Кора мозга.

В настоящее время доподлинно известно, что высшие функции нервной системы, такие как способность к осознанию сигналов, полученных из внешней среды, к мыслительной деятельности, к запоминанию и мышлению, в значительной мере обусловлены тем, как функционирует кора головного мозга. Зоны коры головного мозга мы рассмотрим в этой статье.

То, что личность осознает свои взаимоотношения с другими людьми, связано с возбуждением нейронных сетей. Речь идет о тех, которые находятся именно в коре. Она является структурной основой интеллекта и сознания.

Неокортекс

Порядка 14 млрд нейронов имеет кора головного мозга. Зоны коры головного мозга, которые будут рассмотрены ниже, функционируют благодаря им. Основная часть нейронов (около 90 %) формирует неокортекс. Он относится к соматической нервной системе, являясь его высшим интегративным отделом. Важнейшая функция неокортекса - переработка и интерпретация информации, полученной с помощью органов чувств (зрительной, соматосенсорной, вкусовой, слуховой). Важно и то, что сложными мышечными движениями управляет именно он. В неокортексе находятся центры, которые принимают участие в процессах речи, абстрактного мышления, а также хранения памяти. Основная часть процессов, происходящих в нем, представляет собой нейрофизиологическую основу нашего сознания.

Палеокортекс

Палеокортекс - другой большой и важный отдел, который имеет кора головного мозга. Зоны коры головного мозга, относящиеся к нему, также очень важны. Эта часть имеет более простую структуру по сравнению с неокортексом. Процессы, протекающие здесь, в сознании отражаются не всегда. В палеокортексе находятся высшие вегетативные центры.

Связь коры с нижележащими отделами мозга

Следует отметить связь коры с нижележащими отделами нашего мозга (таламусом, мостом и Она осуществляется с помощью крупных пучков волокон, которые формируют внутреннюю капсулу. Эти пучки волокон представляют собой широкие пласты, сложенные из белого вещества. В них содержится множество нервных волокон (миллионы). Часть из этих волокон (аксоны нейронов таламуса) обеспечивает передачу к коре нервных сигналов. Другая часть, а именно аксоны корковых нейронов, служит для передачи их к нервным центрам, расположенным ниже.

Строение коры головного мозга

Знаете ли вы, какой отдел мозга является самым большим? Некоторые из вас, вероятно, догадались, о чем идет речь. Это кора головного мозга. Зоны коры головного мозга - это лишь один тип частей, которые выделяются в ней. Так, она поделена на правое и левое полушарие. Они соединены друг с другом пучками белого вещества, которое формирует Основная функция мозолистого тела заключается в обеспечении координации деятельности двух полушарий.

Зоны коры головного мозга по расположению

Хотя в коре головного мозга есть множество складок, в целом расположение важнейших борозд и извилин характеризуется постоянством. Поэтому главные из них служат ориентиром при делении областей коры. Ее наружная поверхность разделена на 4 доли тремя бороздами. Эти доли (зоны) - височная, затылочная, теменная и лобная. Хотя они выделяются по расположению, у каждой из них есть свои специфические функции.

Височная зона коры головного мозга представляет собой центр, где находится корковый слой слухового анализатора. В случае его повреждения возникает глухота. Слуховая зона коры головного мозга, кроме того, имеет центр речи Вернике. В случае его повреждения пропадает способность понимать устную речь. Она начинает восприниматься как шум. Кроме того, в имеются нейронные центры, относящиеся к вестибулярному аппарату. Чувство равновесия нарушается в случае их повреждения.

Зоны речи коры головного мозга сосредоточены в лобной доле. Именно здесь находится речедвигательный центр. В случае если в он будет поврежден, пропадет способность менять интонацию и тембр речи. Она становится монотонной. Если же повреждение относится к левому полушарию, где также имеются речевые зоны коры головного мозга, пропадает артикуляция. Исчезает также способность к пению и членораздельной речи.

Зрительная зона коры головного мозга соответствует затылочной доле. Здесь находится отдел, который отвечает за наше зрение как таковое. Окружающий мир мы воспринимаем именно мозгом, а не глазами. За зрение отвечает как раз затылочная часть. Поэтому в случае ее повреждения развивается полная или частичная слепота.

Теменная доля также имеет свои специфические функции. Она отвечает за анализ информации, касающейся общей чувствительности: тактильной, температурной, болевой. В случае ее повреждения теряется способность распознавать предметы на ощупь, а также некоторые другие способности.

Двигательная зона

Хотелось бы отдельно поговорить о ней. Дело в том, что двигательная зона коры головного мозга не соотносится с долями, о которых мы рассказали выше. Она представляет собой часть коры, которая содержит нисходящие прямые связи со спинным мозгом, точнее, с его мотонейронами. Так называются нейроны, которые непосредственно управляют работой мышц.

Главная двигательная зона коры головного мозга расположена в По многим своим аспектам эта извилина является зеркальным отображением другой зоны, сенсорной. Наблюдается контрлатеральная иннервация. Другими словами, иннервация происходит в отношении мышц, расположенных на противоположной стороне тела. Исключением является лицевая область, в которой действует двусторонний контроль мышц челюсти и нижней части лица.

Еще одна дополнительная двигательная зона коры головного мозга расположена в области, находящейся ниже основной зоны. Ученые считают, что у нее есть независимые функции, связанные с выводом двигательных импульсов. Эта двигательная зона коры головного мозга также изучалась учеными. В экспериментах, поставленных над животными, было установлено, что ее стимуляция приводит к возникновению двигательных реакций. Причем это происходит даже в том случае, если основная моторная зона коры головного мозга была перед этим разрушена. В доминантном полушарии она вовлечена в мотивацию речи и в планирование движений. Ученые считают, что ее повреждение ведет к динамической афазии.

Зоны коры головного мозга по функциям и строению

В результате клинических наблюдений и физиологических экспериментов, осуществленных еще во второй половине 19 столетия, были установлены границы областей, в которые проецируются различные рецепторные поверхности. Среди последних выделяют как направленные на внешний мир (кожной чувствительности, слуха, зрения), так и те, которые заложены в самих органах движения (кинетический, или двигательный анализатор).

Затылочная область - зона зрительного анализатора (поля с 17 по 19), верхняя височная - слухового анализатора (поля 22, 41 и 42), постцентральная область - кожно-кинестетического анализатора (поля 1, 2 и 3).

Корковые представители различных анализаторов по функциям и строению делятся на следующие 3 зоны коры больших полушарий головного мозга: первичную, вторичную и третичную. На раннем периоде, во время развития эмбриона, закладываются именно первичные, которые характеризуются простой цитоархитектоникой. В последнюю очередь развиваются третичные. Они обладают самым сложным строением. Промежуточное положение с этой точки зрения занимают вторичные зоны полушарий коры головного мозга. Предлагаем вам подробнее рассмотреть функции и строение каждой из них, а также их связь с отделами мозга, расположенными ниже, в частности, с таламусом.

Центральные поля

Ученые за долгие годы изучения накопили значительный опыт клинических исследований. В результате наблюдений было установлено, в частности, что повреждения тех или иных полей в составе корковых представителей анализаторов сказываются на общей клинической картине далеко не равнозначно. Среди остальных полей в этом отношении выделяется одно, которое в ядерной зоне занимает центральное положение. Оно называется первичным, или центральным. Им является поле под номером 17 в зрительной зоне, в слуховой - под номером 41, а в кинестетической - 3. Их повреждение ведет к очень серьезным последствиям. Теряется способность воспринимать или осуществлять самые тонкие дифференцировки раздражителей соответствующих анализаторов.

Первичные зоны

В первичной зоне наиболее развит комплекс нейронов, который приспособлен для обеспечения корково-подкорковых двухсторонних связей. Он самым коротким и прямым путем соединяет кору с тем или иным органом чувств. Из-за этого первичные зоны коры головного мозга могут достаточно подробно выделять раздражители.

Важная общая черта функциональной и структурной организации этих областей - это то, что у всех у них имеется четкая соматотопическая проекция. Это значит, что отдельные точки периферии (сетчатки глаза, кожной поверхности, улитки внутреннего уха, скелетной мускулатуры) проецируются в соответствующие, строго разграниченные точки, находящиеся в первичной зоне коры соответствующего анализатора. По этой причине они стали называться проекционными.

Вторичные зоны

Иначе их называют периферическими, и это не случайно. Они находятся в ядерных участках коры, в их периферических отделах. Вторичные зоны отличаются от первичных, или центральных, по физиологическим проявлениям, нейронной организации и особенности архитектоники.

Какие же эффекты наблюдаются при их электрическом раздражении или поражении? Эти эффекты касаются главным образом более сложных видов психических процессов. Если вторичные зоны поражены, то элементарные ощущения относительно сохранны. Расстраивается в основном способность правильно отражать взаимные соотношения и целые комплексы составных элементов различных объектов, которые нами воспринимаются. Если раздражены вторичные зоны слуховой и зрительной коры, то наблюдаются слуховые и зрительные галлюцинации, развернутые в определенной последовательности (временной и пространственной).

Данные области очень важны для реализации взаимной связи раздражителей, выделение которых происходит с помощью первичных зон. Кроме того, они играют значительную роль в интеграции функций ядерных полей различных анализаторов при объединении рецепций в сложные комплексы.

Вторичные зоны, таким образом, важны для реализации более сложных форм психических процессов, требующих координации и связанных с тщательным анализом соотношений предметных раздражителей, а также с ориентировкой во времени и в окружающем пространстве. При этом устанавливаются связи, называемые ассоционными. Афферентные импульсы, которые от рецепторов различных поверхностных органов чувств направляются в кору, достигают данных полей через множество дополнительных переключений в ассоционных ядрах таламуса (зрительного бугра). В отличие от них, афферентные импульсы, которые следуют в первичные зоны, достигают их более коротким путем через посредство реле-ядра зрительного бугра.

Что такое таламус

Волокна от таламических ядер (одного или нескольких) подходят к каждой доле полушарий нашего мозга. Зрительный бугор, или таламус, находится в переднем мозге, в его центральной области. Он состоит из множества ядер, при этом каждое из них передает импульс в строго определенный участок коры.

Все сигналы, поступающие к ней (кроме обонятельных), проходят сквозь релейные и интегративные ядра таламуса. Далее волокна идут от них к сенсорным зонам (в теменной доле - к вкусовой и соматосенсорной, в височной - к слуховой в затылочной - к зрительной). Поступают импульсы соответственно от вентро-базального комплекса, медиального и латерального ядер. Что касается моторных зон коры, они имеют связь с вентролатеральным и передним вентральным ядрами таламуса.

Десинхронизация ЭЭГ

Что будет, если человеку, который находится в состоянии покоя, внезапно предъявить какой-либо сильный раздражитель? Конечно, он сразу же насторожится и сконцентрирует на этом раздражителе свое внимание. Переходу умственной деятельности, осуществляемому от покоя к состоянию активности, соответствует замена альфа-ритма ЭЭГ на бета-ритм, а также на другие колебания, более частые. Данный переход, называемый десинхронизацией ЭЭГ, появляется в результате того, что в кору от неспецифических ядер таламуса поступают сенсорные возбуждения.

Активирующая ретикулярная система

Неспецифические ядра составляют диффузную нервную сеть, находящуюся в таламусе, в медиальных его отделах. Это передний отдел АРС (активирующей ретикулярной системы), которая регулирует возбудимость коры. Различные сенсорные сигналы могут активировать АРС. Они могут быть зрительными, вестибулярными, соматосенсорными, обонятельными и слуховыми. АРС - это канал, по которому данные сигналы передаются к поверхностным слоям коры через неспецифические ядра, расположенные в таламусе. Возбуждение АРС играет важную роль. Оно необходимо, чтобы поддерживать бодрствующее состояние. У подопытных животных, у которых эта система была разрушена, наблюдалось коматозное сноподобное состояние.

Третичные зоны

Функциональные отношения, которые прослеживаются между анализаторами, еще более сложны, чем было описано выше. Морфологически дальнейшее их усложнение выражается в том, что в процессе роста по поверхности полушария ядерных полей анализаторов эти зоны взаимно перекрываются. У корковых концов анализаторов образуются "зоны перекрытия", то есть третичные зоны. Данные формации относятся к самым сложным типам объединения деятельности кожно-кинестетического, слухового и зрительного анализаторов. Третичные зоны расположены уже за границами собственных ядерных полей. Поэтому их раздражение и повреждение не приводит к выраженным явлениям выпадения. Также и в отношении специфических функций анализатора не наблюдаются значительные эффекты.

Третичные зоны - это особые области коры. Их можно назвать собранием "рассеянных" элементов различных анализаторов. То есть это элементы, которые сами по себе уже не способны производить какие бы то ни было сложные синтезы или анализы раздражителей. Территория, которую они занимают, достаточно обширна. Она распадается на целый ряд областей. Вкратце опишем их.

Верхняя теменная область важна для интеграции движений всего тела со зрительными анализаторами, а также для формирования схемы тела. Что касается нижней теменной, то она относится к объединению отвлеченных и обобщенных форм сигнализации, связанных со сложно и тонко дифференцированными речевыми и предметными действиями, выполнение которых контролируется зрением.

Область височно-теменно-затылочная также очень важна. Она отвечает за сложные типы интеграции зрительного и слухового анализаторов с письменной и устной речью.

Отметим, что третичные зоны имеют самые сложные цепи связи по сравнению с первичными и вторичными. Двусторонние связи наблюдаются у них с комплексом ядер таламуса, связанными, в свою очередь, с реле-ядрами посредством длинной цепи внутренних связей, имеющихся непосредственно в таламусе.

На основании вышеизложенного ясно, что у человека зоны первичные, вторичные и третичные представляют собой участки коры, являющиеся высоко специализированными. Особенно нужно подчеркнуть, что 3 группы корковых зон, описанные выше, в нормально работающем мозге вместе с системами связей и переключений между собой, а также с подкорковыми образованиями функционируют как одно сложно дифференцированное целое.

Кора головного мозга – поверхностный слой, который покрывает его полушария. Его образуют преимущественно вертикально ориентированные нервные клетки и их отростки, а также пучки афферентных и эфферентных нервных волокон. Кроме того, в составе коры присутствуют клетки нейро-глии.

Характерной особенностью коры мозга является горизонтальная слоистость, которая обусловлена упорядоченным положением нервных клеток и волокон. Стоит отметить, что в коре присутствует шесть слоев, которые отличаются по плотности расположения, ширине, размерам и форме нейронов, которые их составляют. В силу вертикального расположения пучков нервных волокон, тел и отростков нейронов кора обладает вертикальной исчерченностью. Для функциональной организации этого органа огромное знание имеет вертикальное расположение нервных клеток.

Стоит отметить, что кора головного мозга имеет общую площадь примерно 2200 квадратных сантиметров, а количество нейронов в ней составляет более 10 миллиардов. Значительное место в составе коры отводится пирамидным нейронам. Они имеют разный размер, их дендриты обладают множеством шипиков: аксон, звездчатые клетки – имеют короткий аксон и короткие дендриты, веретенообразные нейроны – они обеспечивают горизонтальные или вертикальные взаимосвязи нейронов.

  1. Многослойность локализации нейронов.
  2. Соматотопическое расположение рецепторных систем.
  3. Модульная организация.
  4. Экранность – распределение на плоскости нейронального поля внешней рецепции.
  5. Представительство функций структур ЦНС.
  6. Зависимость степени активности от влияния ретикулярной формации и подкорковых структур.
  7. Цитоархитектоническое распределение на поля.
  8. Наличие вторичных и третичных полей в специфических проекционных моторной и сенсорных системах коры с преобладанием ассоциативных функций.
  9. Специализированные ассоциативные области коры.
  10. Способность продолжительного сохранения следов раздражения.
  11. Динамическое расположение функций, которое проявляется в способности компенсаций утраченных функций структур коры.
  12. Перекрытие в коре областей соседних периферических рецептивных полей.
  13. Реципрокная функциональная связь тормозных и возбудительных состояний коры.
  14. Способность к иррадиации состояния.
  15. Специфическая электрическая активность.

На отличительные особенности организации коры влияет тот факт, что в эволюции имела место кортиколизация функций ЦНС, то есть передача нижележащим мозговым структурам. Однако данная передача не значит, что кора выполняет функции других структур. Ее роль заключается в коррекции нарушений функций систем, которые с ней взаимодействуют, причем принимается во внимание индивидуальный опыт, анализа сигналов, формировании правильной реакции на данные сигналы, а также образовании в собственных и прочих заинтересованных структурах мозга следов о сигнале, его значение, характеристике и реакции на него. Затем по мере автоматизации реакция выполняется подкорковыми структурами.

Слои коры головного мозга

Молекулярный слой – его образуют волокна, которые сплетены друг с другом, в нем содержится мало клеток.

Наружный зернистый слой – для него характерно густое расположение мелких нейронов разной формы. В глубине находятся малые пирамидные клетки – свое название они получили благодаря форме.

Наружный пирамидный слой – в его состав входят пирамидные нейроны разной величины, причем крупные клетки расположены глубже.

Внутренний зернистый слой – для него характерно рыхлое положение мелких нейронов различной величины, возле них проходят плотные пучки волокон.

Внутренний пирамидный слой – включает средние и большие пирамидные нейроны, их апикальные дендриты простираются вплоть до молекулярного слоя.

Слой веретеновидных клеток – здесь находятся веретеновидные нейроны, при этом его глубинная часть переходит в белое вещество.

Области коры головного мозга

На основании расположения, плотности и формы нейронов кору мозга принято делить на несколько полей, они в определенной степени совпадают с некоторыми зонами, которым на основании клинических и физиологических данных приписывается ряд функций.

При помощи электрофизиологических методов было установлено, что кора головного мозга содержит области 3 типов в соответствии с функциями, выполняемыми расположенным там клетками. К ним относятся сенсорные, ассоциативные и двигательные зоны. Благодаря взаимосвязям между этими зонами удается контролировать и координировать произвольные и ряд непроизвольных форм деятельности, включая память, сознание, обучение, свойства личности.

Необходимо отметить, что функции отдельных участков коры, в том числе обширных передних областей, до сих пор не изучены. Данные области, а также некоторые другие участки мозга, называются немыми зонами. Это связано с тем, что в случае раздражения электрическим током не появляется никаких реакций или ощущений.

Существует мнение, что данные зоны несут ответственность за ряд индивидуальных особенностей или личность. Удаление этих участков или перерезка проводящих путей, которые идут от них к мозгу, использовали с целью снятия у пациентов острого возбуждения, однако от данного метода пришлось отказаться в силу побочных эффектов. К последствиям этого можно отнести снижение уровня интеллекта, сознания, способности к творчеству и логическому мышлению. Данные побочные эффекты указывают косвенно на функции, которые выполняют префронтальные зоны.

Особенности неврологического обследования

В ходе неврологического обследования основное внимание уделяют расстройствам движений и чувствительности. Потому выявить нарушения работы проводящих путей и первичных зон значительно легче, нежели поражения ассоциативной коры. Стоит отметить, что неврологических симптомов может не быть даже в случае обширного повреждения лобной, теменной или височной доли. Необходимо, чтобы оценка когнитивных функций была такой же логичной и последовательной, как и неврологическое обследование.

Этот вид обследования ориентирован на закрепленные связи между функцией и структурой. К примеру, при поражении стриарной коры или зрительного тракта всегда имеет место контралатеральная гомонимная гемианопсия. В том случае, если поражен седалищный нерв, не наблюдается ахиллов рефлекс.

Сначала предполагалось, что подобным образом действуют и функции ассоциативной коры. Существовало мнение, что есть центры памяти, восприятия пространства, понимания слов, поэтому с помощью специальных тестов можно было определять расположение поражения. Позднее возникли представления относительно распределенных нейронных систем и функциональной специализации в их пределах. Эти представления свидетельствуют о том, что за сложные поведенческие и когнитивные функции несут ответственность распределенные системы – сложные нейронные контуры, в составе которых имеют место корковые и подкорковые образования.

Потому можно сделать следующие выводы:

  1. Сложные функции, к примеру, память или речь, страдают в случае поражения любой структуры, входящей в соответствующую распределенную систему.
  2. Если какая-то структура относится одновременно к ряду распределенных систем, ее поражение становится причиной нарушения нескольких функций.
  3. Если сохраненные звенья возьмут на себя функции пораженного участка, то нарушение функции может быть временным или минимальным.
  4. Отдельные структуры, которые входят в состав распределенной системы, несут ответственность за различные стороны функции, обеспечиваемые этой системой, однако стоит отметить, что данная специализация относительна.

То есть поражение любой структуры этой распределенной системы приведет к нарушению одной и той же функции, при этом клинические проявления будут отличаться.

Кора головного мозга – это сложный орган, который выполняет множество важных функций. Сбои в ее работе могут привести к достаточно серьезным последствиям для организма, поэтому в случае каких-либо нарушений нужно обязательно своевременно обратиться за помощью к грамотному специалисту.

Кора мозга – пласт серого вещества на поверхности больших полушарий, толщиной 2-5 мм, образующий много­численные борозды, извилины значительно увеличивающие ее площадь. Кора образована телами нейронов и глиальных клеток, расположенных послойно («экранный» тип организа­ции). Под ней лежит белое вещество, представленное нерв­ными волокнами.

Кора представляет собой наиболее молодой филогене­тически и наиболее сложный по морфофункциональной ор­ганизации отдел мозга. Это место высшего анализа и синтеза всей информации поступающей в мозг. Здесь происходит ин­теграция всех сложных форм поведения. Кора мозга отвечает за сознание, мышление, память, «эвристическую деятель­ность» (способность к обобщениям, открытиям). В коре со­держится более 10 млрд. нейронов и 100 млрд. глиальных клеток.

Нейроны коры по количеству отростков только муль­типолярные, а по их месту в рефлекторных дугах и выпол­няемым функциям все они вставочные, ассоциативные. По функции и строению в коре выделяют более 60 типов нейро­нов. По форме различают две их основных группы: пирамид­ные и непирамидные. Пирамидные нейроны являются ос­новным типом нейронов коры. Размеры их перикарионов от 10 до 140 мкм, на срезе они имеют пирамидную форму. От их верхнего угла вверх отходит длинный (апикальный) денд­рит, который Т-образно делится в молекулярном слое. От боковых поверхностей тела нейрона отходят боковые денд­риты. На дендритах и теле нейрона имеются многочисленные синапсы других нейронов. От основания клетки отходит ак­сон, который либо идёт в другие участки коры, либо к дру­гим отделам головного и спинного мозга. Среди нейронов коры мозга различают ассоциативные – связывающие уча­стки коры внутри одного полушария, комиссуральные – их аксоны идут в другое полушарие, и проекционные – их ак­соны идут в нижележащие отделы мозга.

Среди непирамидных нейронов наиболее часто встреча­ются звёздчатые и веретеновидные клетки. Звёздчатые ней­роны - это мелкие клетки с короткими сильно ветвящимися дендритами и аксонами, образующими внутрикорковые связи. Одни из них оказывают тормозное, а другие - возбуж­дающее влияние на пирамидные нейроны. Веретеновидные нейроны имеют длинный аксон, который может идти в вер­тикальном, или горизонтальном направлении. Кора по­строена по экранному типу, то есть нейроны, сходные по структуре и функции расположены слоями (рис. 9-7). Таких слоёв в коре шесть:

1. Молекулярный слой – самый наружный. В нём на­ходится сплетение нервных волокон, расположенных парал­лельно поверхности коры. Основную массу этих волокон со­ставляют ветвления апикальных дендритов пирамидных ней­ронов нижележащих слоёв коры. Сюда же приходят аффе­рентные волокна от зрительных бугров, регулирующих воз­будимость корковых нейронов. Нейроны в молекулярном слое в основном мелкие, веретеновидные.

2. Наружный зернистый слой. Состоит из большого числа звёздчатых клеток. Их дендриты идут в молекулярный слой и образуют синапсы с таламо-кортикальными аффе­рентными нервными волокнами. Боковые дендриты связыва­ются с соседними нейронами этого же слоя. Аксоны обра­зуют ассоциативные волокна, которые идут через белое ве­щество в соседние участки коры и там образуют синапсы.

3. Наружный слой пирамидных нейронов (пирамид­ный слой). Он образован пирамидными нейронами средней вели­чины. Так же, как у ней­ронов второго слоя, их денд­риты идут в молекулярный слой, а аксоны – в белое ве­щество.

4. Внутренний зернистый слой. Он содержит много звёздчатых нейронов. Это ассоциативные, афферентные ней­роны. Они образуют многочисленные связи с другими ней­ронами коры. Здесь расположен ещё один слой горизонталь­ных волокон.

5. Внутренний слой пирамидных нейронов (ганглио­нарный слой). Он образован крупными пирамидными нейро­нами. Последние особенно велики в моторной коре (прецен­тральной извилине), где имеют размеры до 140 мкм и назы­ваются клетками Беца. Их апикальные дендриты поднима­ются в молекулярный слой, боковые дендриты образуют связи с соседними клетками Беца, а аксоны – проекционные эфферентные волокна, идущие в продолговатый и спинной мозг.

6. Слой веретеновидных нейронов (слой полиморфных клеток) состоит в основном из веретеновидных нейронов. Их дендриты идут в молекулярный слой, а аксоны – к зритель­ным буграм.

Шестислойный тип строения коры характерен для всей коры, однако в разных её участках выраженность слоёв, а также форма и расположение нейронов, нервных волокон значительно различаются. По этим признакам К. Бродман выделил в коре 50 цитоархитектонических полей . Эти поля также различаются по функции и обмену веществ.

Специфическую организацию нейронов называют цито­архитектоникой. Так, в сенсорных зонах коры пирамидный и ганглиозный слои выражены слабо, а зернистые слои - хо­рошо. Такой тип коры называется гранулярным. В мотор­ных зонах, напротив, зернистые слои развиты плохо, а пира­мидные хорошо. Это агранулярный тип коры.

Кроме того, существует понятие миелоархитектоника . Это определённая организация нервных волокон. Так, в коре мозга различают вертикальные и три горизонтальных пучка миелиновых нервных волокон. Среди нервных волокон коры мозга различают ассоциативные – связывающие участки коры одного полушария, комиссуральные – соединяющие кору разных полушарий и проекционные волокна – связы­вающие кору с ядрами ствола мозга.

Рис. 9-7. Кора больших полуша-рий головного моз-га чело­века.

А, Б. Расположение кле­ток (цитоархитектоника).

В. Расположе­ние миелино­вых волокон (миелоархитектоника).

Современным ученым доподлинно известно, что благодаря функционированию головного мозга возможны такие способности, как осознание сигналов, которые получены из внешней среды, мыслительная деятельность, запоминание мышления.

Способность личности осознавать собственные отношения с другими людьми непосредственно связано с процессом возбуждения нейронных сетей. Причем речь идет именно о тех нейронных сетях, которые расположены в коре. Она представляет собой структурную основу сознания и интеллекта.

В данной статье рассмотрим, как устроена кора головного мозга, зоны коры головного мозга будут подробно описаны.

Неокортекс

Кора включает в себя около четырнадцати миллиардов нейронов. Именно благодаря им осуществляется функционирование основных зон. Подавляющая часть нейронов, до девяноста процентов, формирует неокортекс. Он является частью соматической НС и ее высшим интегративным отделом. Важнейшими функциями коры головного мозга выступают восприятие, переработка, интерпретация информации, которую человек получает при помощи всевозможных органов чувств.

Помимо этого, неокортекс управляет сложными движениями системы мышц человеческого тела. В нем расположены центры, принимающие участие в процессе речи, хранении памяти, абстрактном мышлении. Большая часть процессов, которые в нем происходят, формирует нейрофизическую основу человеческого сознания.

Из каких отделов еще состоит кора головного мозга? Зоны коры головного мозга рассмотрим ниже.

Палеокортекс

Является еще одним большим и важным отделом коры. В сравнении с неокортексом у палеокортекса более простая структура. Процессы, которые здесь протекают, редко отражаются в сознании. В этом отделе коры высшие вегетативные центры локализуются.

Связь коркового слоя с другими отделами мозга

Немаловажно рассмотреть связь, которая имеется между нижележащими отделами мозга и корой больших полушарий, например, с таламусом, мостом, средним мостом, базальными ядрами. Осуществляется эта связь при помощи крупных пучков волокон, которые внутреннюю капсулу формируют. Пучки волокон представлены широкими пластами, которые сложены из белого вещества. В них расположено огромное количество нервных волокон. Некоторая часть этих волокон обеспечивает передачу нервных сигналов к коре. Остальная часть пучков передает нервные импульсы к расположенным ниже нервным центрам.

Как устроена кора головного мозга? Зоны коры головного мозга будут представлены далее.

Строение коры

Самым большим отделом мозга является его кора. Причем зоны коры являются лишь одним типом частей, выделяемых в коре. Помимо этого кора разделена на два полушария - правое и левое. Между собой полушария соединены пучками белого вещества, формирующими мозолистое тело. Его функция - обеспечивать координацию деятельности обоих полушарий.

Классификация зон коры головного мозга по их расположению

Несмотря на то что кора имеет огромное количество складок, в общем расположение ее отдельных извилин и борозд постоянно. Главные их них являются ориентиром при выделении областей коры. К таким зонам (долям) относятся - затылочная, височная, лобная, теменная. Несмотря на то что они классифицируются по месту расположения, каждая из них имеет свои собственные специфические функции.

Слуховая зона коры головного мозга

К примеру, височная зона является центром, в котором расположен корковый отдел анализатора слуха. Если происходит повреждение этого отдела коры, может возникнуть глухота. Помимо этого в слуховой зоне расположен центр речи Вернике. Если повреждению подвергается он, то человек теряется способность к восприятию устной речи. Человек воспринимает ее как простой шум. Также в височной доле есть нейронные центры, которые относятся к вестибулярному аппарату. Если повреждаются они, нарушается чувство равновесия.

Речевые зоны коры головного мозга

В лобной доле коры сосредоточены речевые зоны. Речедвигательный центр расположен тоже здесь. Если происходит его повреждение в правом полушарии, то человек теряет способность изменять тембр и интонацию собственной речи, которая становится монотонной. Если же повреждение речевого центра произошло в левом полушарии, то пропадает артикуляция, способность к членораздельной речи и пению. Из чего еще состоит кора головного мозга? Зоны коры головного мозга имеют различные функции.

Зрительные зоны

В затылочной доле располагается зрительная зона, в которой находится центр, отвечающий на наше зрение как таковое. Восприятие окружающего мира происходит именно этой частью мозга, а не глазами. Именно затылочная зона коры ответственна за зрение, и ее повреждение может привести к частичной или полной потере зрения. Зрительная зона коры головного мозга рассмотрена. Что дальше?

Для теменной доли тоже характерны свои собственные специфические функции. Именно эта зона отвечает за способность анализировать информацию, которая касается тактильной, температурной и болевой чувствительности. Если происходит повреждение теменной области, рефлексы головного мозга нарушаются. Человек не может на ощупь распознавать предметы.

Двигательная зона

Поговорим о двигательной зоне отдельно. Следует отметить, что эта зона коры никак не соотносится с долями, рассмотренными выше. Она является частью коры, содержащей прямые связи с мотонейронами в спинном мозге. Такое название носят нейроны, непосредственно управляющие деятельностью мышц тела.

Основная двигательная зона коры больших полушарий располагается в извилине, которая называется прецентральной. Эта извилина представляет собой зеркальное отображение сенсорной зоны по многим аспектам. Между ними имеется контралатеральная иннервация. Если сказать иными совами, то иннервация направлена на мышцы, которые расположены на другой стороне тела. Исключение - лицевая область, для которой характерен контроль мышц двусторонний, расположенных на челюсти, нижней части лица.

Немного ниже основной двигательной зоны расположена дополнительная зона. Ученые полагают, что она имеет независимые функции, которые связаны с процессом вывода двигательных импульсов. Дополнительная двигательная зона также изучалась специалистами. Эксперименты, которые ставились над животными, показывают, что стимуляция этой зоны провоцирует возникновение двигательных реакций. Особенностью является то, что подобные реакции возникают даже в том случае, если основная двигательная зона была изолирована или разрушена полностью. Она также вовлечена в планирование движений и в мотивацию речи в полушарии, которое является доминантным. Ученые полагают, что при повреждении дополнительной двигательной может возникнуть динамическая афазия. Рефлексы головного мозга страдают.

Классификация по строению и функциям коры головного мозга

Физиологические эксперименты и клинические испытыния, которые проводились еще в конце девятнадцатого века, позволили установить границы между областями, на которые проецируются разные рецепторные поверхности. Среди них выделяют органы чувств, которые направлены на внешний мир (кожная чувствительность, слух, зрение), рецепторы, заложенные непосредствен в органах движения (двигательный или кинетический анализаторы).

Зоны коры, в которых располагаются разнообразные анализаторы, могут быть классифицированы по строению и функциям. Так, их выделяют три. К ним относятся: первичная, вторичная, третичная зоны коры головного мозга. Развитие эмбриона предполагает закладывание только первичных зон, характеризующихся простой цитоархитектоникой. Далее происходит развитие вторичных, третичные развиваются в самую последнюю очередь. Для третичных зон характерно самое сложное строение. Рассмотрим каждую из них немного подробнее.

Центральные поля

За долгие годы клинических исследований ученым удалось накопить значительный опыт. Наблюдения позволили установить, например, что повреждения различных полей, в составе корковых отделов разных анализаторов, могут отразиться далеко не равнозначно на общей клинической картине. Если рассматривать все эти поля, то среди них можно выделить одно, которое занимает центральное положение в ядерной зоне. Такое поле носит название центрального или первичного. Находится оно одновременно в зрительной зоне, в кинестетической, в слуховой. Повреждение первичного поля влечет за собой весьма серьезные последствия. Человек не может воспринимать и осуществлять самые тонкие дифференцировки раздражителей, влияющих на соответствующие анализаторы. Как еще классифицируются участки коры головного мозга?

Первичные зоны

В первичных зонах расположен комплекс нейронов, который наиболее предрасположен к обеспечению двусторонних связей между корковыми и подкорковыми зонами. Именно этот комплекс наиболее прямым и коротким путем соединяет кору больших полушарий с разнообразными органами чувств. В связи с этим данные зоны обладают способностью очень подробной идентификации раздражителей.

Важной общей чертой функциональной и структурной организации первичных областей является то, все они имеют четкую соматическую проекцию. Это означает, что отдельные периферические точки, например, кожные поверхности, сетчатка глаза, скелетная мускулатура, улитки внутреннего уха, имеют собственную проекцию в строго ограниченные, соответствующие точки, которые находятся в первичных зонах коры соответствующих анализаторов. В связи с этим им было дано название проекционных зон коры головного мозга.

Вторичные зоны

По-другому эти зоны называются периферическими. Такое название дано им совсем не случайно. Они находятся в периферических отделах участков коры. От центральных (первичных) вторичные зоны отличаются нейронной организацией, физиологическими проявлениями и особенностями архитектоники.

Попробуем разобраться, какие эффекты возникают, если на вторичные зоны воздействует электрический раздражитель или происходит их повреждение. Главным образом возникающие эффекты касаются наиболее сложных видов процессов в психике. В том случае, если происходит повреждение вторичных зон, то элементарные ощущения остаются в относительной сохранности. В основном наблюдаются нарушения в способности правильного отражения взаимных соотношений и целых комплексов элементов, из которых состоят различные объекты, которые мы воспринимаем. К примеру, если повреждению подверглись вторичные зоны зрительной и слуховой коры, то можно наблюдать возникновение слуховых и зрительных галлюцинаций, которые разворачиваются в определенной временной и пространственной последовательности.

Вторичные области имеют значительную важность в реализации взаимных связей раздражителей, которые выделяются при помощи первичных зон коры. Помимо этого, значительную роль они играют в интеграции функций, которые осуществляют ядерные поля разных анализаторов в результате объединения в сложные комплексы рецепций.

Таким образом, вторичные зоны представляют особую важность для реализации психических процессов в более сложных формах, которые требуют координации и которые связаны с подробным анализом соотношений между предметными раздражителями. В ходе этого процесса устанавливаются специфические связи, которые носят название ассоциативных. Афферентные импульсы, поступающие в кору от рецепторов разных внешних органов чувств, достигают вторичных полей посредством множества дополнительных переключений в ассоциативном ядре таламуса, который также называется зрительным бугром. Афферентные импульсы, следующие в первичные зоны, в отличие от импульсов, следуют во вторичные зоны, достигают их путем, который короче. Он реализован посредством реле-ядра, в зрительном бугре.

Мы разобрались, за что отвечает кора головного мозга.

Что такое таламус?

От таламических ядер к каждой доле мозговых полушарий подходят волокна. Таламус является зрительным бугром, расположенным в центральной части переднего отдела мозга, состоит из большого количества ядер, каждое из которых осуществляет передачу импульса в определенные участки коры.

Все сигналы, которые поступают к коре (исключение составляют только обонятельные), проходят через релейные и интегративные ядра зрительного бугра. От ядер таламуса волокна направляются к сенсорным зонам. Вкусовая и соматосенсорная зоны расположены в теменной доле, слуховая сенсорная зона - в височной доле, зрительная - в затылочной.

Импульсы к ним поступают, соответственно, от вентро-базальных комплексов, медиальных и латеральных ядер. Моторные зоны связаны с вентеральным и вентролатеральным ядрами таламуса.

Десинхронизация ЭЭГ

Что произойдет, если на человека, находящегося в состоянии полного покоя, подействует очень сильный раздражитель? Естественно, что человек полностью сконцентрируется на данном раздражителе. Переход умственной деятельности, который осуществляется от состояния покоя к состоянию активности, отражается на ЭЭГ бета-ритмом, который замещает альфа-ритм. Колебания становятся более частыми. Такой переход называют десинхронизацией ЭЭГ, появляется он в результате поступления сенсорного возбуждения в кору от неспецифических ядер, расположенных в таламусе.

Активирующая ретикулярная система

Диффузную нервную сесть составляют неспецифические ядра. Находится эта система в медиальных отделах таламуса. Он является передним отделом активирующей ретикулярной системы, регулирующей возбудимость коры. Разнообразные сенсорные сигналы способны активировать данную систему. Сенсорные сигналы могут быть как зрительными, так и обонятельными, соматосенсорными, вестибулярными, слуховыми. Активизирующая ретикулярная система представляет собой канал, который передает к поверхностному слою коры данные сигналов через расположенные в таламусе неспецифические ядра. Возбуждение АРС необходимо для того, чтобы человек был способен поддерживать состояние бодрствования. Если в данной системе возникают нарушения, то могут наблюдаться коматозные сноподобные состояния.

Третичные зоны

Между анализаторами коры головного мозга имеются функциональные отношения, которые имеют еще более сложную структуру, чем та, что была описана выше. В процессе роста происходит взаимное перекрытие полей анализаторов. Такие зоны перекрытия, которые образуются у концов анализаторов, носят название третичных зон. Они являются самыми сложными типами объединения деятельности слухового, зрительного, кожно-кинестетического анализаторов. Расположены третичные зоны за границами собственных зон анализаторов. В связи с этим повреждение их не оказывает выраженного эффекта.

Третичные зоны представляют собой особые корковые области, в которых собраны рассеянные элементы разных анализаторов. Они занимают весьма обширную территорию, которая разделена на области.

Верхняя теменная область интегрирует движения всего тела с анализатором зрительным, формирует схему тел. Нижняя теменная область объединяет обобщенные формы сигнализации, которые связаны с дифференцированными предметными и речевыми действиями.

Не менее важной является височно-теменно-затылочная область. Отвечает она за усложненные интеграции слухового и зрительного анализаторов с устной и письменной речью.

Стоит отметить, что по сравнению с двумя первыми зонами, для третичных характерны наиболее сложные цепи взаимодействия.

Если опираться на весь изложенный выше материал, то можно сделать вывод о том, что первичные, вторичные, третичные зоны коры у человека носят высокую специализацию. Отдельно стоит подчеркнуть тот факт, что все три корковые зоны, которые мы рассматривали, в нормально функционирующем мозге совместно с системами связей и образованиями подкоркового расположения функционируют как единое дифференцированное целое.

Мы подробно рассмотрели зоны и отделы коры головного мозга.

Кора большого мозга представлена равномерным слоем серого вещества толщиною 1,3-4,5 мм, состоящим более чем из 14 млрд. нервных клеток. Благодаря складчатости коры ее поверхность достигает больших размеров - около 2200 см 2 .

Толща коры состоит из шести слоев клеток, которые различают при специальной окраске и исследовании под микроскопом. Клетки слоев различны по форме и размерам. От них в глубь мозга отходят отростки.

Было установлено, что разные участки - поля коры полушарий различаются по строению и функциям. Таких полей (называемых еще зонами, или центрами) выделяют от 50 до 200. Строгих границ между зонами коры большого мозга не существует. Они составляют аппарат, обеспечивающий прием, переработку приходящих сигналов и ответную реакцию на поступившие сигналы.

В задней центральной извилине, позади от центральной борозды, располагается зона кожной и суставно-мышечной чувствительности . Здесь воспринимаются и анализируются сигналы, возникающие при касании к нашему телу, при воздействии на него холода или тепла, болевых воздействиях.


В противоположность этой зоне - в передней центральной извилине, спереди от центральной борозды, расположена двигательная зона . В ней выявлены участки, которые обеспечивают движения нижних конечностей, мышц туловища, рук, головы. При раздражении этой зоны электротоком возникают сокращения соответствующих групп мышц. Ранения или другие повреждения коры двигательной зоны влекут за собой паралич мышц тела.

В височной доле находится слуховая зона . Сюда поступают и здесь анализируются импульсы, возникающие в рецепторах улитки внутреннего уха. Раздражения участков слуховой зоны вызывают ощущения звуков, а при поражении их болезнью утрачивается слух.

Зрительная зона расположена в коре затылочных долей полушарий. При ее раздражении электрическим током во время операций на мозге человек испытывает ощущения вспышек света и темноты. При поражении ее какой-либо болезнью ухудшается и теряется зрение.

Вблизи боковой борозды расположена вкусовая зона , где анализируются и формируются ощущения вкуса на основании сигналов, возникающих в рецепторах языка. Обонятельная зона расположена в так называемом обонятельном мозге, у основания полушарий. При раздражении этих зон во время хирургических операций или при воспалении люди ощущают запах или вкус каких-либо веществ.

Чисто речевой зоны не существует. Она представлена в коре височной доли, нижней лобной извилине слева, участках теменной доли. Их поражения болезнями сопровождаются расстройствами речи.

Первая и вторая сигнальные системы

Неоценима роль коры большого мозга в совершенствовании первой сигнальной системы и развитии второй. Эти понятия разработаны И.П.Павловым. Под сигнальной системой в целом понимают всю совокупность процессов нервной системы, осуществляющих восприятие, переработку информации и ответную реакцию организма. Она связывает организм с внешним миром.

Первая сигнальная система

Первая сигнальная система обусловливает восприятие посредством органов чувств чувственно-конкретных образов. Она является основой для образования условных рефлексов. Эта система существует как у животных, так и у человека.

В высшей нервной деятельности человека развилась надстройка в виде второй сигнальной системы. Она свойственна только человеку и проявляется словесным общением, речью, понятиями. С появлением этой сигнальной системы стали возможными отвлеченное мышление, обобщение бесчисленных сигналов первой сигнальной системы. По И.П.Павлову, слова превратились в «сигналы сигналов».

Вторая сигнальная система

Возникновение второй сигнальной системы стало возможным благодаря сложным трудовым взаимоотношениям между людьми, так как эта система является средством общения, коллективного труда. Словесное общение не развивается вне общества. Вторая сигнальная система породила отвлеченное (абстрактное) мышление, письмо, чтение, счет.

Слова воспринимаются и животными, но совершенно отлично от людей. Они воспринимают их как звуки, а не их смысловое значение, как люди. Следовательно, у животных нет второй сигнальной системы. Обе сигнальные системы человека взаимосвязаны. Они организуют поведение человека в широком смысле слова. Причем вторая изменила первую сигнальную систему, так как реакции первой стали в значительной мере зависеть от социальной среды. Человек стал в состоянии управлять своими безусловными рефлексами, инстинктами, т.е. первой сигнальной системой.

Функции коры мозга

Знакомство с наиболее важными физиологическими функциями коры большого мозга свидетельствует о необычайном ее значении в жизнедеятельности. Кора вместе с ближайшими к ней подкорковыми образованиями является отделом центральной нервной системы животных и человека.

Функции коры головного мозга - осуществление сложных рефлекторных реакций, составляющих основу высшей нервной деятельности (поведения) человека. Не случайно у него она получила наибольшее развитие. Исключительным свойством коры являются сознание (мышление, память), вторая сигнальная система (речь), высокая организация труда и жизни в целом.