сам по себе в кислороде не нуждался.
Группа прокариот, которая освоила рискованное, но эффективное получение энергии с помощью кислорода, называется протеобактериями. Именно от них произошли митохондрии. По генетическим данным, ближайший современный родственник митохондрий - это пурпурная спиральная альфа-протеобактерия Rhodospirillum rubrum (Esser et al., 2004). Родоспириллум обладает и дыханием, и брожением, и бескислородным фотосинтезом, в котором вместо воды используется сероводород, и может переключаться между всеми этими тремя типами обмена в зависимости от внешних условий. Несомненно, такой симбионт был бы предку эукариот очень полезен. А если (как сейчас многие думают) первый эукариот и возник-то в результате симбиоза археи с протеобактерией, то его появление надо считать прямым следствием кислородной революции. Это имеет еще и добавочные подтверждения: например, стероиды, синтез которых, в отличие от синтеза большинства других липидов, требует свободного кислорода, есть почти исключительно у эукариот. Как мы помним, к стероидам относится важный компонент эукариотных клеточных мембран - холестерин.
В свете сказанного почти не выглядят преувеличением слова двух современных крупных ученых, палеонтолога и геолога: "Все согласны с тем, что эволюция сине-зеленых водорослей была самым значительным биологическим событием на нашей планете (даже более значительным, чем развитие эукариотических клеток и появление многоклеточных организмов)" (Уорд, Киршвинк, 2016). Действительно, если бы не цианобактерии и вызванный ими кризис, ни эукариоты, ни многоклеточные, скорее всего, не появились бы. Честно говоря, лично я терпеть не могу марксизм, но в данном случае вынужден признать, что тезис Маркса "революции - локомотивы истории" применительно к биосферным революциям иногда подтверждается.

) объединил целый ряд феноменов, связанных с рубежом архея и протерозоя, под именем «Великое кислородное событие» (Great Oxigenation Event). Имеющиеся данные позволяли представить этот рубеж таким образом: начало деятельности фотосинтетических организмов, накопление кислорода в связи с ней, и постепенное превращение планеты из восстановительной в окислительную. Последующие работы существенно скорректировали эту модель. Фотосинтетические организмы, выделяющие кислород, зародились на заре архейской жизни, но свободный кислород на рубеже архея и протерозоя появился благодаря изменениям характера земного вулканизма. 90% своей жизни планета имела практически бескислородную гидросферу и атмосферу, при этом в протерозое содержание кислорода оказывается существенно меньшим, чем предполагалось прежде, и исключительно непостоянным.

В 50-х годах XX века стали накапливаться данные о раннепротерозойском кислородном скачке (Кислородная катастрофа , или Great Oxigenation Event , «Великое кислородное событие»). Складывалось представление, что ранняя атмосфера планеты была восстановительной, а затем 2,6–2,2 млрд лет назад атмосфера и океан постепенно стали наращивать свободный кислород. Кислород образовывался как побочный продукт деятельности фотосинтетиков: для получения энергии они использовали самое легкодоступное вещество на планете - воду. Такая модель основывалась на геохимических данных. Основным из них считалось высокое содержание в архейских породах двухвалентного (недоокисленного) железа в виде пирита (FeS 2), магнетита (Fe 3 O 4), сидерита (FeCO 3). Зерна пирита при этом могли быть хорошо обкатаны, а, следовательно, они подвергались активному воздействию поверхностных вод и атмосферы. Также показательным виделось присутствие в древнейших породах графита (неокисленного углерода), лазурита (Na 2 S - неокисленная сера), а также железо-марганцевых руд. Эти последние формируются преимущественно в низкокислородных условиях, так как в неокисленном состоянии железо и марганец мигрируют вместе, а при повышенном содержании кислорода железо теряет подвижность, и их пути расходятся. В конце 60-х годов было представлено еще одно важное доказательство в пользу восстановительной атмосферы на древней Земле: осадочные уранинитовые конгломераты. Они могли накапливаться только в отсутствии кислорода, поэтому их находят только в древнейших породах. В протерозойских породах стали преобладать минералы с высокой степенью окисления элементов, железо-марганцевые руды и ураниниты исчезли. Зато появились редкие элементы, которые включаются в осадочные минералы в присутствии кислорода.

Проверка и уточнение этой гипотезы заняли следующие четыре десятка лет. Что вызвало кислородную революцию? Каковы датировки этого события? Куда девался кислород до великой кислородной революции и был ли он вообще? Почему вброс кислорода на рубеже архея и протерозоя произошел относительно быстро, а накопление кислорода шло медленно? Какова роль живых организмов в этом процессе? На все эти вопросы следовало поискать ответы. На страницах Nature Тимоти Лайонз (Timothy Lyons) с коллегами из отделения наук о Земле Калифорнийского Университета в Риверсайде суммировали то, что за это время удалось узнать. Картина, как выясняется, и сложнее, и интереснее, чем первоначальная простая модель, схематично изображенная на рис. 2.

В связи с обсуждениями этой модели прежде всего следует задать вопрос о датировках кислородного события: все же, когда это произошло? Обычно, отвечая на этот вопрос, ссылаются на данные по фракционированию серы. Из-за разной реакционной способности изотопы серы накапливаются в минералах в определенных соотношениях - в этом и суть фракционирования изотопов. По этим соотношениям судят о механизмах фракционирования: механических соответственно массе изотопов (это масс-зависимое фракционирование) или биологических (это масс-независимое фракционирование). Сигнал о смене масс-независимого фракционирования на масс-зависимое фракционирование легко читается в архейских и протерозойских породах. Считалось, что масс-независимое фракционирование обеспечивали бактерии сульфатредукторы: они предпочитали для своих нужд более легкие изотопы. Поэтому архейское время с масс-независимым сигналом считали анаэробным миром сульфатредукторов. А когда в наступившем кислородном изобилии их восстановительный мир, как предполагалось, съежился до крошечных анклавов, то и биологическое фракционирование серы в основном остановилось. И по этому сигналу датировалось наступление Великой кислородной революции. Однако удалось красиво доказать, что сдвиг от масс-независимого к масс-зависимому фракционированию изотопов серы объясняется вовсе не свержением сульфатредукторов с их господствующих позиций (об этом см. новость Древнейшие бактерии архея не были сульфатредукторами , «Элементы», 28.09.2012). Этот переход был связан с изменениями в архейской атмосфере (ее прозрачностью, плотностью, типами и объемом вулканических выбросов). Это не значит, что сульфатредукторов не было, это не значит, что не было биологического масс-независимого фракционирования серы. Это означает, что не следует связывать датировку событий фракционирования серы с кислородной революцией. Сульфатредукторы - своим чередом, а фракционирование серы - своим, и где тут помещается поступление кислорода - неизвестно. Более того, сигнал масс-независимого фракционирования может быть «размазан» во времени из-за постоянного геологического круговорота серы. Минералы, несущие тот или иной сигнал фракционирования, могли сформироваться в более древние времена, затем оказаться погребенными, затем вновь подняться к поверхности. Таким образом, древний сигнал может появиться и в более молодых образцах. Поэтому на сегодняшний день трудно, во-первых, связать сигнал о масс-независимом фракционировании с определенным временем, во-вторых, с определенным биологическим механизмом, в третьих, с кислородным событием.

Другой возможный подход к датировке кислородного события основан на поиске следов производителей кислорода - цианобактерий и других хлорофилл-содержащих организмов. Таким способом можно убить сразу двух зайцев - и оценить время наступления кислородной эры, и прикинуть, кто за этим стоит. Палеонтологи находят множество архейских ископаемых, которые интерпретируются как те или иные микроорганизмы. Но их морфология настолько проста, что трудно с уверенностью утверждать, что их метаболизм основывался на кислородном фотосинтезе.

Считалось также, что в рассуждениях об архейской жизни можно опираться на данные по биомаркерам - молекулам, специфически указывающих на тот или иной тип метаболизма и/или тип микроорганизмов. Такими, например, являются молекулы стеранов , присущих только эукариотам; для их синтеза необходим кислород. Стераны обнаружили в породах, возрастом 2,7 млрд лет. Пока ученые обсуждали, так ли уж необходим кислород для синтеза стеранов, а если необходим, то в каком количестве, оказалось, что взбудоражившие всех стераны являются позднейшим загрязнением (об этом читайте в новости Древнейшие следы эукариот и цианобактерий на Земле признаны поздним загрязнением , «Элементы», 29.10.2008). Кроме того, некоторые последние работы заставляют сомневаться в надежности данных по биомаркерам: из них многие могут оказаться позднейшим загрязнением. Но опять же, это не означает, что фотосинтетиков не было. Они были, и даже с большой вероятностью.

Чтобы подтвердить свои предположения, Лайонз с коллегами предлагает обратить внимание на график распределения органического вещества в осадочных породах архея (рис. 3).

Поразительно! Органического углерода в архее продуцировалось столько же, сколько и в населенном неогене. Теоретически продуцентами этой органики можно представить и железобактерий, окисляющих Fe 2+ до Fe 3+ , и сульфатредукторов, окисляющих сероводород, и некоторых других экзотических фото- и хемосинтетиков. Но геохимические данные не позволяют считать этих продуцентов решающей силой. Все же в первую очередь приходится обращаться к кислородному фотосинтезу, чтобы объяснить высокую продукцию органики в архее. Следовательно, фотосинтетики уже вовсю работали в архее. Это заключение в большей степени основано на логике, чем на фактических данных. Кроме того, оно, хотя и отодвигает глубоко в архей начало кислородной жизни, но не помогает датировать события кислородной революции.

Об изменениях в характере синтеза органики судили по резким скачкам на изотопной кривой δ 13 С (рис. 4). В раннем протерозое около 2,4 млрд лет назад на кривой появляется высокий положительный экскурс (то есть, происходило повышение доли захороненной биологической продукции углерода), а около 2,2–2,1 - отрицательный. Как выясняется, раннепротерозойский пик δ 13 С асинхронный, а значит, его нельзя просто истолковать как повсеместное увеличение органического производства. Скорее нужно рассматривать увеличение захороненной органики как результат дисбаланса между процессами накопления (захоронения) и разложения органики. Ясно, что если эти два процесса идут с одинаковой скоростью, то ничего не накапливается и не подвергается захоронению, а значит, и никакого сигнала мы, вероятно, не получим. Сдвиг на изотопной кривой трактуется как нарушение этого баланса в сторону накопления.

Кислород в любом случае образуется, но быстро расходуется на окисление каких-то продуктов. В архее, как указывают авторы статьи, этими продуктами были, вероятно, вулканические газы - сероводород, сернистый газ, метан и водород. Изменения в характере вулканизма уменьшили поступление этих газов, кислород в итоге стал накапливаться. Все это вместе говорит о том, что «Великое кислородное событие» следует рассматривать как результат изменений вулканических процессов и геохимических соотношений, а не сдвигов биологической активности и метаболизма.

С этих позиций удобно истолковать наступление гуронского оледенения , вероятно, первого оледенения, превратившего планету в снежный шарик. Во время изменений вулканической деятельности, во-первых, в атмосферу стало поступать меньше метана и других парниковых газов, во-вторых, метан быстро окислялся появившимся кислородом. Для тогдашней планеты с ее тусклым солнышком (светимость Солнца в архее составляла 70-80% от современного) уменьшение количества парниковых газов оказалось критично: наступила долгая стужа, планета замерзла.

Как это ни удивительно, но вслед за кислородным событием на рубеже архея и протерозоя (уже ясно, что его не следует называть великим, так как собственно события и не было) не последовало постепенного нарастания кислорода, как можно было бы ожидать при наступлении эры фотосинтетиков. Количество кислорода то снижалось, то вновь увеличивалось, планетные оледенения то наступали, то заканчивались... Так, около 2,08–2,06 млрд лет назад количество кислорода резко снизилось. Соответственно упало и количество захороненной биоорганики. Причины этих скачков пока неизвестны. Также настораживает наличие неокисленных хрома и марганца в протерозойских палеопочвах: в присутствии кислорода эти металлы должны были бы окислиться чрезвычайно быстро.

Также оказалась несостоятельной гипотеза о существовании стратифицированного океана с насыщенными кислородом поверхностными водами и насыщенными сероводородом глубокими водами (модель Черного моря). Скорее всего, напротив, сероводородные слои размещались на мелководьях (рис. 5). И это как раз было следствием активной жизни и высокой органической продукции мелководий фотической зоны . Хотя, безусловно, кислородная стратификация океана так или иначе имела место.

В результате суммирования всех этих данных и рассуждений получается, что содержание кислорода в атмосфере и океане на протяжении протерозоя было непостоянным. Оно немного повысилось по сравнению с археем, хотя оставалось сравнительно низким - ниже, чем предполагалось прежде. Стоит заметить, что никаких особых изменений в биоте с кислородными флуктуациями не связано.

Таким образом, история кислорода на планете предстает несколько иной, чем представлялось прежде (рис. 6). Кислородный фотосинтез и, соответственно, использующие его фотосинтетики существовали с самых ранних архейских времен. Свободный кислород - побочная продукция их метаболизма - мог накапливаться локально (голубые стрелки на схеме), однако масштаб раннего фотосинтеза на планете пока трудно оценить. Весь этот кислород уходил на окисление органики и других элементов, в частности, вулканических газов. Изменения в характере вулканизма на планете начались в позднем архее. Они были связаны с формированием и стабилизацией континентальных плит. В результате этих геологических процессов баланс поступления кислорода и его изъятия резко нарушился: в атмосферу стал поступать свободный кислород. Эти взаимосвязанные процессы заняли значительное время, а не случились в конце архея по мановению волшебной «фотосинтетической» палочки. В течение протерозоя уровень кислорода менялся, временами на порядок, но в среднем оставался низким. Глубокие слои океана оставались бескислородными. В конце протерозоя океан оказался насыщенным кислородом до самых глубин.

Остается загадкой второй кислородный скачок, который произошел в конце протерозоя. С ним связывается появление многоклеточной жизни. Как это ни парадоксально, при наличии большого числа отложений этого возраста и, соответственно, внушительного количества данных по этому критическому интервалу, сейчас трудно сформулировать сколько-нибудь законченную модель этого кислородного сдвига. Важно, что незадолго до него появилось очень большое количество отложений органики, обогащенной легкими изотопами, а затем последовало великое оледенение и планета превратилась в снежный шар. После оледенения захоранивалась органика с низким изотопным сигналом 13 С. Иными словами, череда глобальных событий напоминает ту, что относится к раннепротерозойской последовательности. Ясно, что и в этом случае мог нарушиться баланс между производством и стоком кислорода.

Обзор ясно показывает, что наши знания о древнейших временах нашей планеты не полны, или даже ужасающе бедны. Остается лишь надеяться на будущих исследователей, и что этот неподатливый материал все же откроет им свои тайны.

(кислородная революция) — коренное изменение окружающей среды, случившейся примерно 2400000000 лет назад во время сидерийського периода в начале протерозойской эры.

Примерно 2700000000 лет назад атмосфера Земли состояла в основном из углекислого газа (около 90%). С появлением живых организмов, которые начали применять фотосинтез, поглощая углекислый газ и производя кислород, состав атмосферы претерпел кардинальные изменения. В современную геологическую эру содержание углекислого газа в атмосфере составляет около 0,03%. Соответственно, значительно снизился атмосферное давление. Это привело к экологической катастрофе, так как кислород ядовит для анаэробных организмов, доминировавших в то время. Изменение состава атмосферы привела к массовому вымиранию видов. Анаэробные бактерии уцелели только глубоко под водой и на земле, где доступ кислорода ограничен. Однако эта экологическая катастрофа создала предпосылки для развития энергетически выгодного кислородного метаболизма живых организмов и расцвета жизни в последующие эпохи.

Геологическая история

Заметное количество кислорода в атмосфере появилась около 2200000000 лет назад.

С биологической точки зрения критическим уровнем содержания кислорода является 0,2% (т.н. точка Пастера, около одной сотой доли современного содержания кислорода), когда процессы окисления становятся для живых организмов энергетически более выгодным, чем анаэробное дыхание. Считается, что точки Пастера было достигнуто около 600 млн лет назад, что привело к массовому распространению животных в начале фанерозоя.

Около 400 млн лет назад, когда концентрация кислорода в атмосфере составляла около 10% современной, образовался озоновый экран, после чего содержание кислорода в атмосфере очень быстро достиг современного уровня.

Задержка

Между возникновением фотосинтеза и кислородной катастрофой была задержка в 300 млн лет.

Одно из предложенных объяснений задержки — тектонические изменения, которые привели к появлению морских шельфов, на которых органический углерод мог откладываться в виде осадка. Кроме того, произведенный кислород связывался с ионами железа, которыми в то время был богат океан, образуя залежи железной руды. Однако эти механизмы не могут полностью объяснить природу задержки.

В 2006 году появилась новая гипотеза. Способны к фотосинтезу организмы также производят метан. Метан легко окисляется под действием ультрафиолетового облучения, связывая таким образом освобожденный кислород. Математическое моделирование атмосферы показало, что ей присуща бистабильность — могут существовать два разных равновесные состояния, в одном из которых содержание кислорода составляет 0,2%, а в другом — более 21%. К бистабильности приводит то обстоятельство, что в атмосфере с высоким содержанием кислорода возникает озоновый слой, который обладает способностью экранировать ультрафиолетовое излучение.

В ранних океанах и даже в атмосфере молодой Земли не было свободного кислорода, хотя за счет фотосинтеза цианобактерии и продуцировали его как побочный продукт метаболизма. Свободный кислород не вступает во взаимодействие с другими распространенными на планете элементами, такими как азот или углерод, а вот человеку он жизненно необходим. Ученые подсчитали, что небольшие «карманы» свободного кислорода начали появляться на Земле примерно три миллиарда лет назад, а около 2,4 миллиардов лет назад уровень кислорода в атмосфере резко увеличился: за 200 миллионов лет кислорода стало больше в 10 000 раз! Это событие исследователи окрестили Кислородной катастрофой (Great Oxidation Event , букв. Великое окисление) и именно оно полностью изменило характер поверхностных химических реакций Земли.

Кислородная революция: преобразившаяся Земля

Геолог из Университета Британской Колумбии Мэттис Смит (Matthijs Smit) и его коллега, профессор Клаус Мезгер (Klaus Mezger) из Университета Берна, посвятили новую работу исследованию этого феномена. Зная, что Кислородная катастрофа также трансформировала и породы, из которых состоят континенты, ученые начали изучать результаты геохимического анализа вулканической активности по всему миру, что в конечном итоге позволило им отобрать 48 000 образцов, возраст которых исчисляется миллиардами лет.

В своем пресс-релизе Смит отмечает, что с того момента, как в океане начал появляться свободный кислород, в составе континентов произошли ошеломляющие изменения. Горные породы на территории современной Исландии и Фарерских островов по составу примерно похожи на те, что были на молодой Земле до Кислородной катастрофы: они богаты магнием, а вот содержание кремнезема в них довольно низкое. Породы прошлого содержали минеральный оливин , который инициировал кислородные химические реакции при контакте с водой. По мере того, как континентальная кора развивалась и увеличивалась в размерах, оливин практически исчез, а с ним прекратились и реакции. Кислород начал накапливаться в океанах, а когда вода насытилась им, то газ стал уходить и в атмосферу.

Смит уверен, что именно это и стало отправной точкой для развития жизненных форм такими, какими мы их знаем сегодня. После насыщения кислородом Земля стала не только более пригодной для жизни в целом, но и куда лучше подходящей для развития сложных организмов. Причина изменений континентальной структуры пока остается неизвестной, но ученые отмечают, что тектоника плит началась примерно в этот период, а потому между этими событиями может быть прямая связь.

Значение открытия

Речь не идет об эволюции и абиогенезе — вопросы изначального зарождения жизни на Земле все еще остаются открытыми. Однако кислород — важнейший элемент, обеспечивший существование белковой жизни. Зная, как он изменил Землю, ученые смогут применить тот же принцип в исследовании экзопланет и в будущем выбрать для человечества идеальную планету для заселения: к примеру, уже сейчас астрономы подозревают, что две планеты в системе TRAPPIST-1 покрыты . Зная, как кислород влияет на формирование континентов, можно будет значительно сузить круг поисков и целенаправленно искать максимально подходящий нам новый мир.

Прыгать с парашютом или по-иному радоваться жизни, возможно лишь благодаря Кислородной катастрофе. И чтобы не усыпить читателя, сразу скажу, что эта обзорная статья лишь определяет темы, за которыми охотится наука.

На сегодняшний день принято считать, что источник молекулярного кислорода в атмосфере - фотосинтезирующие организмы. Так пишет любая википедия. Зачем про это пишу я? Чтобы отрицать, что: «Никто не будет отрицать тот факт, что кислородную атмосферу Земли создали и продолжают поддерживать именно растения. Это случилось потому, что они научились создавать органические вещества из неорганических, используя при этом энергию солнечного света (как мы помним из школьного курса биологии, подобный процесс называется фотосинтез)»

Конечно, растения тоже участвуют в атмосферном балансе, но судите сами: ок 2,5 млрд лет назад, жизнь на Земле представляли прокариоты, не способные к фотосинтезу, цианобактерии робко осваивались, а кислород в атмосфере уже был. Был, иначе за счет чего тогда к концу протерозоя все двухвалентное железо окислилось, или ушло ближе к ядру? Уже тогда, в раннепротерозойской атмосфере, парциальное давление кислорода увеличивалось не только из-за планетарных, но и космических причин. Очевидно, что кислород входил в состав океана, до появления растений: «По предположению австралийских ученых, первый сухой участок земли на нашей планете возник примерно 2,5 млрд лет назад, а до этого вся планета была покрыта сравнительно равномерным слоем воды, который образовался на поверхности после того, как Земля остыла.. ученые говорят, что к таким выводам они пришли на основе глобального физического и климатического моделирования»
Жаль, что моделируя прошлое, ученые не вспомнили, что молекула воды, которой была покрыта планета, состоит из атомов водорода и кислорода. Впрочем, наука это всего лишь метафора.

Естественно, кислород входил и в состав многих минералов при формирования первого суперконтинента. 2,5 млрд. до н.э., когда Ур становится частью Кенорленда , содействуя Кислородной катастрофе.

Это дает толчок для смены Архейского эона Протерозойским. Именно тогда, появление цианобактерий на континенте и начинает способствовать концентрации кислорода в атмосфере. Ибо цианобактерии - мутанты форм космической жизни, учились оксигенному фотосинтезу, когда на планете не было растений.

Кислород. Откуда он взялся - долгоинтересная тема. Раскрыть ее в объеме статьи возможно лишь фрагментарно. В тему, напомню о другом. О том, что леса - легкие планеты, думать ошибочно и вредно. Особенно оставаясь на ночь в комнате, полной растениями, выделяющими углекислый газ.

Немного ботаники. Да, новые лесные посадки дают кислорода больше, чем расходуют. Но и они стареют. А процессы старения и гниения жрут кислород, сохраняя его нулевой баланс. Следует так же учитывать, что «лесной» кислород используется, не отходя от кассы его обитателями. Все их разнообразие, от животных до грибов и микроорганизмов, нуждается в дыхании.
Впрочем, все мы дышим только для того, чтобы получать из пищи энергию. Удивительно, что некоторые особи умудряются часть ее расходовать на мысли, в то время, как прочие тратят на неврозы.. неважно. Важно, что леса и джунгли со своим населением, эгоистично удовлетворяют лишь собственные кислородные потребности. Тем не менее, реальная оценка ситуации говорит о том, что, кислородный голод планете не грозит:
«Наземная биота компенсирует в настоящее время лишь около 13% от антропогенного потребления кислорода, связанного со сжиганием ископаемого топлива. В результате имеет место постоянное снижение запасов молекулярного атмосферного кислорода. Однако в относительном выражении это снижение крайне незначительно из-за очень больших запасов молекулярного кислорода атмосферы (1 184 000 Гт O2). Годовое антропогенное потребление кислорода составляет лишь 0.0019% от его запаса в атмосфере, а снижение запаса кислорода - лишь 0.0016%. При нынешних темпах потребления кислорода человечеству нужно более 600 лет, чтобы уменьшить содержание кислорода на 1%.
Реальный предел потенциальным возможностям человечества по использованию кислородного ресурса атмосферы определен планетарными запасами ископаемого топлива. Потенциальные запасы в кислородном эквиваленте оцениваются в 16 500 (Rogner, 1998), 17 500 (World Energy Council, 1993) и 24 320 Гт КЭ (Keeling et al., 1993). Если использовать наибольшую из цитированных оценок, легко подсчитать, что даже при полном использовании запасов ископаемого топлива из атмосферы может быть потреблено не более 2% кислорода. Добавим, что разведанные в настоящее время запасы ископаемого топлива составляют около 25% от потенциальных. Следовательно, возможности воздействия человека на содержание кислорода атмосферы оказываются невелики..»
Если кликнуть эту ссылку, загрузится полный текст доклада: http://www.sevin.ru/fundecology/authors/zamolodchikov.html

Почему сохраняется кислородный баланс, и какие еще процессы компенсируют потребление кислорода, природа не объясняет. Попробуем разобраться.
Очевидно, кислород попадает в атмосферу, не только благодаря сольволизу, электролизу и прочим известным процессам. Но благодаря и неизвестным человеку законам эволюции. Ибо природе не выгодно отказываться от земной жизни, вложив в ее эволюцию значительный объем солнечной энергии. Природа прагматична. Каждый ее импульс работает на созидание более совершенных форм жизни и уничтожение неэффективных.

Поэтому, кислород дает нам возможность не только спать, кушать и размножаться, но и эволюционировать убирая за собой мусор. Т.е. жить активной жизнью, санируя осознаваемое доступное пространство, помогая кислороду, выступающему в роли мусорщика. Ведь помимо сжигания ископаемого топлива, атмосферный кислород расходуется на окисление биомассы. И здесь нужно с благодарностью упомянуть болота. Они утилизируют биоту с минимальным потреблением кислорода.
Следовательно, заболоченные участки земли, а не леса, справедливости ради можно назвать «лёгкими планеты». Ибо дарят атмосфере половину вырабатываемого ими кислорода, используя оставшуюся для своих нужд. Еще болота дарят человеку торф, природные антисептики, выделяемые мхами, уменьшают парниковый эффект.. словом, участвуют в Киотском протоколе.

Теперь о том, что земную атмосферу обогащает кислородом некоторая сумма реакций, благодаря которой приятней дышать на берегу океана, чем в лесу.. напр, более активное электрохимическое разложение воды. Этот процесс начался в ту пору, когда растения еще не научились быть растениями.
Определенно, Мировой океан - депо молекулярного кислорода. Обмен кислородом между океаном и атмосферой зависят от погоды, тектоники, концентрации морской биоты. Влияют на кислородный обмен и суточные, и сезонные изменения температуры. Понятно, что похолодание способствует растворимости кислорода. В высоких широтах интенсивней, ибо условия более подходящие: атмосфера, давление, температура. Так, при омывании водой дна или берегов, ее ОН- анион увлекается электромагнитным полем в донную породу. Задерживаясь на грунте, электрон от него отрывается и уходит под мантию, нагревает и плавит породу. Провоцирует процессы Мохо

Представьте континенты, бесконечные побережья, приливы-отливы. Какой эл.химический потенциал!


А представьте простую волну, облизывающую камни. Каждая капля, каждая песчинка участвуют в процессе. Потому, на берегу всегда свежий морской воздух. Природа не любит выдумывать новое, пользуясь принципом фрактальности. Вот и камни на берегу округлые, имеющие большую площадь для контакта с водой. Так волне удобней отдавать электроны, каждый раз оставляя гальку с положительным зарядом.
Веками, тысячелетиями, миллионами лет непрерывно, волна за волной, формируются массированные эл.волны, уходящие в грунт. Потому и берега неровные, что тектоническая скальная порода разъедена кислородом и хлором. Потому мокрая галька и камни фонят кислородом.

В тему, следует вспомнить и о движении магнитных полюсов. Их перемещение так же влияет на состояние атмосферы. Ибо интенсивней кислород продуцируется ближе к магнитным полюсам планеты. И когда солнечный ветер играет с магнитными полюсами, то красный или зеленый цвета северного сияния - абсолютная заслуга кислорода.


(фото не мое, автора не помню)

Аляска, Гренландия, Канада, Норвегия, Нов.Зеландия, Шотландия, Россия - Кольский залив.
Фьорды, шхеры, бухты, пляжи или заливы… идеальные генераторы кислорода. С некоторым допущением, можно говорить о таких прибрежных зонах, как об альвеолах, участвующие в акте дыхания планеты. Нагреваясь и охлаждаясь, океаны дышат. Океаны, это легкие планеты. Они в большей мере, чем их обитатели, дарят Земле кислород. Кислород, расходуемый на нашу с вами эволюцию.

Таким образом, вся кислородная рокировка на планете Земля сбалансирована мощными механизмами. Один из которых - электрохимический. Так, что со времен Кислородной катастрофы, кислородный голод планете не грозит. Этот баланс, невзирая на ошибки человечества, сохраняется благодаря энергии звезды по имени Солнце.
А оно пока не собирается гаснуть. У Солнца иные цели.