Асинхронный электродвигатель в качестве генератора. Как сделать асинхронный электрогенератор своими руками

Желание разработать автономный источник по производству электроэнергии позволил соорудить генератор из обычного асинхронного мотора. Разработка отличается надежность и относительной простотой.

Виды и описание асинхронного двигателя

Существует два вида моторов:

  1. Короткозамкнутый ротор . Он включает в себя статор (недвижимый элемент) и ротор (вращающийся элемент), движущийся за счет работы подшипников, прикрепленных к двум щиткам мотора. Сердечники изготовлены из стали, а также они изолированы друг от друга. По пазам статорного сердечника расположен изолированный провод, а по пазам роторного устанавливается стержневая обмотка либо льется растопленный алюминий. Специальные кольца-перемычки играют роль замыкающего элемента роторной обмотки. Самостоятельные разработки преобразовывают механические движения мотора и создают электроэнергию переменного напряжения. Их преимущество – нет в наличии коллекторно-щелочного механизма, что делает их более надежными и долговечными.
  2. Фазный ротор – дорогой прибор, требующий специализированного сервиса. Состав такой же, как и у ротора с коротким замыканием. Единственное исключение роторная и статорная обмотка сердечника выполнена из заизолированного провода, а ее концы подсоединяют к кольцам, прикрепленным к валу. По ним проходят специальные щетки, которые объединяют провода с регулировочным либо пусковым реостатом. Из-за низкого уровня надежности его используют лишь для тех отраслей производства, для которых он предназначен.

Область применения

Устройство используется в разных отраслях:

  1. Как обычный двигатель для электростанций, работающих от ветра.
  2. Для собственного независимого питания квартиры либо дома.
  3. Как небольшие ГЭС-станции.
  4. Как альтернативный инверторный тип генератора (сварочный).
  5. Для создания бесперебойной системы питания от переменного тока.

Преимущества и недостатки генератора

К положительным качествам разработки принадлежат:

  1. Простая и быстрая сборка с возможностью избежать разборки электродвигателя и перемотки обмотки.
  2. Способность осуществлять вращение электротока с помощью ветряной либо гидротурбины.
  3. Применение устройства в системах мотор-генератор, чтобы преобразовать однофазную сеть (220В) на трехфазную (380 В).
  4. Способность использовать разработку в местах отсутствия электричества, применяя для раскрутки двигатель внутреннего сгорания.

Минусы:

  1. Проблематичность расчета емкости конденсата, который присоединяется к обмоткам.
  2. Сложно достичь максимальной отметки мощности, на которую способна самостоятельная разработка.

Принцип работы

Генератор вырабатывает электрическую энергию при условии, что количество оборотов ротора несколько выше синхронной скорости. Самый простой тип вырабатывает порядка 1800 об/мин., учитывая, что уровень его синхронной скорости становится 1500 оборотов.

Его принцип действия основывается на переработке механической энергии в электроэнергию. Заставить ротор вращаться, и производить электричество можно с помощью сильного крутящегося момента. В идеальном варианте – постоянный холостой ход, который способен поддерживать одинаковую скорость движения.

Все виды моторов, работающие от силы непостоянного тока, называются асинхронными. У них магнитное поле статора кружится скорее, чем поле ротора, соответственно направляя его в сторону своего движения. Чтобы изменить электромотор на функционирующий генератор понадобится повысить скорость передвижения ротора, чтобы он не следовал за магнитным полем статора, а начал двигаться в другую сторону.

Получить подобный результат можно, подключив прибор к электросети, с большой емкостью или целую группу конденсаторов. Они заряжаются и скапливают энергию от магнитных полей. Фаза конденсатора имеет заряд, который противоположен источнику тока мотора, из-за чего происходит замедление работы ротора, и начинается выработка тока статорной обмоткой.


Схема генератора

Схема очень простая и не нуждается в наличии специальных знаний и умений. Если запустить разработку не подключая ее к сети, начнется вращение и, после выхода на синхронную частоту, статорная обмотка станет образовывать электрическую энергию.

Прикрепив к ее зажимам специальную батарею из нескольких конденсаторов (С) можно получить опережающий емкостный ток, который будет создавать намагничивание. Емкость конденсаторов должна быть выше критического обозначения С 0 , которое зависит от габаритов и характеристик генератора.

В данной ситуации происходит процесс самостоятельного запуска, а на статорной обмотке монтируется система с симметричным трехфазным напряжением. Показатель создаваемого тока напрямую зависит от емкости для конденсаторов, а также характеристики машины.


Делаем своими руками

Чтобы преобразовать электромотор в работоспособный генератор понадобиться применять неполярные конденсаторные батареи, поэтому электролитические конденсаторы лучше не использовать.

В трехфазном моторе подключить конденсатор можно по таким схемам:

  • «Звезда» – дает возможность провести генерацию при меньшем количестве оборотов, но с более низким выходным напряжением;
  • «Треугольник» – вступает в работу при большом количестве оборотов, соответственно вырабатывает больше напряжения.

Можно создать собственное устройство из однофазного мотора, но при условии, что он оборудован ротором с коротким замыканием. Чтобы запустить разработку следует воспользоваться фазосдвигающим конденсатором. Однофазный мотор коллекторного типа для переделки не подходит.


Необходимые инструменты

Создать собственный генератор несложно, главное иметь все необходимые элементы:

  1. Асинхронный мотор.
  2. Тахогенератор (прибор для измерения тока) или же тахометр.
  3. Емкость под конденсаторы.
  4. Конденсатор.
  5. Инструменты.

Пошаговое руководство

  1. Поскольку понадобится перенастроить генератор таки образом, чтобы скорость вращений превышала обороты мотора , первоначально необходимо подсоединить двигатель к электросети и завести. Затем с помощью тахометра определить скорость его вращений.
  2. Узнав скорость, следует к полученному обозначению прибавить еще 10%. Например, технический показатель мотора 1000 об/мин, то у генератора должно быть порядка 1100 об/мин (1000*0,1%=100, 1000+100=1100 об/мин).
  3. Следует подобрать емкость под конденсаторы. Чтобы определиться с размерами используйте данные таблицы.

Таблица конденсаторных емкостей

Мощность генератора КВ А Холостой ход
Емкость Мкф Реактивная мощность Квар COS=1 COS=0.8
Емкость Мкф Реактивная мощность Квар Емкость Мкф Реактивная мощность Квар
2,0 28 1,27 36 1,63 60 2,72
3,5 45 2,04 56 2,54 100 4,53
5,0 60 2,72 75 3,4 138 6,25
7,0 74 3,36 98 4,44 182 8,25
10,0 92 4,18 130 5,9 245 11,1
15,0 120 5,44 172 7,8 342 15,5

Важно! Если емкость будет большой, то генератор начнет нагреваться.

Подберите соответствующие конденсаторы, которые смогут обеспечить требуемую скорость вращений. Будьте осторожны при установке.

Важно! Все конденсаторы должны быть заизолированы специальным покрытием.

Устройство готово и может использоваться в качестве источника электроэнергии.

Важно! Прибор с короткозамкнутым ротором создает высокое напряжение, поэтому если необходим показатель в 220В, следует дополнительно установить понижающий трансформатор.

Генератор на магнитах

Магнитный генератор имеет несколько отличий. Например, он не нуждается в установке конденсаторных батарей. Магнитное поле, которое будет создавать электричество в обмотке статора, создается за счет ниодимовых магнитов.

Особенности создания генератора:

  1. Необходимо открутить обе крышки двигателя.
  2. Понадобится устранить ротор.
  3. Ротор необходимо проточить, сняв верхний слой нужной толщины (толщина магнита + 2мм). Самостоятельно выполнить данную процедуру без токарного оборудования крайне сложно, поэтому следует обратиться в токарный сервис.
  4. Сделайте шаблон для круглых магнитиков на листе бумаги , исходя из параметров диаметр 10-20 мм, толщина около 10 мм, а присягающая сила порядка 5-9 кг на см 2 . Подбирать размер следует в зависимости от габаритов ротора. Затем прикрепите созданный шаблон на ротор и разместите магнитики полюсами и под углом 15-20 0 к оси ротора. Ориентировочное количество магнитов в одной полоске около 8 штук.
  5. У вас должно выйти 4 группы полос, каждая по 5 полосок. Между группами должно сохраняться расстояние величиной в 2 диаметра магнита, а между полосками в группе – 0,5-1 диаметр магнита. Благодаря данному расположению ротор не будет залипать к статору.
  6. Установив все магниты, следует залить ротор специальной эпоксидной смолой. Как только она высохнет, покройте цилиндрический элемент стекловолокном и снова пропитайте смолой. Такое крепление позволит избежать вылету магнитов в момент движения. Следите, чтобы диаметр у ротора был таким же, как до проточки, чтобы при установке он не терся об статорную обмотку.
  7. Просушив ротор, его можно установить на место и прикрутить обе крышки двигателя.
  8. Провести испытания. Для запуска генератора понадобится поворачивать ротор с помощью электродрели, а на выходе вымерять полученный ток тахометром.


Переделывать или нет

Чтобы определить, эффективна ли работа самостоятельно сделанного генератора, следует просчитать, насколько оправданы усилия по преобразованию устройства.

Нельзя сказать, что устройство очень простое. Двигатель асинхронного двигателя не уступает по сложности синхронному генератору. Единственное отличие отсутствие электрической цепи для возбуждения работы, но она заменяется батареей конденсаторов, что ничем не упрощает устройство.

Преимущество конденсаторов в том, что они не требуют дополнительного обслуживания, а энергию получают от магнитного поля ротора или производимого электрического тока. Из этого можно сказать, что единственный плюс от этой разработки – отсутствие необходимости в обслуживании.

Еще одно положительное качество – эффект клирфактора. Он заключается в отсутствии высших гармоник в генерируемом токе, то есть чем ниже его показатель, тем меньше расходуется энергии на обогрев, магнитное поле и иные моменты. У трехфазного электромотора этот показатель составляет около 2%, в то время когда у синхронных машин он минимум 15%. К сожалению, учет показателя в быту, когда в сеть включены разнотипные электроприборы, нереален.

Другие показатели и свойства разработки отрицательные. Он не способен обеспечивать номинальную промышленную частоту производимого напряжения. Поэтому устройства применяют вместе с выпрямительными машинами, а также для зарядки аккумулятора.

Генератор чувствителен к малейшим перепадам электричества. В промышленных разработках для возбуждения применяется аккумулятор, а в самодельном варианте часть энергии уходит на батарею конденсаторов. В случае, когда нагрузка на генератор выше номинала, ему не достаточно электричества для подзарядки, и он останавливается. В некоторых случаях применяют емкостные батареи, которые меняют свой динамический объем в зависимости от нагрузки.

  1. Устройство очень опасно, поэтому не рекомендуется использовать напряжение в 380 В , разве что при крайней необходимости.
  2. Согласно с мерами предосторожности и техникой безопасности необходимо дополнительно установить заземление.
  3. Следите за тепловым режимом разработки. Ему не присуще работать при холостом ходу. Чтобы уменьшить тепловое воздействие следует хорошо подобрать конденсаторную емкость.
  4. Правильно просчитайте мощность производимого электрического напряжения. Например, когда в трехфазном генераторе функционирует лишь одна фаза, значит, мощь составляет 1/3 от общей, а если работает две фазы соответственно 2/3.
  5. Есть возможность косвенным образом контролировать частоту непостоянного тока. Когда прибор работает вхолостую выходящее напряжение начинает увеличиваться, и превышает показатели промышленного (220/380В) на 4-6%.
  6. Лучше всего изолировать разработку.
  7. Следует оснастить самодельное изобретение тахометром и вольтметром , чтобы фиксировать его работу.
  8. Желательно предусмотреть специальные кнопки для включения и выключения механизма.
  9. Уровень КПД будет понижаться на 30-50% , данное явление неизбежно.

Чтобы сделать своими руками ветрогенератор мощностью до 1 кВт, нет необходимости приобретать специальное оборудование. Данную задачу легко решить, имея в наличии асинхронный двигатель . Причем указанной мощности будет вполне достаточно для того, чтобы создать условия для работы отдельных бытовых приборов и подключить уличное освещение в саду на даче.

Если сделать ветряк своими руками , то у вас будет бесплатный источник энергии, которую можно использовать по своему усмотрению. Любой домашний мастер в состоянии изготовить самостоятельно ветрогенератор на основе асинхронного двигателя.

Из чего состоит генератор?

Генераторная установка, которая будет вырабатывать электричество, предусматривает следующие основные элементы:

Принцип работы

Эксплуатация самодельных ветряков осуществляется по аналогии с ветрогенераторными установками , которые применяются в промышленности. Основная цель заключается в выработке переменного напряжения, для чего кинетическая энергия трансформируется в электрическую. Ветер приводит в движение ветроколесо роторного типа, в результате чего получаемая энергия поступает от него к генератору. Причем обычно роль последнего выполняет асинхронный двигатель.

В результате создания генератором тока, последний поступает в аккумулятор, который оснащен модулем и контроллером заряда. Оттуда он направляется в инвертор постоянного напряжения, источником работы которого служит электросеть. В результате удается создать переменное напряжение , характеристики которого подходят для использования в бытовых целях (220 В 50 Гц).

Для трансформации переменного напряжения в постоянное используется контроллер. Именно с его помощью и выполняется зарядка аккумуляторов. В ряде случаев инверторы способны выполнять функции источника бесперебойного питания. Иными словами, в случае проблем с подачей электроэнергии они могут задействовать в качестве источника питания бытовых устройств аккумуляторы либо генераторы.

Материалы и инструменты

Чтобы сделать ветрогенератор, достаточно иметь асинхронный двигатель , который и придется переделывать. В то же время придется запастись рядом материалов:

Характеристики и установка генератора

Генератор имеет следующие характеристики:

Особенности монтажа

Чаще всего установка генератора своими руками выполняется с применением трехлопастного ветроколеса, достигающего в диаметре порядка 2 м. Решение же нарастить число лопастей либо их длину не приводит к улучшению рабочих характеристик. Вне зависимости от выбранного варианта относительно конфигурации, габаритов и формы лопастей, вначале следует выполнить предварительные расчеты.

Во время самостоятельной установки нужно обращать внимание на такой параметр, как состояние почвы участка, где будет размещена опора и растяжки. Мачта устанавливается путем рытья ямы глубиной не более 0,5 м, которую необходимо заполнить бетонным раствором.

Подключение к сети осуществляется в строго определенном порядке : первыми подсоединяют аккумуляторы, а за ними уже следует сам ветрогенератор.

Вращение ветрогенераторной установки может осуществляться в горизонтальной либо вертикальной плоскости. При этом обычно выбор останавливают на вертикальной плоскости, что связано с конструкционным исполнением. В качестве роторов допустимо применять модели Дарье и Савониуса.

В конструкции установки должны использоваться герметизирующие прокладки либо колпак. Благодаря данному решению генератору не навредит влага.

Для размещения мачты и опоры должно быть выбрано открытое место. Подходящей для мачты является высота 15 м. При этом наибольшее распространение получили мачты , чья высота не превышает 5-7 м.

Оптимально, если изготовленный своими руками ветрогенератор выполняет функции резервного источника питания.

Эти установки имеют ограничения по использованию, так как их эксплуатация возможна только в тех регионах, где скорость ветра достигает порядка 7-8 м/с.

Прежде чем приступить к созданию ветряка своими руками, выполняют точные расчеты. В некоторых случаях возникают трудности с обработкой узлов асинхронного двигателя;

Ветряк нельзя создать без электрических модулей, а также проведения серии экспериментов.

Как сделать своими руками асинхронный генератор?

Хотя, всегда можно приобрести готовый асинхронный генератор , можно пойти иным путем и сэкономить, изготовив его своими руками. Сложностей здесь не возникнет. Единственное, что нужно сделать - подготовить необходимые инструменты.

  1. Одна из особенностей работы генератора заключается в том, что он должен вращаться с большей скоростью , нежели двигатель. Добиться этого можно следующим путем. После запуска необходимо выяснить скорость вращения двигателя. В решении этой задачи нам поможет тахогенератор или тахометр
  2. Определив вышеуказанный параметр, к значению следует прибавить 10%. Если, например, его крутящий момент составляет 1200 об/мин, то для генератора он будет равен 1320 об/мин.
  3. Чтобы сделать электрогенератор на основе асинхронного двигателя, потребуется найти подходящую емкость для конденсаторов. Причем следует помнить о том, что все конденсаторы не должны отличаться своими фазами друг от друга.
  4. Рекомендуется использовать емкость средних размеров. Если она окажется слишком большой, то это приведет к нагреву асинхронного двигателя.
  5. Для сборки следует использовать конденсаторы , которые смогут гарантировать нужную скорость вращения. К их установке нужно отнестись с большой серьезностью. Рекомендуется защитить их, используя специальные изолирующие материалы.

Это все операции, которые должны быть выполнены при обустройстве генератора на основе двигателя. Далее можно переходить к его монтажу. Имейте в виду, что при использовании устройства, оснащенного короткозамкнутым ротором, вы получите ток с высоким напряжением. По этой причине, чтобы добиться значения в 220 В, вам потребуется понижающий трансформатор.

Энергия электрического тока, входя внутрь асинхронного двигателя, легко переходит в энергию движения на выходе из него. А что делать, если требуется обратное превращение? В таком случае можно соорудить самодельный генератор из асинхронного двигателя. Только функционировать будет он в другом режиме: за счет совершения механической работы начнет вырабатываться электричество. Идеальное решение – перевоплощение в ветрогенератор – источник бесплатной энергии.

Экспериментально доказано, что магнитное поле создается переменным электрическим полем. На этом и основан принцип действия асинхронного двигателя, конструкция которого включает в себя:

  • Корпус – это то, что мы видим снаружи;
  • Статор – неподвижная часть электродвигателя;
  • Ротор – элемент, приводящийся в движение.

У статора главный элемент – обмотка, на которую подается переменное напряжение (принцип действия не на постоянных магнитах, а на магнитном поле, повреждающемся переменным электрическим). В роли ротора выступает цилиндр с пазами, в которые уложена намотка. Но поступающий на нее ток имеет противоположное направление. В результате образуется два переменных электрических поля. Каждое из них создает по магнитному полю, которые начинают взаимодействовать между собой. Но устройство статора таково, что он не может двигаться. Поэтому результатом взаимодействия двух магнитных полей становится вращение ротора.

Конструкция и принцип действия электрогенератора

Опытами подтверждается и то, что магнитное поле создает переменное электрическое поле. Ниже показана схема, которая доступно иллюстрирует принцип действия генератора.

Если металлическую рамку поместить и повращать в магнитном поле, то пронизывающий ее магнитный поток начнет меняться. Это приведет к образованию индукционного тока внутри рамки. Если соединить концы с потребителем тока, к примеру, с электрической лампой, то можно наблюдать ее свечение. Это говорит о том, что механическая энергия, затрачиваемая на вращение рамки внутри магнитного поля, превратилась в электрическую энергию, которая помогла загореться лампе.

Конструктивно электрогенератор состоит их тех же частей, что и электродвигатель: из корпуса, статора и ротора. Разница заключается лишь в принципе действия. Не ротор приводится в движение от магнитного поля, создаваемого электрическим в статорной намотке. А появляется электрический ток в обмотке статора за счет изменения магнитного потока, пронизывающего ее, благодаря принудительному вращению ротора.

От электродвигателя к электрогенератору

Жизнь человека сегодня немыслима без электричества. Поэтому всюду строятся электростанции, преобразующие энергию воды, ветра и атомных ядер в электрическую энергию. Она стала универсальной, потому что ее можно преобразовать в энергию движения, тепла и света. Это стало причиной массового распространения электродвигателей. Электрогенераторы менее популярны, потому что электричеством государство снабжает централизованно. Но все же иногда случается, что электроэнергия отсутствует, и получить ее неоткуда. В таком случае вам поможет генератор из асинхронного двигателя.

Мы уже говорили выше, что конструктивно электрогенератор и двигатель похожи друг на друга. Отсюда возникает вопрос: нельзя ли это чудо техники использовать в качестве источника как механической, так и электрической энергии? Оказывается, можно. И мы расскажем, как своими руками переделать мотор в источник тока.

Смысл переделки

Если понадобился электрогенератор, зачем его делать из двигателя, если можно купить новое оборудование? Однако качественная электротехника – удовольствие не из дешевых. И если у вас есть не использующийся в данный момент мотор, почему бы ему не сослужить добрую службу? Путем простых манипуляций и с минимальными затратами вы получите отличный источник тока, который сможет питать приборы, обладающие активной нагрузкой. К таким относятся компьютерная, электронная и радиотехника, обыкновенные лампы, обогреватели и сварочные преобразователи.

Но экономия – не единственный плюс. Преимущества электрического генератора тока, сооруженного из асинхронного электродвигателя:

  • Конструкция проще, чем у синхронного аналога;
  • Максимальная защита внутренностей от влаги и пыли;
  • Высокая устойчивость к перегрузкам и короткому замыканию;
  • Почти полное отсутствие нелинейных искажений;
  • Клирфактор (величина, выражающая неравномерность вращения ротора) не более 2%;
  • Обмотки во время работы статичны, поэтому долго не изнашиваются, увеличивая эксплуатационный срок;
  • Выработанное электричество сразу обладает напряжением 220В или 380В в зависимости от того, какой двигатель вы решили переделать: однофазный или трехфазный. Это значит, что к генератору можно напрямую подключать потребителей тока, без инверторов.

Даже если электрогенератор не сможет полностью обеспечить ваши нужды, его можно использовать совместно с централизованным электроснабжением. В этом случае речь снова идет об экономии: платить придется меньше. Выгода будет выражаться в разности, полученной путем вычитания выработанного электричества из суммы потребленной электроэнергии.

Что нужно для переделки?

Чтобы своими руками смастерить генератор из асинхронного двигателя, нужно сначала понять, что мешает преобразованию электрической энергии из механической. Напомним, что для образования индукционного тока необходимо наличие изменяющегося со временем магнитного поля. При работе оборудования в режиме мотора оно создается и в статоре, и в роторе за счет питания от сети. Если же перевести технику в режим генератора, окажется, что магнитного поля нет совсем. Откуда же ему взяться?

После работы оборудования в режиме двигателя ротор сохраняет остаточную намагниченность. Именно она от принудительного вращения вызывает индукционный ток в статоре. А для того чтобы магнитное поле сохранялось, потребуется установка конденсаторов, которые обладает током емкостным. Именно он будет поддерживать намагниченность за счет самовозбуждения.

С вопросом, откуда взялось исходное магнитное поле, мы разобрались. Но как приводить в движение ротор? Конечно, если вы раскрутите его своими руками, можно будет питать небольшую лампочку. Но вряд ли результат удовлетворит вас. Идеальное решение – превращение мотора в ветрогенератор, или ветряк.

Так называют устройство, преобразующее кинетическую энергию ветра в механическую, а затем – в электрическую. Ветрогенераторы снабжены лопастями, которые при встрече с ветром приводятся в движение. Вращаться они могут как в вертикальной, так и в горизонтальной плоскости.

От теории к практике

Соорудим ветрогенератор из мотора своими руками. Для простого понимания к инструкции прилагаются схемы и видео. Вам понадобятся:

  • Устройство для передачи энергии ветра к ротору;
  • Конденсаторы на каждую обмотку статора.

Сформулировать правило, по которому бы вы могли с первого раза подобрать устройство для улавливания ветра, сложно. Тут нужно руководствоваться тем, что при работе техники в генераторном режиме частота вращения ротора должна быть выше на 10%, чем при работе в качестве двигателя. Учитывать нужно частоту не номинальную, а холостого хода. Пример: номинальная частота 1000 оборотов, а в холостом режиме – 1400. Тогда для выработки тока понадобится частота, равная примерно 1540 оборотам в минуту.

Подбор конденсаторов по емкости производится по формуле:

C – искомая емкость. Q – скорость вращения ротора в оборотах в минуту. П – число «пи», равное 3,14. f – фазовая частота (постоянная величина для России, равная 50 Герцам). U – напряжение в сети (220, если одна фаза, и 380, если три).

Пример расчета : трехфазный ротор вращается со скоростью 2500 оборотов в минуту. Тогда C = 2500/(2*3,14*50*380*380)=56 мкФ.

Внимание! Не подбирайте емкость больше расчетной величины. Иначе будет высоким активное сопротивление, что приведет к перегреву генератора. Это может произойти и тогда, когда устройство будет запускаться без нагрузки. В таком случае будет полезно уменьшить емкость конденсатора. Чтобы это было просто сделать своими руками, ставьте емкость не цельную, а сборную. Например, 60 мкФ можно составить из 6 штук по 10 мкФ, соединенных параллельно друг другу.

Как соединять?

Рассмотрим, как сделать генератор из асинхронного двигателя, на примере трехфазного мотора:

  1. Соедините вал с устройством, приводящим во вращение ротор за счет энергии ветра;
  2. Подключите конденсаторы по схеме треугольник, вершины которого соедините с концами звезды или вершинами треугольника статора (зависит от типа соединения намоток);
  3. Если на выходе требуется напряжение 220 Вольт, соедините статорные намотки в треугольник (конец первой обмотки – с началом второй, конец второй – с началом третьей, конец третьей – с началом первой);
  4. Если вам нужно запитать приборы от 380 Вольт, то для соединения статорных обмоток подойдет схема «звезда». Для этого соедините начало всех намоток вместе, а концы подключите к соответствующим емкостям.

Пошаговая инструкция о том, как сделать своими руками однофазный ветрогенератор малой мощности:

  1. Вытащите из старой стиральной машины электродвигатель;
  2. Определите рабочую намотку и подключите параллельно ей конденсатор;
  3. Обеспечьте вращение ротора за счет энергии ветра.

Получится ветряк, как на видео, и он выдаст 220 Вольт.

Для электроприборов, питающихся от постоянного тока, дополнительно потребуется установка выпрямителя. А если вы заинтересованы в контроле параметров источника питания, установите на выходе амперметр и вольтметр.

Совет! Ветрогенераторы в связи с отсутствием постоянного ветра могут иногда прекращать работу или работать не в полную силу. Поэтому удобно организовать собственную электростанцию. Для этого ветряк подключают во время ветряной погоды к аккумулятору. Накопленную электроэнергию можно будет использовать во время штиля.

Электродвигатель – это устройство, выступающее в качестве преобразователя энергии и работающее в режиме получения механической энергии из электрической. Путем несложных превращений без использования постоянного магнита, но благодаря остаточной намагниченности, мотор начинает работать в качестве источника питания. Это два взаимообратных явления, помогающие вам экономить: не нужно покупать ветрогенератор, если без дела валяется электрический двигатель. Смотрите видео и учитесь.

Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.

Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от , обеспечивают:

  • более высокую степень надёжности;
  • длительный срок эксплуатации;
  • экономичность;
  • минимальные затраты на обслуживание.

Эти и другие свойства асинхронных генераторов заложены в их конструкции.

Устройство и принцип работы

Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.

Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.

Рис. 1. Ротор и статор асинхронного генератора

Асинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.

Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).


Рис. 2. Асинхронный генератор в сборе

Принцип действия

По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.

В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.

При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.

Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.

На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.


Рис. 3. Схема сварочного асинхронного генератора

Существуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.


Рисунок 4. Схема устройства с индуктивностями

Отличие от синхронного генератора

Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).

Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.

Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:

  • регулируемые зарядные устройства;
  • современные телевизионные приёмники.

Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.

Классификация

Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.

На рисунке 5 для сравнения показаны два типа генераторов: слева на базе , а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.


Рис. 5. Типы асинхронных генераторов

Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.

Область применения

Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.

Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают , их используют для мощных мобильных и .

Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.

Сфера применения довольно обширная:

  • транспортная промышленность;
  • сельское хозяйство;
  • бытовая сфера;
  • медицинские учреждения;

Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.

Асинхронный генератор своими руками

Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):


Рис. 6. Заготовка с наклеенными магнитами

Вы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига. Для этого потребуется не менее 128 магнитиков.

Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.

Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.

Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.

Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U 2 ·C·10 -6 .

При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.

Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1

Часть 2

На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.

Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.


Рис. 7. Схема подключения конденсаторов

Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.

Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.

При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.


Часто возникает необходимость обеспечить автономное электропитание в дачном домике. В подобной ситуации выручит генератор из асинхронного двигателя, сделанный своими руками. Его несложно изготовить самостоятельно, обладая определенными навыками в обращении с электротехникой.

Принцип работы

Благодаря простой конструкции и эффективному функционированию асинхронные двигатели широко используются в промышленности. Они составляют значительную долю всех двигателей. Принцип их работы заключается в создании магнитного поля действием переменного электрического тока.

Экспериментами доказано, что вращением металлической рамки в магнитном поле можно индуцировать в ней электрический ток, появление которого подтверждается свечением лампочки. Это явление называется электромагнитной индукцией.

Устройство двигателя

Асинхронный двигатель состоит из металлического корпуса, внутри которого находятся:

  • статор с обмоткой, по которой пропускается переменный электрический ток;
  • ротор с витками намотки, по которой проходит ток противоположного направления.

Оба элемента находятся на одной оси. Стальные пластины статора плотно прилегают друг к другу, в некоторых модификациях их прочно сваривают. Медная обмотка статора изолирована от сердечника картонными прокладками. В роторе обмотка выполнена из алюминиевых прутьев, замкнутых с двух сторон. Магнитные поля, образующиеся при прохождении переменного тока, действуют друг на друга. Между обмотками возникает ЭДС, которая вращает ротор, так как статор неподвижен.

Генератор из асинхронного двигателя состоит из тех же составных частей, однако в данном случае происходит обратное действие, то есть переход механической или тепловой энергии в электрическую. При работе в режиме двигателя у него сохраняется остаточная намагниченность, индуцирующая электрическое поле в статоре.

Скорость вращения ротора должна быть выше изменения магнитного поля статора. Затормозить его можно реактивной мощностью конденсаторов. Накапливаемый ими заряд противоположен по фазе и дает «подтормаживающий эффект». Вращение можно обеспечить энергией ветра, воды, пара.

Схема генератора

Генератор из асинхронного двигателя отличается простой схемой. После достижения синхронной скорости вращения происходит процесс образования в обмотке статора электрической энергии.

Если присоединить к обмотке конденсаторную батарею, происходит возникновение опережающего электрического тока, образующего магнитное поле. При этом конденсаторы должны обладать емкостью выше критической, которая определяется техническими параметрами механизма. Сила образующегося тока будет зависеть от емкости батареи конденсаторов и характеристик мотора.

Технология изготовления

Работа по преобразованию асинхронного электромотора в генератор достаточно проста при наличии необходимых деталей.

Для начала процесса по переделке необходимо наличие следующих механизмов и материалов:

  • асинхронного двигателя – подойдет однофазный мотор от старой стиральной машины;
  • прибора для измерения частоты вращения ротора – тахометра или тахогенератора;
  • неполярных конденсаторов – пригодны модели вида КБГ-МН с величиной рабочего напряжения 400 В;
  • набора подручных инструментов – дрели, ножовок, ключей.






Пошаговая инструкция

Изготовление генератора своими руками из асинхронного двигателя производится по представленному алгоритму.

  • Генератор должен настраиваться так, чтобы его скорость была больше частоты оборотов двигателя. Величина скорости вращения измеряется тахометром или другим прибором при включении двигателя в электросеть.
  • Полученная величина должна быть увеличена на 10% от имеющегося показателя.
  • Подбирается емкость для конденсаторной батареи – она не должна быть чересчур большой, в противном случае оборудование будет сильно нагреваться. Для ее расчета можно воспользоваться таблицей зависимости между емкостью конденсатора и реактивной мощностью.
  • На оборудование устанавливается конденсаторная батарея, которая обеспечит расчетную скорость вращения для генератора. Ее установка требует особого внимания – все конденсаторы нужно надежно изолировать.

Для 3-фазных двигателей конденсаторы подключают по типу «звезды» или «треугольника». Первый тип соединения делает возможным выработку электроэнергии при меньшей скорости вращения ротора, но на выходе показатель напряжения будет ниже. Для уменьшения его до 220 В используют понижающий трансформатор.

Изготовление генератора на магнитах

В магнитном генераторе не требуется применение конденсаторной батареи. В этой конструкции используются неодимовые магниты. Для выполнения работы следует:

  • расположить магниты на роторе по схеме, с соблюдением полюсов – на каждом из них должно быть не меньше 8 элементов;
  • предварительно ротор нужно проточить на токарном станке на толщину магнитов;
  • с помощью клея прочно зафиксировать магниты;
  • остаток свободного пространства между магнитными элементами залить эпоксидкой;
  • после установки магнитов нужно проверить диаметр ротора – он не должен увеличиться.

Преимущества самодельного электрогенератора

Генератор из асинхронного двигателя, сделанный своими руками, станет экономичным источником тока, который позволит снизить потребление централизованной электроэнергии. С его помощью можно обеспечить питание бытовых электроприборов, компьютерной техники, обогревателей. Самодельный генератор из асинхронного двигателя обладает несомненными достоинствами:

  • простой и надежной конструкцией;
  • эффективной защитой внутренних частей от пыли или влаги;
  • устойчивостью к перегрузкам;
  • длительным сроком эксплуатации;
  • возможностью подключать приборы без инверторов.

При работе с генератором следует учесть также возможность случайных изменений электрического тока.